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Abstract: In this research, the analytical methods of the differential transform method (DTM),
homotopy asymptotic method (HAM), optimal homotopy asymptotic method (OHAM), Adomian
decomposition method (ADM), variation iteration method (VIM) and reproducing kernel Hilbert
space method (RKHSM), and the numerical method of the finite difference method (FDM) for
(analytical-numerical) simulation of 2D viscous flow along expanding/contracting channels with
permeable borders are carried out. The solutions for analytical method are obtained in series form
(and the series are convergent), while for the numerical method the solution is obtained taking
into account approximation techniques of second-order accuracy. The OHAM and HAM provide
an appropriate method for controlling the convergence of the discretization series and adjusting
convergence domains, despite having a problem for large sizes of obtained results in series form; for
instance, the size of the series solution for the DTM is very small for the same order of accuracy. It is
hard to judge which method is the best and all of them have their advantages and disadvantages. For
instance, applying the DTM to BVPs is difficult; however, solving BVPs with the HAM, OHAM and
VIM is simple and straightforward. The extracted solutions, in comparison with the computational
solutions (shooting procedure combined with a Runge–Kutta fourth-order scheme, finite difference
method), demonstrate remarkable accuracy. Finally, CPU time, average error and residual error for
different cases are presented in tables and figures.

Keywords: optimal homotopy asymptotic method; differential transform method; homotopy analysis
method; boundary value problem; reproducing kernel Hilbert space method; finite difference method

1. Introduction

Significant interest has been paid to the analysis of nonlinear challenges in different
fields of nature and engineering. To solve this type of problem, the wide group of analytical
solutions and computational simulations has been considered. A general analytical method
to solve the non-linear differential equations is the perturbation technique [1,2]. Practical
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problems such as solution of the Bernoulli problem [3] have been solved by the perturbation
procedure. However, the perturbation methods have their own limitations. In the analytic
perturbation method, perturbation parameters should be exerted into the equation and
this is the downside of the perturbation methods. Therefore, developing a new kind of
nonlinear analytical method that requires no perturbation parameter is essential. However,
with the development of parametric computational software including MATHEMATICA,
MAPLE, MATLAB, etc., approximate analytical techniques for nonlinear challenges have
been approved by various scientists. The Adomian decomposition method (ADM) [4–6],
variational iteration method (VIM) [7] and homotopy perturbation method (HPM) [8]
are a few types of analytical method. These semi-numerical-analytical methods provide
promising results in solving a set of problems with fast and efficient convergence. Certainly,
each of these methods has its strengths and weaknesses.

Thus, Zhou [9] and Pukhov [10] were among the early researchers to apply the dif-
ferential transform method to engineering challenges. This approach differs from the
conventional Taylor series technique that illustrates expansion of the derivatives. By em-
ploying the DTM, the control equations are transformed to a recurrent relation and the
border restrictions reduce into a system of algebraic equations. Due to the independence
of the DTM from the existence of a small parameter, it can overcome the limits of per-
turbation techniques. Chen and Ho [11] defined a closed-view series solution for linear
and nonlinear initial value problems (IVPs) with development of this method for PDEs.
The DTM is employed to work out Burgers’ and nonlinear energy transport equations,
the heat boundary-layer along a plane surface and several initial-value problems [12–15].
Rashidi et al. [16] analyzed MHD laminar motion in a partially porous duct employing the
DTM. In 1992, the homotopy analysis method (HAM) dealing with a homotopy in topology
was proposed to generate an analytic technique for nonlinear challenges [17]. Recently,
the HAM has been used to work out different nonlinear problems [18,19]. The optimal
homotopy asymptotic method (OHAM) is a new analytical procedure that was developed
by Marinca et al. [20]. The independence of this technique from the small parameter has
resulted in the power of the OHAM in solving nonlinear differential equations [21,22].
By this technique, an effective method for managing the convergence of approximation
series and adjusting convergence regions is available. Hence in the current paper, the
authors chose this boundary value problem to compare three analytical methods (DTM,
OHAM, HAM). Another semi-analytical method that can be applied for this problem is
the reproducing kernel Hilbert space method (RKHSM); recently many researchers have
implemented this method on complicated problems [23–27]. As a general conclusion, for
CPU time, the DTM has the minimum CPU time in all of the mentioned methods. Numeri-
cal methods like the FDM are more general and robust, but when changing any physical
parameter, one must perform the simulation again; however, in analytical methods when
changing physical parameters there is no need to redo the calculation. Another limitation
of analytical problems might be related to solving PDEs; some of them can only be ap-
plicable to ODEs that can be obtained from the similarity solutions for converting PDEs
to ODEs, for instance in fluid mechanics; by using similarity solutions one can convert
Navier–Stokes equations (PDEs) to a set of coupled nonlinear ODEs that can be solved
by the HAM, VIM or DTM. In other words, the corresponding Navier–Stokes equations
(PDEs) in many cases cannot be solved by the HAM, VIM or DTM. In conclusion, for similar
problems, analytical methods have a big advantage in respect of numerical methods as one
can obtain the solution in parametric form, and when changing physical parameters there
is no need for performing the calculation again. When obtaining the analytical solution
by different methods, it should be mentioned that the simplest method is the homotopy
perturbation method (HPM). After the HPM, the DTM is simpler with respect to other
methods. The VIM and HAM are in the same order but the HAM is more robust and
powerful for solving different problem with respect to VIM. The OHAM is much better
than the HAM but sometimes obtaining the optimal h values for the OHAM might be
challenging. The RKHSM is a new method and is developing for solving ODEs and PDEs.
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2. Basic Ideas
2.1. Differential Transform Method

Using [9,12,13], the major description of the differential transformation can be de-
scribed easily. Consider a function u(x) that is defined by a power series with a center in a
point x0. The differential reduction of u(x) can be defined as

U(k) =
1
k!

[
dku(x)

dxk

]
x=x0

(1)

Here U(k) is the transformed function. In addition, the inverse transformation is
determined as

u(x) =
∞

∑
k=0

(x− x0)
kU(k) (2)

In combination with Equations (1) and (2), the following equation is generated:

u(x) =
∞

∑
k=0

(x− x0)
k

k!

