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1. Significance Statement

The Bose–Einstein integral is defined in Equation (25.12.15) in [1]. This integral is
used in a wide range of fields in science and engineering. A few interesting examples
are in integrals involving parabolic cylinder functions [2], numerical calculation of a
generalized complete elliptic integral [3], the normalization integrals of orthogonal Heun
functions [4], the calculation of the stability of repulsive Bose–Einstein condensates in a
periodic potential [5], and the generalization of Barton’s integral and related integrals of
complete elliptic integrals [6].

In this work, the authors look at deriving a generalized form of the Bose–Einstein
integral with the aim of expanding current integral tables associated with such research.
The hope is that these new tables of definite integrals will aid in expanding potential
research requiring such integral formulae. These new integral formulae are derived by
using our contour integral method in [7], and a summary of some special cases is itemized
in the form of a table for easy reading by potential readers.

2. Introduction

With a possible connection to the Bose–Einstein integral, the authors derive the definite
integral given by

∫ ∞

0

emx(log(a) + x)k − ex(p−m)(log(a)− x)k

epx − 1
dx (1)

where the parameters k, a are general complex numbers and |Re(p)| > |Re(m)| > 0. This
definite integral will be used to derive special cases in terms of special functions and
fundamental constants. The derivations follow the method used by us in [7]. This method
involves using a form of the generalized Cauchy’s integral formula given by

yk

Γ(k + 1)
=

1
2πi

∫
C

ewy

wk+1 dw. (2)

where C is in general an open contour in the complex plane and has the same value at the
end points of the contour (see (5.9.2) of Chapter 5 in [1]). When k is not an integer, the
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contour in (2) is an infinite contour around the branch cut that starts at the branch point at
w = 0. We then multiply both sides by a function of x and then take a definite integral of
both sides. This yields a definite integral in terms of a contour integral. Then, we multiply
both sides of Equation (2) by another function of x and take the infinite sums of both sides
such that the contour integral of both equations are the same.

3. Definite Integral of the Contour Integral

We use the method in [7]. Using a generalization of Cauchy’s integral formula
Equation (2), we replace y → x + log(a) and multiply by emx. Next, we form a second
equation by replacing x → −x and adding both equations and multiplying by −1/2 in the
final form to obtain

− e−mx(log(a)− x)k + emx(log(a) + x)k

2Γ(k + 1)
= − 1

2πi

∫
C

aww−k−1 cosh(x(m + w))dw (3)

We repeat the above process except we take the difference between the two derived
equations and multiply by − 1

2 coth
( px

2
)

to obtain

−
coth

( px
2
)(

e−mx(log(a)− x)k − emx(log(a) + x)k
)

2Γ(k + 1)
=

1
2πi

∫
C

aww−k−1 coth
( px

2

)
sinh(x(m + w))dw (4)

Next, we add Equations (3) and (4), take the definite integral over x ∈ [0, ∞), and
simplify to obtain

1
Γ(k+1)

∫ ∞
0

emx(log (a)+x)k−ex (p−m) (log(a)−x)k

epx−1 dx

= − 1
2πi
∫ ∞

0

∫
C aww−k−1(cosh(x(m + w))− coth

( px
2
)

sinh(x(m + w))
)
dwdx

= − 1
2πi
∫

C

∫ ∞
0 aww−k−1(cosh(x(m + w))− coth

( px
2
)

sinh(x(m + w))
)
dxdw

= − 1
2πi
∫

C
πaww−k−1 cot

(
π(m+w)

p

)
p dw

(5)

from Equation (3.411.31) in [8], where Re(m + w) > 0 and |Re(p)| > |Re(m)| > 0. When k
is not an integer, the terms log(a)± x give branch points and branch cuts which are needed
to describe the integral.

The logarithmic function is given, for example, in Section 4.1 in [9]. We are able to
switch the order of integration over w+m

p and x using Fubini’s theorem since the integrand
is of bounded measure over the space C× [0, ∞).

4. The Lerch Function and Infinite Sum of the Contour Integral

In this section, we use Equation (2) to derive the contour integral representations for
the Lerch function.

4.1. The Lerch Function

The Lerch function has a series representation given by

Φ(z, s, v) =
∞

∑
n=0

(v + n)−szn (6)

where |z| < 1, v 6= 0,−1, .. and is continued analytically by its integral representation
given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1− ze−t dt =
1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt (7)
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where Re(v) > 0, and either |z| ≤ 1, z 6= 1, Re(s) > 0 or z = 1, Re(s) > 1.

4.2. Derivation of the First Contour Integral

Using Equation (2), and replacing y by log(a) + 2iπ(n+1)
p and then multiplying both

sides by 2iπ
p e

2iπm(n+1)
p , taking the infinite sum over n ∈ [0, ∞) and simplifying in terms of

the Lerch function, we obtain

(2π)k+1
(

i
p

)k+1
e

2iπm
p Φ

(
e

2imπ
p ,−k,1− ip log(a)

2π

)
Γ(k+1)

= 1
2πi ∑∞

n=0
∫

C
2iπaww−k−1e

2iπ(n+1)(m+w)
p

p dw

= 1
2πi
∫

C ∑∞
n=0

2iπaww−k−1e
2iπ(n+1)(m+w)

p

p dw

= − 1
2πi
∫

C
πaww−k−1

(
cot
(

π(m+w)
p

)
+i
)

p dw

(8)

from Equation (1.232.1) in [8], where Im
(

w+m
p

)
> 0 in order for the sum to converge.

4.3. Derivation of the Additional Contour

Using Equation (2), we replace y→ log(a) and multiply both sides by − iπ
p to obtain

iπ logk(a)
pΓ(k + 1)

=
1

2πi

∫
C

iπaww−k−1

p
dw (9)

5. Main Results

In the proceeding section, we will evaluate Equation (10) for various special cases of the
parameters k, a, p and m. We will simplify the Lerch function in terms of the polylogarithm
Lis(z) = zΦ(z, s, 1) Equation (64:12:2) in [10] with special cases Φ(−1, 2, 1/2) = 4G, where

G = ∑∞
j=0

(−1)j

(2j+1)2 is Catalan’s constant given in Equation (1:7:4) in [10], and the zeta function
of Riemann ζ(s) = ζ(s, 1) = Φ(1, v, 1) from Equation (25:14:2) in [1].

Theorem 1. For all k, a ∈ C and |Re(p)| > |Re(m)| > 0,∫ ∞
0

emx(log(a)+x)k−ex(p−m)(log(a)−x)k

epx−1 dx

= (2π)k+1
(

i
p

)k+1
e

2iπm
p Φ

(
e

2imπ
p ,−k, 1− ip log(a)

2π

)
+

iπ logk(a)
p

(10)

Proof. Observe that the right-hand side of Equation (5) is equal to the sum of the right-
hand sides of Equations (8) and (9), so we may equate the left-hand sides and simplify the
Gamma function to yield the stated result.

Lemma 1. ∫ ∞

0
csch

( px
2

)
sinh

(
mx− px

2

)
dx = −

π cot
(

πm
p

)
p

(11)

Proof. Use Equation (10), set k = 0, and simplify using entry (2) in the table below (64:12:7)
in [10].

Lemma 2. ∫ ∞

0
x csch

( px
2

)
cosh

(
mx− px

2

)
dx =

π2 csc2
(

πm
p

)
p2 (12)
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Proof. Use Equation (10), set k = a = 1, and simplify using entry (3) in the table below
(64:12:7) in [10]. This is Equation (3.411.31) in [8].