[
dku(x)

dxk

]
x=x0

(3)

Considering Equation (3), Taylor series expansion is the basis of differential trans-
formation. This technique does not allow us to perform an evaluation of the derivatives
symbolically. In physical problems, the finite series of u(x) is considered and Equation (2)
can be formulated as

u(x) ∼=
m

∑
k=0

(x− x0)
kU(k) (4)

assuming that u(x) = ∑∞
k=m+1 (x− x0)

kU(k) has negligible values. Mainly, the magnitude
of m is defined by convergences of the series parameters.

2.2. Optimal Homotopy Asymptotic (Analysis) Method

To describe the methodology of the OHAM, the nonlinear differential relation is studied:

A( f (η)) + g(η) = 0 (5)

with additional restrictions of
B( f ) = 0 (6)

Generally, the operator A can be presented as a combination of linear term L and
nonlinear term N. Therefore, Equation (5) is formulated as

L( f (η)) + N( f (η)) + g(η) = 0, B( f ) = 0 (7)

Here η is an independent parameter, f (η) is an unknown function, g(η) is a known
function and B is a border function. Using the OHAM, one can define a family of equations

(1− p)[L(ϕ(η, p)) + g(η)] = H(p)[L(ϕ(η, p)) + g(η) + N(ϕ(η, p))]
B(ϕ(η, p)) = 0

(8)

Here p ∈ [0, 1] is an embedding coefficient, H(p) is a nonzero function for p 6= 0 and
H(0) = 0, ϕ(η,p) is an unknown function having additional restrictions for p = 0 and p = 1:

ϕ(η, 0) = f0, ϕ(η, 1) = f (η) (9)

Here f0(η) is defined employing Equation (8) at p = 0:

L( f0(η)) + g(η) = 0, B( f0) = 0 (10)
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Additionally, H(p) is assumed as follows:

H(p) = C1 p + C2 p2 + C3 p3 + . . . (11)

Here C1, C2, . . . are constants which are determined in the continuation of the paper.
Representing ϕ(η,p) as a series of p, it can be defined as

ϕ(η, p, Ci) = f0(η) + ∑
k≥1

fk(η, Ci)pk, i = 1, 2, . . . (12)

Now using Equation (12) for Equation (8), and matching the parameters of like powers
of p, the set of differential relations with additional restrictions is obtained. As a result, the
solution of Equation (5) can be defined as follows:

f̃ (m) ∼= f0(η) +
m

∑
k=1

fk(η, Ci) (13)

The last parameter Cm is a function of η. Using Equation (13) for Equation (5), one can
find the residual error:

R(η, Ci) = L
(

f̃ (m)(η, Ci)
)
+ g(η) + N

(
f̃ (m)(η, Ci)

)
(14)

If R(η, Ci) = 0 then f̃ (m)(η, Ci) is an exact solution. Such situation is not valid for
nonlinear challenges. However, by minimizing the sum of the square of the residual error

J(C1, C2, . . . , Cn) =

b∫
a

R2(η, C1, C2, . . . , Cm)dη (15)

the unknown parameters Ci (i = 1, 2, . . . , m) can be defined employing the equations

∂J
∂C1

=
∂J

∂C2
= . . . = 0 (16)

where a and b are the upper and lower magnitudes, depending on the considered problem.
In this way, the approximate solution (Equation (13)) is well defined.

3. Solution

In this section, six analytical methods and two numerical techniques are applied
to work out the boundary value challenge. Hence, 2D viscous circulation in a channel
bordered by two moved porous plates can be described using the following equations
(Figure 12 shows streamlines and velocity field for Re = 5 and α = 1):

f IV(y) + α(y f ′′′ (y) + 3 f ′′ (y)) + Re f (y) f ′′′ (y)− Re f ′(y) f ′′ (y) = 0 (17)

with additional border restrictions

f = 0, f ′′ = 0 at y = 0 (18)

f = 1, f ′ = 0 at y = 1 (19)

where α is a dimensionless border stretching rate and Re is the penetration Reynolds number.
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3.1. Differential Transform Method

Employing the differential conversion from Equation (17), the following form of
equation is obtained:

(k + 1)(k + 2)(k + 3)(k + 4)F(k + 4) + 3α(k + 1)(k + 2)F(k + 2)

+Re
k
∑

r=0
{(k + 3− r)(k + 2− r)(k + 1− r)F(r)F(k + 3− r)

−Re(k + 1− r)(k + 2− r)(r + 1)F(r + 1)F(k + 2− r)} = 0

(20)

where F(k) denotes the differential transforms of n f (y) and it is defined as

f (y) ∼=
m

∑
k=0

F(k)yk (21)

The reduced border restrictions are

F(0) = 0, F(1) = a
F(2) = 0, F(3) = b

(22)

where a and b are constants. Employing Equation (22) for Equation (20) and by the
recurrent technique, all magnitudes of F(k) are calculated. Hence, substituting all F(k) into
Equation (21), the series of solutions is defined as below:

f (y) ∼=
m

∑
k=0

F(k)yk ∼= ay + by3 − 1
5

bαy5 +
1

840

(
12b2Re + 8abReα + 24bα2

)
y7 + . . . (23)

Then, by applying the boundary conditions of Equation (19), the constants a and b are
calculated. For example, for Re = 1 and α = 1, the values and the solutions are as follows:

a = 1.607412616389382, b = −0.732958779309001 (24)

f (y) ∼=


+1.607412616389382y− 0.732958779309001y3

+0.1465917558618002y5 − 0.024487625417451822y7

+0.0040548656166754194y9 − 0.0007243900882554326y11

+0.00014026681559397154y13 − 0.0000287098687570248y15

(25)

For Re = 1 and α = −1 the values and the solutions are as follows:

a = 1.4233303927298635, b = −0.34993947766497535 (26)

f (y) ∼=


+1.4233303927298635y− 0.34993947766497535y3

−0.06998789553299507y5 − 0.0035052617311971406y7

+0.00008207843066926752y9 + 0.00001839421662864927y11

+1.6177454188405032× 10−6y13 + 1.5180717845107875× 10−7y15

(27)

3.2. Optimal Homotopy Asymptotic Method

Employing Equation (7), the linear part is defined as

L(ϕ(y, p)) =
∂4 ϕ(y, p)

∂y4 (28)

and the nonlinear part as

N(ϕ(y, p)) = α

(
y

∂3 ϕ(y, p)
∂y3 + 3

∂2 ϕ(y, p)
∂y2

)
+ Reϕ(y, p)

∂3 ϕ(y, p)
∂y3 − Re

∂ϕ(y, p)
∂y

∂2 ϕ(y, p)
∂y2 (29)



Math. Comput. Appl. 2021, 26, 41 6 of 24

Using the OHAM, a system of equations is constructed.