Lemma 3. ∫ ∞
0

log(a)(ex(p−m)−emx)+x(ex(p−m)+emx)
(epx−1)(x2−log2(a))

dx

= e
2iπm

p Φ
(

e
2imπ

p , 1, 1− ip log(a)
2π

)
+ iπ

p log(a)

(13)

Proof. Use Equation (10), set k = −1, and simplify.

Lemma 4. For Re(k) > 0,

∫ ∞

0

xkemx − (−x)kex(p−m)

epx − 1
dx =

i(2π)k+1
(

i
p

)k
Li−k

(
e

2imπ
p

)
p

(14)

Proof. Use Equation (10), set a = 1, and simplify using Equation (64:12:2) in [10].

Example 1. ∫ ∞

0

x csch(x)
x2 + π2 dx = log(2)− 1

2
(15)

and ∫ ∞

0

x2 coth(x)csch(x)
x2 + π2 dx =

1
12

(
π2 − 6

)
(16)

Proof. Use Equation (10), take the first partial derivative with respect to k, set k = −1, a = −1,
p = 2, m = 1, and simplify in terms of the real and imaginary parts using entry (1) and entry
(2) in the table below (64:12:7) in [10].

Example 2. ∫ ∞

0

x csch(x)
4x2 + π2 dx =

1
8
(π − 2) (17)

and ∫ ∞

0

x2 coth(x)csch(x)
4x2 + π2 dx =

1
4
(2G− 1) (18)

Proof. Use equation (10), take the first partial derivative with respect to k, set k = −1,
a = −1, p = 2, m = 1, and simplify in terms of the real and imaginary parts and Catalan’s
constant, G, using entry (1) and entry (2) in the table below (64:12:7) in [10].

Lemma 5. For Re(m) > 0,

∫ ∞

0
arctan

( x
a

)
csch(mx)dx =

π log
(

amΓ( am
2π )

2

2πΓ( am+π
2π )

2

)
2m

(19)

Proof. Use Equation (10), set p = 2m, a = ai, and simplify in terms of the Hurwitz zeta
function ζ(s, v) using entry (4) in the table below (64:12:7) in [10]. Next, take the first partial
derivative with respect to k, set k = 0, and simplify the logarithm on the left-hand side in
terms of the arctangent function using Equation (64:10:2) in [10].

Lemma 6. For Re(k) > 0, Re(m) > 0,

∫ ∞

0
xk csch(mx)dx =

(
2k+1 − 1

)
πk+1m

(
i
m

)k+2
ζ(−k)

(
cot
(

πk
2

)
− i
)

(20)
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Proof. Use Equation (10), set p = 2m, and simplify in terms of the Hurwitz zeta function
ζ(s, v) using entry (4) in the table below (64;12:7) in [10]. Next, set a = 1 and simplify in terms
of the zeta function of Riemann ζ(s) using entry (2) in the table below (64:7) in [10].

Lemma 7.

∫ ∞

0

x2 coth(x) csch(x)
a2 + x2 dx =

π

2a
+

a
(

ψ(1)( a
2π + 1

)
− ψ(1)( a+π

2π

))
4π

(21)

Proof. Use Equation (10), set p = 2m, and simplify in terms of the Hurwitz zeta function
ζ(s, v) using entry (4) in the table below (64;12:7) in [10]. Next, we take the first partial
derivative with respect to m and set m = 1. Next, we apply l’Hôpital rule to the right-hand
side as k→ −1, replace a→ ea, and simplify using Equation (64:4:1) in [10].

Lemma 8. For Re(m) > 0,

∫ ∞
0

((
x + iπ

m

)k
−
(
−x + iπ

m

)k
)

csch(mx)dx

=
πk+1( i

m )
k−1

((2k+2−2)ζ(−k)+1)
m2

(22)

Proof. Use Equation (10), set a→ e2πi/p, and simplify; then, replace p→ 2m and simplify
in terms of the zeta function of Riemann ζ(s) using entry (2) in the table below (64:7) and
entry (1) in the table below (64:12:7) in [10].