(1− p) ∂4 ϕ(y,p)
∂y4 = H(p)

[
∂4 ϕ(y,p)

∂y4 + α
(

y ∂3 ϕ(y,p)
∂y3 + 3 ∂2 ϕ(y,p)

∂y2

)
+Reϕ(y, p) ∂3 ϕ(y,p)

∂y3 − Re ∂ϕ(y,p)
∂y

∂2 ϕ(y,p)
∂y2

] (30)

with additional restrictions

ϕ(y, p) = 0, ∂2 ϕ(y,p)
∂y2 = 0 at y = 0,

ϕ(y, p) = 1, ∂ϕ(y,p)
∂y = 0 at y = 1

(31)

The f (y) and H(p) are considered as follows:

f (y) = f0(y) + p f1(y) + p2 f2(y) + p3 f3(y),
H(p) = C1 p + C2 p2 + C3 p3 (32)

By using f (y) and H(p) from Equation (32) for Equation (30) and some transformation
with the help of powers of p-terms, the following solutions can be obtained.

p0: Zero-order problem

f IV
0 = 0, f0(0) = 0, f ′′0 (0) = 0, f0(1) = 1, f ′0(1) = 0 (33)

from which we obtain
f0(y) =

1
2

(
3y− y3

)
(34)

p1: First-order problem

− f IV
0 − C1

(
(3α− Re f ′0) f ′′0 + (ατ + Re f0) f ′′′0 + f IV

0
)
+ f IV

1 = 0,
f1(0) = 0, f ′′1 (0) = 0, f1(1) = 0, f ′1(1) = 0

(35)

it is obtained that

f1(y) = −
1

280
(−1 + y)2y(1 + y)2

(
2Re + 28α + Rey2

)
C1 (36)

p2: Second-order problem

−Ñ2
(
(3α− Re f ′0) f ′′0 + (ατ + Re f0) f ′′′0 + f IV

0
)
− f IV

1 − Re f ′1 f ′′0 − Ñ1
(
(3α− Re f ′0) f ′′1 + Re f1 f ′′′0

+(ατ + Re f0) f ′′′1 + f IV
1
)
+ f IV

2 = 0,
f2(0) = 0, f ′′2 (0) = 0, f2(1) = 0, f ′2(1) = 0

(37)

and therefore

f2(y) = 1
3880800 (−1 + y)2y(1 + y)2

×


− 27720Re C1 − 388080α C1 − 13860Rey2C1 − 27720ReC2

1
−2109Re2C2

1 − 388080α C2
1 − 34188Reα C2

1 + 44352α2C2
1

−13860Rey2 C2
1 − 1590Re2y2 C2

1 − 22792Reα y2 C2
1−

55440α2y2C2
1 − 1071Re2y4 C2

1 − 3080Reα y4 C2
1

+ 42Re2y6 C2
1 − 27720Re C2 − 388080 α C2 − 13860Rey2 C2

 (38)

the terms f 3(y) are too large to be illustrated graphically. As a result, the final form of f (y) is

f (y) ∼= f0(y) + f1(y) + f2(y) + f3(y) (39)

Using Equation (14) for f (y) in Equation (17), R(y,C1,C2,C3) and J are defined as follows:

J(C1, C2, C3) =

1∫
0

R2(y, C1, C2, C3)dy (40)
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The constants C1, C2 and C3 are obtained as follows:

∂J
∂C1

=
∂J

∂C2
=

∂J
∂C3

= 0 (41)

For example, for the case of Re = 1 and α = 1, the following 3rd-order approximate
solution is determined.

C1 = −0.9178604175046, C2 = 0.01278230075958, C3 = 0.00146537709213 (42)

f (y) ∼= f0(y) + f1(y) + f2(y) + f3(y) = 1.6073181707872106y− 0.73198498827499y3

+0.14375873179501897y5 − 0.020691139639845986y7

+0.0014494859057353551y9 + 0.00015553850614010158y11

−5.901005731747683× 10−6y13 + 1.019264626392781× 10−7y15

(43)

and for the case of Re = 1 and α = −1, the following 3rd-order approximate solution
is determined.

C1 = −0.93053114640402, C2 = −0.005495179728, C3 = 0.00062979731698 (44)

f (y) ∼= f0(y) + f1(y) + f2(y) + f3(y) = 1.4233291737591052y− 0.3499265757711927y3

−0.07002742585799336y5 − 0.003451123525236634y7

+0.00004662467373035329y9 + 0.000027767167732590777y11

+1.453347678263735× 10−6y13 + 1.062061764885037× 10−7y15

(45)

3.3. Homotopy Analysis Method

Dinarvand and Rashidi [26] studied this problem by the HAM. Yabushita et al. [23]
employed the HAM to solve two coupled nonlinear ODEs by an optimization technique.
The optimal characteristics are calculated by minimization of the square residual error de-
fined in the considered physical domain. In the present research, the same as for the OHAM
(Equations (14)–(16)), the optimal convergence-control parameter (}) is found below.

The nth-order approximation of the solution defined using the HAM f (y) is

f (y) = f0(y) +
n

∑
k=1

fk(y) (46)

which depends on the convergence characteristic (}). Let

J(}) =
∫

Ω
N[ f (y)]2dΩ (47)

denote the square residual error of the control relation. The optimal value of (}) is gained
by solving the nonlinear algebraic equation.

dJ(})
d} = 0 (48)

3.4. Adomian Decomposition Method

In this section, the ADM is employed for the solution of Equation (17) along with the
boundary conditions (18) and (19). Let us introduce the fourth-order derivative operator L
and inverse operators L−1 as follows:

L =
d4

dη4 (), L−1() =

η∫
0

η∫
0

η∫
0

η∫
0

(·)dηdηdηdη (49)

Thus Equation (17) becomes

L−1(L f ) = −αL−1
(

y f ′′′ (y)− 3L−1 f ′′ (y)
)
− ReL−1( f (y) f ′′′ (y)) + ReL−1( f ′(y) f ′′ (y)

)
(50)
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The function f (η) is

f (η) =
∞

∑
m=0

fm (51)

The remaining terms of (17) can be expressed as

∞

∑
m=0

Am = f ′′′ ,
∞

∑
m=0

Bm = f ′′ ,
∞

∑
m=0

Cm = f f ′′′ ,
∞

∑
m=0

Dm = f ′ f ′′ (52)