Lemma 9. For Re(m) > 0, ∫ ∞

0

x csch(mx)
m2x2 + π2 dx =

log(4)− 1
2m2 (23)

Proof. Use Equation (22), apply l’Hôpital rule to the right-hand as k→ −1, and simplify.

Lemma 10. For Re(m) > 0,

∫ ∞

0

x csch(mx)

(m2x2 + π2)
2 dx =

π2 − 6
24π2m2 (24)

Proof. Use Equation (22), set k = −2, and simplify.

Example 3. ∫ ∞

0

(π − x)(x + π) sech(x)

(x2 + π2)
2 dx =

4− 4G
π

(25)

and ∫ ∞

0

x csch(x)

(x2 + π2)
2 dx =

1
24
− 1

4π2 (26)

Proof. Use Equation (10), set k = −2, a = −1, m = 1, p = 4, compare real and imaginary
parts, and simplify in terms of Catalan’s constant, G, using entry (3) in the table below
(64:12:7) and Equation (63:13:4) in [10].
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Lemma 11. For Re(m) > 0,∫ ∞
0

(
log(log(a)−x)

x−log(a) +
log(log(a)+x)

log(a)+x

)
csch(mx)dx

= log
(

2iπ
m

)(
H− im log(a)+π

2π

− H− im log(a)
2π

)
− γ1

(
π−im log(a)

2π

)
+γ1

(
1− im log(a)

2π

)
+

iπ log(log(a))
m log(a)

(27)

Proof. Use Equation (10), set p→ 2m, and simplify in terms of the Hurwitz zeta function
ζ(s, v). Next, take the first partial derivative with respect to k. Next, apply l’Hôpital rule to
the right-hand side as k → −1, simplify using Equation (64:10:2) in [10], and simplify in
terms of the Harmonic function Hn, the Stieltjes constant γn, and the generalized Stieltjes
constant γn(a) using (3:6:7) in [10] and Equation (1.1) in [11].

Example 4. ∫ ∞

0

x csch(x)
x2 + π2 dx = log(2)− 1

2
(28)

and ∫ ∞
0

csch(x)(x log(x2+π2)−2π tan−1( x
π ))

x2+π2 dx

= −γ1 + γ1
( 3

2
)
+ log(π) + (log(4)− 2) log(2π)

(29)

Proof. Use Equation (27), set a = −1, m = 1, compare and separate real and imaginary
parts, and simplify.

Example 5. ∫ ∞
0 ex

(
4 log(−x+ iπ

2 )
(π+2ix)2 +

log(x+ iπ
2 )

(x+ iπ
2 )

2

)
(coth(x)− 1)dx

= − 2i(Φ′(−1,2, 3
2 )+4G log(π)−2 log(2π))

π + 4G− 2

(30)

Proof. Use Equation (10), take the first partial derivative with respect to k, set k = −2, a = i,
p = 2, m = 1, and simplify in terms of Catalan’s constant G using Equation (6) in [12].

Example 6. ∫ ∞

0
x csch(x)dx =

π2

4
(31)

and ∫ ∞
0 csch(x)

(
x log

(
x2 + π2)+ 2π tan−1( x

π

))
dx

= 1
6 π2

(
36 log(A)− 3 + log

(
π3

16

)) (32)

Proof. Use Equation (10), set p = 2m, and simplify in terms of the Hurwitz zeta function
ζ(s, v) using entry (4) in the table below (64:12:7) in [10]. Next, we take the first partial
derivative with respect to k, set k = 1, a = −1, m = 1, and simplify in terms of Glaisher’s
constant A after expanding in terms of the real and imaginary parts.

Example 7. ∫ ∞

0
x csch(x)dx =

π2

4
(33)

and ∫ ∞

0
csch(x)

(
x log

(
x2 +

π2

4

)
+ π tan−1

(
2x
π

))
dx =

1
2

π
(

4G + π log
(π

2

))
(34)
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Proof. Use Equation (10), set p = 2m, and simplify in terms of the Hurwitz zeta function
ζ(s, v) using entry (4) in the table below (64:12:7) in [10]. Next, we take the first partial
derivative with respect to k, set k = 1, a = −i, m = 1, and simplify in terms of Catalan’s
constant G after expanding in terms of the real and imaginary parts.

Lemma 12. For Re(m) > 0,∫ ∞
0 csch(mx)

(
(log(a) + x)k − (log(a)− x)k

)
dx

=
iπ
(

logk(a)+2k+1πk( i
m )

k(
ζ
(
−k,1− im log(a)

2π

)
−ζ
(
−k, π−im log(a)

2π

)))
m

(35)

Proof. Use Equation (10), set p→ 2m, and simplify in terms of the Hurwitz zeta function
ζ(s, v) using entry (4) in the table below (64:12:7) in [10].

Lemma 13.∫ ∞
0

1
4π(x2+π2)

x sinh(x) csch3( x
2
)
((π − ix)(−x + iπ)k(1 + k log(−x + iπ))

−(π + ix)(x + iπ)k(1 + k log(x + iπ)))dx

= 1
8 e

iπk
2 πk−1

(
k
(

2i
(

4k+1kζ ′
(

1− k, 1
4

)
− 4k+1kζ ′

(
1− k, 3

4
)

−4k(k− 1)(ζ ′
(

2− k, 1
4

)
− ζ ′

(
2− k, 3

4
)
) + 8 log(π)

)
+4kζ

(
2− k, 3

4
)
(π(k− 1)− 2i((k− 1) log(4π) + 2))

)
+2
(

i4kζ
(
2− k, 3

4
)
− 4πk + 8i

)
+ 4k+1kζ

(
1− k, 1

4

)
(k(π − 2i log(4π))− 4i)

−4k+1kζ
(
1− k, 3

4
)
(k(π − 2i log(4π))− 4i)

−4kζ
(

2− k, 1
4

)
(π(k− 1)k− 2ik((k− 1) log(4π) + 2) + 2i)

)

(36)

Proof. Use Equation (35), take the first partial derivatives with respect to a, m andk, then
set a = −1, m = 1/2, and simplify.

Example 8. ∫ ∞

0

x2 sinh(x) csch3( x
2
)

x2 + π2 dx = 8G− 4 (37)

Proof. Use Equation (36), apply l’Hôpital rule as k→ 0, and simplify in terms of Catalan’s
constant G.

Example 9.

∫ ∞

0

x2 sinh(x) csch3( x
2
)

4x2 + π2 dx =
1

16

(
−32 + ψ(1)

(
1
8

)
− ψ(1)

(
5
8

))
(38)

Proof. Use Equation (35), take the first partial derivative with respect to a, m and k, and
then set a = i, m = 1/2. Next, apply l’Hôpital rule as k → 0 and simplify in terms of the
polygamma function ψn(z) using Equation (64:4:1) in [10].

Example 10. ∫ ∞

0

x2 coth(x) csch(x)
4x2 + π2 dx =

1
4
(2G− 1) (39)

Proof. Use Equation (35), take the first partial derivative with respect to a, m and k and
then set a = i, m = 1. Next, apply l’Hôpital rule as k→ 0 and simplify in terms of Catalan’s
constant G using Equations (1:7:4) and (64:3:5) in [10].
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Example 11.

∫ ∞

0

x2 coth
( x

3
)

csch
( x

3
)

4x2 + π2 dx =
1
32

(
ζ

(
2,

1
12

)
− ζ

(
2,

7
12

)
− 72

)
(40)

Proof. Use Equation (35), take the first partial derivative with respect to a, m and k, and
then set a = i, m = 1/3. Next, apply l’Hôpital rule as k→ 0 and simplify.

Example 12.