Here, a recursive formula is used to find all the components. The exact solutions of
(17) are given by

f (η) = lim
∞

∑
m=0

fm (53)

Therefore, the RHSs of Equation (50) are given by

L−1(L f ) = f (η)− f (0)− f ′(0)η − 1
2!

f ′′ (0)η2 − 1
3!

f ′′′ (0)η3 (54)

From (18), (19) and invoking the border restrictions

f (0) = 0, f ′(0) = p, f ′′ (0) = 0, f ′′′ (0) = q (55)

The solutions of Equation (50) can therefore be written as

f (y) = py +
1
3!

y3 − αL−1
(

y f ′′′ (y)− 3L−1 f ′′ (y)
)
− ReL−1( f (y) f ′′′ (y)) + ReL−1( f ′(y) f ′′ (y)

)
(56)

The unknowns p, q should be evaluated numerically. Utilizing Equation (55), the
initial imposed solutions along with higher-order recursive solutions are

f0(η) = py +
1
6

qη3 (57)

fm+1(y) = −αL−1

(
y

∞

∑
m=0

Am − 3L−1

(
∞

∑
m=0

Bm

))
− ReL−1

(
∞

∑
m=0

Cm

)
+ ReL−1

(
∞

∑
m=0

Dm

)
(58)

Employing m = 0, 1, 2 in Equation (58) with the help of Equation (57), we can generate
the solutions of Equation (17) as follows

For Re = 1, α = 1, p = 1.607455717997487, q = −4.398102771374896 and

f0(y) =
{

1.6074557179974873211136809914024y
−0.73301713541899167954814705202201y3

}
(59)

f1(y) =
{

0.1466034270837983359096294104044y5

+0.007675916011683776946257081725633y7

}
(60)

f2(y) =


−0.0209433467262569051299470586292y7

−0.00085287955685375299402856463618145y9

+0.000108548307235932199239999135514y11

+0.0000052462265422855138880469138211013y13

+0.0000001510761195344189254895445928002y15

 (61)
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f3(y) =



0.000000000000000012694101164392678338056024603325y31

+0.00000000000000086762949995289280758585817353344y29

+0.000000000000029731520143652335165850205073171y27

+0.00000000000093736065343352189357406674780089y25

+0.000000000022177051578771010688671916457026y23

+0.000000000034676509888662690170844729029353y21

+0.00000000034398042251646165604396405969283y19

+0.000000043648911424223850740860729584406y17

+0.00000077492790255587811387483310432703y15

−0.0000083498697873793999415383950395387y13

+0.000077534505168522999457142239652859y11

+0.0023270385251396561255496731810222y9



(62)

Therefore, the solution can be expressed as

f (y) =



1.6074557143337926401471804638277y− 0.73301712856248268934677980723791y3

+0.14660342571249653786935596144758y5 − 0.013267430662271115762682676828017y7

+0.0014741589624745684180758529808908y9 + 0.00018608280892328563646953151048126y11

−0.0000031036432361043054169820277481217y13 + 0.000000926004005212156828355314473975y15

+0.000000043648910282497716362697136445564y17 + 0.00000000034398040233136267872854810633553y19

+0.000000000034676508591231637192383384345989y21 + 0.000000000022177050655663200110526485898967y23

+0.00000000000093736060854598511032723057595758y25 + 0.000000000000029731518475032976571409343222361y27

+0.00000000000000086762944314335441420517237892509y29 + 0.000000000000000012694100214486197835630960202222y31 + . . .


(63)

3.5. Variation Iteration Method

The illustration of the basic concept of the approximate analytical solution, i.e., the
variation iteration method (VIM) is as follows.

Let us analyze the standard view of the nonlinear differential relation as

Lu + Nu = g(t) (64)

The linear function is represented as L, the nonlinear part is N and g(t) is an inhomo-
geneous part. The construction of the correct operator employing the VIM is presented as

un+1(t) = u0(t) +
t∫

0

λ(ξ)
{

Lun(ξ) + Nun(ξ)− g(ξ)
}

dξ (65)

Here u0(t) is the initial assumed solution obtained using the initial conditions and the
suitable choice of unknown initial conditions, un(ξ) is the restricted function and λ(ξ) is
the Lagrangian multiplier obtained using the Wronskian conditions.

Employing the aforesaid methodology, the present problem can be expressed as

fn+1(y) = f0(y) +

y∫
0

λ(ξ)
{

f IV
n (ξ) + α

(
y f ′′′n (ξ) + 3 f ′′n

2
(ξ)
)
+ Re

(
fn(ξ) f ′′′n (ξ)− f ′n(ξ) f ′′n (ξ)

)}
dξ (66)

The Lagrangian multiplier is

λ1 =
1
3!
(ξ− y)3 (67)

With the initial choice of

f ′(0) = p = 1.607455717997487 and f ′′′ (0) = q = −4.398102771374896 (68)

the initial approximate solutions along with the final iterative solution are presented.

f0(y) = 1.6074557179974873211136809914024y− 0.73301713541899167954814705202201y3 (69)
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f1(y) =


1.6074557143337926401471804638277y
−0.73301712856248268934677980723791y3

+0.14660342571249653786935596144757y5

+0.0076759158680855325043681748073517y7

 (70)

f2(y) =



+1.6074557143337926401471804638277y
−0.73301712856248268934677980723791y3

+0.14660342571249653786935596144758y5

−0.024489264681435983644897385698975y7

−0.0023912421276245363169726643489703y9

+0.00014264877677319694670045689130833y11

+0.000005246226395068768014343104132445y13

+0.0000001510761138818648052282723601165y15


(71)

f (y) =



+1.6074557143337926401471804638277y
−0.73301712856248268934677980723791y3

+0.14660342571249653786935596144758y5

−0.024489264681435983644897385698981y7

+0.0040551170043726611238632715930647y9

+0.00042680238907571681642647340812367y11

−0.000063984600147030603517386683748288y13

+0.0000029583457301427006366300521381065y15

+0.00000012929372864415645394815279192283y17

+0.0000000039645266013200060992361776978167y19

−0.000000000648366750674015784910314949795y21

+0.000000000028604802064534090334445320171667y23

+0.00000000000139872973728563581077768259875y25

+0.000000000000032666998091001325672803509771667y27

+0.00000000000000086762944314335441420517237891667y29

+0.000000000000000012694100214486197835630960202333y31 + . . .



(72)

3.6. Reproducing Kernel Hilbert Space Method

The reproducing kernel Hilbert space method (RKHSM) without the Gram–Schmidt
orthogonalization process, is analyzed in this manuscript. Some applications of the
RKHSM to solve various differential equations are presented in [25–28]. We consider
the reproducing kernel space W5[0,1] for Equations (17)–(19), such that f (4)(y) is abso-
lutely continuous and f (5)(y) ∈ L2[0,1] should satisfied the following conditions f ′′ (0) = 0,
f (0) = 0 and f ′(1) = 0, f (1) = 0. The inner product and norm are as follows:

〈 f (y), g(y)〉W5 =
4

∑
i=0

f (i)(a)·g(i)(a) +
b∫

a

f (5)(y)g(5)(y)dy

for all f, g ∈W5[0,1] and we analyze the reproducing kernel operator for space W5[0,1] in
the form [24]

Rx(y) =
{

R(y, x)
R(x, y)

After homogenization of Equations (17)–(19) with function A(x) = 3x − 3x2 + x3

we obtain

L( f (y)) = 6Re f (y) + 6Re f ′(y)− 6Rey f ′(y)− 3Re f ′′ (y) + 6Rey f ′′ (y)− 3Rey2 f ′′ (y)+
3α f ′′ (y) + 3Rey f ′′′ (y)− 3Rey2 f ′′′ (y) + Rey3 f ′′′ (y) + yα f ′′′ (y) + f (4)(y)

Analyze N( f (y)) = −Re f ′(y) f ′′ (y)+Re f (y) f ′′′ (y) and F(y) = −18Re+ 36Rey− 36Rey2 +
12Rey3 + 18α− 24αy on [0,1] where L(f (y)) is a linear function, N(f (y)) is a non-linear func-
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tion and F(y) is a right-hand-side function. It is not difficult to understand that L is a
bordered linear function. Assume L:W5[0,1]→W1[0,1], and ry(x) is a reproducing kernel
operator for W1[0,1]. We choose a dense set {xi}∞

i=1 in [0,1] and define ϕi(y) = rx(y)x=xi

and ψi(y) = L∗ϕi(y) where L* is an adjoint function of L and L–1 exists. This can be proved
by ξi(y) = Rx(y)x=xi

, which are a complete function system in W5[0,1]. In this method
we assume

f (y) =
∞

∑
i=1

ciξi(y)

is an exact solution of Equation (17) where {xi}∞
i=1 are dense points on [0,1]. Consider

an approximate solution for Equation (17) as fn(y) =
∞
∑

i=1
ciξi(y), where n is the number

of collocation points on [0,1] and ξi(y) = Rx(y)x=xi
. One can obtain ci by solving the

following iterative system of algebraic equations

L
[

f [l]n
(
yj
)]

= F
(
yj
)
+ N

(
f [l−1]
n

(
yj
))

, j = 1, 2, . . . , n, l = 1, 2, . . . , M

where f [0]n ≡ 0.

3.7. Finite Difference Method for ODEs

The main idea of the finite difference method is to approximate the derivatives in
ODEs using the finite differences, taking into account the Taylor series and after that solving
the obtained system of equations. For this purpose, the uniform mesh is introduced as
a first step of this technique. As a result, the numerical solution of the boundary value
problem (17)–(19) has been performed using the finite difference method and a uniform
mesh. The uniform mesh has been introduced as follows:

yi = i·h, i = 0, N; h = 1/N (73)

Derivatives presented in Equation (17) have been approximated using the following
central differences of second-order accuracy

f ′(yi) =
f (yi+1)− f (yi−1)

2h
+ O

(
h2
)

(74)

f ′′ (yi) =
f (yi+1)− 2 f (yi) + f (yi−1)

h2 + O
(

h2
)

(75)

f ′′′ (yi) =
f (yi+2)− 2 f (yi+1) + 2 f (yi−1)− f (yi−2)

2h3 + O
(

h2
)

(76)

f IV(yi) =
f (yi+2)− 4 f (yi+1) + 6 f (yi)− 4 f (yi−1) + f (yi−2)

h4 + O
(

h2
)

(77)

Using these mentioned central differences, Equation (17) has been reduced to the set
of equations that was determined by the successive over-relaxation procedure as follows:

f̃i

[
6
h4 − 6α

h2 + Re
f s
i+2−2 f s

i+1+2 f s+1
i−1 − f s+1

i−2
2h3 + Re

f s
i+1− f s+1

i−1
h3

]
= Re

2h3

(
f s
i+1 − f s+1

i−1

)(
f s
i+1 + f s+1

i−1

)
− αyi

2h3

(
f s
i+2 − 2 f s

i+1 + 2 f s+1
i−1 − f s+1

i−2

)
− 3α

h2

(
f s
i+1 + f s+1

i−1

)
− f s

i+2−4 f s
i+1−4 f s+1

i−1 + f s+1
i−2

h4 ,

f s+1
i = f s

i + κ
(

f̃i − f s
i

)
, 1 < κ < 2

(78)

The convergence condition used is∣∣∣ f s+1
i − f s

i

∣∣∣ ≤ ε (79)
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It should be noted that boundary conditions (18) and (19) have been approximated
as follows:

f0 = 0,
f1 = 2 f0+4 f2− f3

5 ,
fN−1 = 3 fN+ fN−2

4 ,
fN = 1

(80)

The mesh sensitivity analysis has been carried out for this technique using two differ-
ent uniform meshes of 21 nodes and 40 nodes. Tables 1–4 show that a mesh of 21 nodes is
enough for this analysis, because the differences between these two grids are too small.

3.8. Finite Difference Method for PDE

It should be noted that the formulated boundary value problem (17)–(19) for ODEs
was obtained using the original Navier–Stokes equations with appropriate initial and
boundary conditions that were written for laminar, isothermal and incompressible fluid
circulation between two horizontal permeable plates.