∫ ∞

0

x2 coth
( x

3
)

csch
( x

3
)

x2 + π2 dx =
1
4

(
−18 + ψ(1)

(
1
6

)
− ψ(1)

(
2
3

))
(41)

Proof. Use Equation (35), take the first partial derivative with respect to a, m and k, and
then set a = −1, m = 1/3. Next, apply l’Hôpital rule as k→ 0 and simplify in terms of the
polygamma function ψ(n)(z) using Equation (64:4:1) in [10].

Example 13.

∫ ∞

0
x arctan

( x
π

)
coth

(
2x
3

)
csch

(
2x
3

)
dx = −3

8
π log

27e3− 4π√
3 Γ
(
− 1

6

)6

256Γ
(
− 2

3
)6

 (42)

Proof. Use Equation (35), take the first partial derivative with respect to a, m and k, and
then set a = −1, m = 2/3. Next, apply l’Hôpital rule as k→ 0 and simplify in terms of the
log-gamma function log(Γ(x)) using Equation (64:10:2) in [10].

Example 14. ∫ ∞

0

x(x coth(x)− 1) csch(x)

(x2 + π2)
3 dx =

7
960
− 18ζ(3) + π2

48π4 (43)

Proof. Use Equation (35), set k = −2, replace a → eai, and simplify in terms of the
polygamma function ψ(1)(z). Next, we form a second equation by taking the first partial
derivative with respect to a and simplify. Next, we take the difference of these two
equations, set a = π, m = 1, and simplify in terms the zeta function ζ(s) using Equation
(44:12:5) in [10]. In this evaluation, we replaced a→ eai to obtain a complex number in the
denominator when we evaluate and simplify the integral.

Example 15.

∫ ∞

0

x(x coth(x)− 1) csch(x)

(4x2 + π2)
3 dx = −

512C + 32π3 − ψ(3)
(

1
4

)
+ ψ(3)( 3

4
)

4096π4 (44)

Proof. Use Equation (35), set k = −2, a = eai, and simplify in terms of the polygamma
function ψ(1)(z). Next, we form a second equation by taking the first partial derivative
with respect to a and simplify. Next, we take the difference of these two equations, set
a = π/2, m = 1, and simplify in terms of Catalan’s constant and the polygamma function
ψ3(s) using Equation (44:12:5) in [10].
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6. Table of Definite Integrals

Definite integrals are presented in Table 1.

Table 1. Table of definite integrals.

f (x)
∫ ∞

0 f (x)dx

csch
( px

2
)

sinh
(
mx− px

2
)

−
π cot

(
πm

p

)
p

xcsch
( px

2
)

cosh
(
mx− px

2
)

π2 csc2
(

πm
p

)
p2

log(a)(ex(p−m)−emx)+x(ex(p−m)+emx)
(epx−1)(x2−log2(a))

e
2iπm

p Φ
(

e
2imπ

p , 1, 1− ip log(a)
2π

)
+ iπ

p log(a)

xkemx−(−x)kex(p−m)

epx−1
i(2π)k+1

(
i
p

)k
Li−k

(
e

2imπ
p
)

p

xcsch(x)
x2+π2 log(2)− 1

2

x2 coth(x)csch(x)
x2+π2

1
12
(
π2 − 6

)
xcsch(x)
4x2+π2

1
8 (π − 2)

x2 coth(x)csch(x)
4x2+π2

1
4 (2G− 1)

arctanh
( x

a
)
csch(mx)

−
iπ log

(
−

iamΓ(− iam
2π )

2

2πΓ( π−iam
2π )

2

)
2m

xkcsch(mx)
(

2k+1 − 1
)

πk+1m
(

i
m

)k+2
ζ(−k)