Table 1. Comparison of the numerical solution (NS) with the OHAM and HAM by 3rd-order approximate solution and
DTM (m = 10) for the case of Re = 5 and α = 1.

f (y) Error

y NS OHAM DTM HAM [29] FDM
(21 Nodes)

FDM
(41 Nodes)

|NS–
OHAM|

|NS–
DTM|

|NS–
HAM|

0.05 0.07968297 0.07963688 0.08115641 0.07976773 0.0796722 0.0796816 0.00004609 0.00147343 0.00008475

0.10 0.15883439 0.15874684 0.16174863 0.15900660 0.158817 0.158832 0.00008754 0.00291423 0.00017221

0.15 0.23692796 0.23680761 0.24121806 0.23719225 0.236908 0.236925 0.00012035 0.00429009 0.00026428

0.20 0.31344783 0.31330618 0.31901717 0.31380922 0.313427 0.313445 0.00014165 0.00556933 0.00036138

0.25 0.38789339 0.38774326 0.39461466 0.38835539 0.387873 0.38789 0.00015012 0.00672126 0.00046199

0.30 0.45978377 0.45963767 0.46750023 0.46034624 0.459765 0.459781 0.00014610 0.00771645 0.00056246

0.35 0.52866181 0.52853035 0.53718888 0.52931903 0.528645 0.528659 0.00013145 0.00852706 0.00065721

0.40 0.59409750 0.59398824 0.60322469 0.59483670 0.594083 0.594094 0.00010926 0.00912718 0.00073920

0.45 0.65569090 0.65560762 0.66518421 0.65649164 0.655678 0.655687 0.00008328 0.00949330 0.00080074

0.50 0.71307445 0.71301710 0.72267938 0.71390897 0.713062 0.713071 0.00005734 0.00960493 0.00083452

0.55 0.76591479 0.76588008 0.77536043 0.76674949 0.765904 0.76591 0.00003470 0.00944564 0.00083470

0.60 0.81391411 0.81389653 0.82291884 0.81471214 0.813903 0.813909 0.00001758 0.00900472 0.00079803

0.65 0.85681100 0.85680421 0.86509088 0.85753578 0.8568 0.856806 0.00000678 0.00827988 0.00072477

0.70 0.89438098 0.89437922 0.90166232 0.89500031 0.89437 0.894376 0.00000176 0.00728134 0.00061932

0.75 0.92643663 0.92643582 0.93247477 0.92692704 0.926426 0.926431 0.00000081 0.00603813 0.00049040

0.80 0.95282750 0.95282577 0.95743475 0.95317819 0.952817 0.952822 0.00000173 0.00460724 0.00035068

0.85 0.97343970 0.97343720 0.97652626 0.97365547 0.97343 0.973435 0.00000249 0.00308655 0.00021577

0.90 0.98819530 0.98819325 0.98982808 0.98829784 0.988187 0.988192 0.00000205 0.00163278 0.00010253

0.95 0.99705157 0.99705082 0.99753724 0.99707830 0.997047 0.997049 0.00000074 0.00048567 0.00002672
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Table 2. Comparison of the numerical solution (NS) with the OHAM and HAM by 4th-order approximate solution and
DTM (m = 20) for the case of Re = 5 and α = 1.

f (y) Error

y NS OHAM DTM HAM [29] FDM
(21 Nodes)

FDM
(41 Nodes)

|NS–
OHAM|

|NS–
DTM|

|NS–
HAM|

0.05 0.07968297 0.07967858 0.07952110 0.07966184 0.0796722 0.0796816 0.00000439 0.00016186 0.00002112

0.10 0.15883439 0.15882635 0.15851388 0.15879237 0.158817 0.158832 0.00000804 0.00032051 0.00004201

0.15 0.23692796 0.23691759 0.23645523 0.23686548 0.236908 0.236925 0.00001037 0.00047273 0.00006248

0.20 0.31344783 0.31343674 0.31283243 0.31336535 0.313427 0.313445 0.00001109 0.00061540 0.00008248

0.25 0.38789339 0.38788314 0.38714790 0.38779137 0.387873 0.38789 0.00001025 0.00074549 0.00010202

0.30 0.45978377 0.45977555 0.45892364 0.45966263 0.459765 0.459781 0.00000822 0.00086008 0.00012114

0.35 0.52866181 0.52865623 0.52770539 0.52852210 0.528645 0.528659 0.00000557 0.00095642 0.00013971

0.40 0.59409750 0.59409453 0.59306558 0.59394019 0.594083 0.594094 0.00000297 0.00103192 0.00015731

0.45 0.65569090 0.65568993 0.65460668 0.65551782 0.655678 0.655687 0.00000097 0.00108421 0.00017307

0.50 0.71307445 0.71307455 0.71196330 0.71288878 0.713062 0.713071 0.00000010 0.00111114 0.00018567

0.55 0.76591479 0.76591502 0.76480400 0.76572147 0.765904 0.76591 0.00000022 0.00111079 0.00019331

0.60 0.81391411 0.81391376 0.81283258 0.81372003 0.813903 0.813909 0.00000034 0.00108152 0.00019408

0.65 0.85681100 0.85680982 0.85578901 0.85662477 0.8568 0.856806 0.00000118 0.00102199 0.00018623

0.70 0.89438098 0.89437916 0.89344977 0.89421221 0.89437 0.894376 0.00000182 0.00093121 0.00016877

0.75 0.92643663 0.92643466 0.92562789 0.92629467 0.926426 0.926431 0.00000197 0.00080874 0.00014196

0.80 0.95282750 0.95282590 0.95217219 0.95271967 0.952817 0.952822 0.00000160 0.00065531 0.00010783

0.85 0.97343970 0.97343876 0.97296523 0.97336934 0.97343 0.973435 0.00000094 0.00047446 0.00007035

0.90 0.98819530 0.98819495 0.98791815 0.98815995 0.988187 0.988192 0.00000034 0.00027715 0.00003534

0.95 0.99705157 0.99705152 0.99695820 0.99704187 0.997047 0.997049 0.00000004 0.00009336 0.00000969

Table 3. Comparison of the numerical solution (NS) with the OHAM and HAM by 5th-order approximate solution and
DTM (m = 30) for the case of Re = 5 and α = 1.

f (y) Error

y NS OHAM DTM HAM FDM
(21 Nodes)

FDM
(41 Nodes)

|NS–
OHAM|

|NS–
DTM|

|NS–
HAM|

0.05 0.07968297 0.07968261 0.07969032 0.07967360 0.0796722 0.0796816 0.00000036 0.00000734 0.00000937

0.10 0.15883439 0.15883376 0.15884894 0.15881583 0.158817 0.158832 0.00000062 0.00001455 0.00001856

0.15 0.23692796 0.23692725 0.23694944 0.23690053 0.236908 0.236925 0.00000071 0.00002147 0.00002743

0.20 0.31344783 0.31344720 0.31347581 0.31341189 0.313427 0.313445 0.00000062 0.00002797 0.00003594

0.25 0.38789339 0.38789299 0.38792732 0.38784923 0.387873 0.38789 0.00000040 0.00003392 0.00004416

0.30 0.45978377 0.45978364 0.45982297 0.45973162 0.459765 0.459781 0.00000013 0.00003919 0.00005215

0.35 0.52866181 0.52866191 0.52870547 0.52860185 0.528645 0.528659 0.00000009 0.00004366 0.00005995

0.40 0.59409750 0.59409772 0.59414471 0.59403005 0.594083 0.594094 0.00000021 0.00004720 0.00006744

0.45 0.65569090 0.65569110 0.65574063 0.65561664 0.655678 0.655687 0.00000019 0.00004973 0.00007426

0.50 0.71307445 0.71307452 0.71312559 0.71299468 0.713062 0.713071 0.00000007 0.00005114 0.00007976

0.55 0.76591479 0.76591471 0.76596614 0.76583167 0.765904 0.76591 0.00000007 0.00005135 0.00008312
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Table 3. Cont.

f (y) Error

y NS OHAM DTM HAM FDM
(21 Nodes)

FDM
(41 Nodes)

|NS–
OHAM|

|NS–
DTM|

|NS–
HAM|

0.60 0.81391411 0.81391392 0.81396440 0.81383072 0.813903 0.813909 0.00000018 0.00005028 0.00008339

0.65 0.85681100 0.85681079 0.85685889 0.85673122 0.8568 0.856806 0.00000020 0.00004789 0.00007977

0.70 0.89438098 0.89438083 0.89442509 0.89430910 0.89437 0.894376 0.00000014 0.00004411 0.00007188

0.75 0.92643663 0.92643659 0.92647555 0.92637671 0.926426 0.926431 0.00000004 0.00003891 0.00005992

0.80 0.95282750 0.95282753 0.95285980 0.95278254 0.952817 0.952822 0.00000003 0.00003229 0.00004496

0.85 0.97343970 0.97343975 0.97346397 0.97341082 0.97343 0.973435 0.00000005 0.00002426 0.00002888

0.90 0.98819530 0.98819533 0.98821034 0.98818107 0.988187 0.988192 0.00000002 0.00001504 0.00001423

0.95 0.99705157 0.99705157 0.99705713 0.99704775 0.997047 0.997049 0.00000001 0.00000556 0.00000381

Table 4. Comparison of the numerical solution (NS) with the ADM, VIM and FDM for the case of Re = 5 and α = 1.

f (y) Error

y NS ADM VIM FDM
(21 Nodes)

FDM
(41 Nodes) |NS–ADM| |NS–VIM|

0.05 0.07968297 0.079683003 0.080281204 0.0796722 0.0796816 3.3 × 10−8 0.0005982340

0.1 0.15883439 0.15883445 0.160014018 0.158817 0.158832 6 × 10−8 0.0011796280

0.15 0.23692796 0.236928136 0.238655515 0.236908 0.236925 1.76 × 10−7 0.0017275550

0.2 0.31344783 0.313448617 0.315673608 0.313427 0.313445 7.87 × 10−7 0.0022257780

0.25 0.38789339 0.38789674 0.390552224 0.387873 0.38789 3.35 × 10−6 0.0026588340

0.3 0.45978377 0.45979536 0.462796221 0.459765 0.459781 1.159 × 10−5 0.0030124510

0.35 0.52866181 0.528695289 0.531935936 0.528645 0.528659 3.3479 × 10−5 0.0032741260

0.4 0.59409750 0.59418153 0.597531318 0.594083 0.594094 8.403 × 10−5 0.0034338180

0.45 0.65569090 0.655879857 0.659175578 0.655678 0.655687 0.000188957 0.0034846780

0.5 0.71307445 0.713463776 0.716498312 0.713062 0.713071 0.000389326 0.0034238620

0.55 0.76591479 0.766661934 0.769168056 0.765904 0.76591 0.000747144 0.0032532660

0.6 0.81391411 0.815266027 0.816894257 0.813903 0.813909 0.001351917 0.0029801470

0.65 0.85681100 0.859139281 0.859428638 0.8568 0.856806 0.002328281 0.0026176380

0.7 0.89438098 0.898225607 0.896565934 0.89437 0.894376 0.003844627 0.0021849540

0.75 0.92643663 0.932559563 0.928143997 0.926426 0.926431 0.006122933 0.0017073670

0.8 0.95282750 0.962277299 0.954043228 0.952817 0.952822 0.009449799 0.0012157280

0.85 0.97343970 0.987628762 0.974185297 0.97343 0.973435 0.014189062 0.0007455970

0.9 0.98819530 1.008991505 0.988531081 0.988187 0.988192 0.020796205 0.0003357810

0.95 0.99705157 1.026886619 0.997077687 0.997047 0.997049 0.029835049 0.0000261170

Therefore, the finite difference method was employed for the numerical solution to
the following problem:

∂u
∂x

+
∂v
∂y

= 0 (81)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= − 1
ρ

∂p
∂x

+
µ

ρ

(
∂2u
∂x2 +

∂2u
∂y2

)
(82)
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∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= − 1
ρ

∂p
∂y

+
µ

ρ

(
∂2v
∂x2 +

∂2v
∂y2

)
(83)

with additional restrictions that were written as

t = 0 : u = v = 0 (84)

t > 0 : u = 0, v = −Vw at y = a(t)
∂u
∂y = 0, v = 0 at y = 0
u = 0 at x = 0

(85)

These formulated boundary value problems for partial differential equations were
reduced using the stream function and vorticity that were determined as

u =
∂ψ

∂y
, v = −∂ψ

∂x
,ω =

∂v
∂x
− ∂u

∂y
(86)

Taking into account these new functions, governing Equations (81)–(83) were rewritten as

∂2ψ

∂x2 +
∂2ψ

∂y2 = −ω (87)

∂ω

∂t
+

∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y
=
µ

ρ

(
∂2ω

∂x2 +
∂2ω

∂y2

)
(88)

Additional restrictions (84) and (85) were formulated as

t = 0 : ψ = ω = 0 (89)

t > 0 : ψ = Vwx,ω = − ∂2ψ

∂y2 at y = a(t)

ψ = 0,ω = 0 at y = 0
ψ = 0,ω = − ∂2ψ

∂x2 at x = 0

(90)

Taking into account the following dimensionless parameters

x =
x

a(t)
, y =

y
a(t)