(
cot
(

πk
2

)
− i
)

x2 coth(x)csch(x)
a2+x2

π
2a +

a(ψ(1)( a
2π +1)−ψ(1)( a+π

2π ))
4π((

x + iπ
m

)k
−
(
−x + iπ

m

)k
)

csch(mx) πk+1( i
m )

k−1
((2k+2−2)ζ(−k)+1)

m2

xcsch(mx)
m2x2+π2

log(4)−1
2m2

xcsch(mx)
(m2x2+π2)2

π2−6
24π2m2

(π−x)(x+π)sech(x)
(x2+π2)2

4−4G
π

xcsch(x)
(x2+π2)2

1
24 −

1
4π2

Author Contributions: Conceptualization, R.R.; writing—original draft preparation, R.R.; writing—
review and editing, R.R.; supervision, A.S.; funding acquisition, A.S. Both authors have read and
agreed to the published version of the manuscript.

Funding: This research is supported by NSERC Canada under Grant 504070.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Olver, F.W.J.; Daalhuis, A.B.; Lozier, D.W.; Schneider, B.I.; Boisvert, R.F.; Clark, C.W.; Miller, B.R.; Saunders, B.V.; Cohl, H.S.;

McClain, A.M. (Eds.) NIST Digital Library of Mathematical Functions. Available online: http://dlmf.nist.gov (accessed on 8 May 2012).
2. Barr, G.E. A note on integrals involving parabolic cylinder functions. SIAM J. Appl. Math. 1968, 16, 71–74. [CrossRef]
3. Bartky, W. Numerical calculation of a generalized complete elliptic integral. Rev. Mod. Phys. 1938, 10, 264–269. [CrossRef]
4. Becker, P.A. Normalization integrals of orthogonal Heun functions. J. Math. Phys. 1997, 38, 3692–3699. [CrossRef]
5. Bronski, J.C.; Carr, L.D.; Deconinck, B.; Kutz, J.N.; Promislow, K. Stability of repulsive Bose–Einstein condensates in a periodic

potential. Phys. Rev. E 2001, 63, 1–11. [CrossRef] [PubMed]

http://dlmf.nist.gov
http://doi.org/10.1137/0116005
http://dx.doi.org/10.1103/RevModPhys.10.264
http://dx.doi.org/10.1063/1.532062
http://dx.doi.org/10.1103/PhysRevE.63.036612
http://www.ncbi.nlm.nih.gov/pubmed/11308793


Math. Comput. Appl. 2021, 26, 58 10 of 10

6. Bushell, P.J. On a generalization of Barton’s integral and related integrals of complete elliptic integrals. Math. Proc. Camb.
Philos. Soc. 1987, 101, 1–5. [CrossRef]

7. Reynolds, R.; Stauffer, A. A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples. Int. Math.
Forum 2020, 15, 235–244. [CrossRef]

8. Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series and Products, 6th ed.; Academic Press: Cambridge, MA, USA, 2000.
9. Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed.;

Dover: New York, NY, USA, 1982.
10. Oldham, K.B.; Myland, J.C.; Spanier, J. An Atlas of Functions: With Equator, the Atlas Function Calculator, 2nd ed.; Springer:

New York, NY, USA, 2009.
11. Adell, J.A. Estimates of generalized Stieltjes constants with a quasi-geometric rate of decay. Proc. R. Soc. A 2012. [CrossRef]
12. Guillera, J.; Sondow, J. Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s

transcendent. Ramanujan J. 2008, 16, 247–270. [CrossRef]

http://dx.doi.org/10.1017/S0305004100066366
http://dx.doi.org/10.12988/imf.2020.91272
http://dx.doi.org/10.1098/rspa.2011.0551
http://dx.doi.org/10.1007/s11139-007-9102-0

	Significance Statement
	Introduction
	Definite Integral of the Contour Integral
	The Lerch Function and Infinite Sum of the Contour Integral
	The Lerch Function
	Derivation of the First Contour Integral
	Derivation of the Additional Contour

	Main Results
	Table of Definite Integrals
	References