, u =
u

.
a(t)

, v =
v

.
a(t)

, τ = t
.
a(t)
a(t)

,ψ =
ψ

a(t)
.
a(t)

,ω = ω
a(t)
.
a(t)

(91)

Using these parameters, the non-dimensional governing equations are

∂2ψ

∂x2 +
∂2ψ

∂y2 = −ω (92)

∂ω

∂τ
+

∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y
=

1
α

(
∂2ω

∂x2 +
∂2ω

∂y2

)
(93)

Non-dimensional restrictions are

τ = 0 : ψ = ω = 0 (94)

τ > 0 : ψ = Re
α x,ω = − ∂2ψ

∂y2 at y = 1
ψ = 0,ω = 0 at y = 0
ψ = 0,ω = − ∂2ψ

∂x2 at x = 0

(95)

Here α = ρ·a· .a
µ and Re = ρ·a·Vw

µ .
These formulated boundary-value problems (92)–(95) were solved by the finite differ-

ence method with second-order accuracy for a uniform mesh. The employed schemes of
the second-order were used for the diffusive part and convective part, where the first-order
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approximation was applied for the unsteady term. The convective terms were discretized
by means of the monotonic Samarskii procedure and the central difference scheme was
used for diffusive terms.

The solution of Equation (93) was obtained using the Samarskii locally one-dimensional
technique with an additional time level:

ωn+1/2
i,j −ωn

i,j
∆τ + un+1

i,j
ωn+1/2

i+1,j −ω
n+1/2
i−1,j

2hx
−
∣∣∣un+1

i,j

∣∣∣ωn+1/2
i+1,j −2ωn+1/2

i,j +ωn+1/2
i−1,j

2hx

= 1
α

(
1 +

∣∣∣un+1
i,j

∣∣∣ αhx
2

)−1ωn+1/2
i+1,j −2ωn+1/2

i,j +ωn+1/2
i−1,j

h2
x

(96)

ωn+1
i,j −ω

n+1/2
i,j

∆τ + vn+1
i,j

ωn+1
i,j+1−ω

n+1
i,j−1

2hy
−
∣∣∣vn+1

i,j

∣∣∣ωn+1
i,j+1−2ωn+1

i,j +ωn+1
i,j−1

2hy

= 1
α

(
1 +

∣∣∣vn+1
i,j

∣∣∣ αhy
2

)−1ωn+1
i,j+1−2ωn+1

i,j +ωn+1
i,j−1

h2
y

(97)

where i and j are the indexes for the nodes over the x and y coordinates, n is the time zone
index, ∆τ is the time step, and hx and hy are the grid steps for the x and y coordinates.
At the final level of solution, the discretized Equations (96) and (97) were solved by the
Thomas method.

The difference relation for the stream function was worked out employing the succes-
sive over-relaxation procedure as follows ψ̃i,j =

h2
y

(
ψk

i+1,j+ψ
k+1
i−1,j

)
2(h2

x+h2
y)

+
h2

x

(
ψk

i,j+1+ψ
k+1
i,j−1

)
2(h2

x+h2
y)

+
h2

xh2
yωi,j

2(h2
x+h2

y)

ψk+1
i,j = ψk

i,j + κ
(
ψ̃i,j −ψk

i,j

) (98)

where k is an index of iterations and κ is the relaxation parameter.
It should be noted that this formulated finite difference technique has previously been

validated using the mesh sensitivity analysis and some model problems.

4. Results and Discussion

The program code was developed by MATHEMATICA and the simulations were
defined using a PC with 756 MB of RAM and 2.40 GHz CPU. In the case of the FDM for
ODEs and PDEs the computational code was developed using C++ programming language.
Tables 1–4 show a comparison of the five analytical methods and the FDM and show the
absolute error for computational results and the analytical solutions. We have deliberately
provided many digits for comparison in the tables to better show the accuracy of each
method. In fact, few digits cannot show the accuracy clearly. The numerical solution, the
OHAM and HAM by 3rd-order approximate solution and the DTM (m = 10) by 10th-order
approximate solution for the case of Re =5 and α = 1 are presented in Table 1. In addition,
for the same case we compared the computational results with the OHAM and HAM
by 4th-order approximate solution and the DTM (m = 20) by 20th-order approximate
solution. Numerical results obtained by the OHAM and HAM (5th-order) and the DTM
(m = 30) for the same case are shown in Table 3. For all approaches, the absolute error
diminishes quickly with the order of approximation increment. Table 4 compares the
numerical simulation results with the ADM and VIM. In the case of the FDM for ODEs, it
should be highlighted that the uniform mesh of 21 nodes that was used was enough for
obtaining the convergent result.

From Tables 1–4 it can be highlighted that the OHAM approximate relation defined in
this research allows us to obtain better outcomes than the DTM and HAM approximations,
and the HAM approximate expression is more accurate than the DTM approximation for
this problem. In addition, the ADM is more accurate than the VIM.

The function uc/x (f ′(y)) obtained by the OHAM, HAM and the DTM at various orders
of approximation for the case of contraction combined with suction (Re = −5 and α = −1)
are compared with the computational outcomes in Figures 1–3.
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The comparison of CPU time given by the OHAM, DTM and HAM at various orders
of approximation for the case of Re = 5 and α = 1 is given in Table 5 and Figure 4. Since
the DTM method uses the transformed function to convert the differential equations to
algebraic equations, it is easier to calculate than the HAM and OHAM. In the other two
methods, the differential equations are solved in each iteration. From Table 5 and Figure 4,
it is inferred that the OHAM has more unknown parameters and takes more CPU time to
converge, especially for high-order approximations.
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Table 5. Comparison of CPU time (second) given by OHAM, DTM and HAM at different orders of
approximation for the case of Re = 5 and α = 1.

OHAM DTM HAM

Order CPU-Time Order CPU-Time Order CPU-Time

3rd-order 20.547 m = 10 0.078 3rd-order 2.015
4th-order 36.515 m = 20 0.406 4th-order 3.219
5th-order 131.25 m = 30 13.030 5th-order 6.438
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Figure 4. Comparison of CPU time of different approaches at different orders of approximation.

The average error Equation (73) for K = 100 obtained by different approaches at
different orders of approximation for the case of (Re = 5 and α = 1) is shown in Figure 5.
Figure 5 illustrates that the accuracy of the solution obtained by the OHAM is better than
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the HAM and DTM in all orders of approximation (3rd order OHAM is better that 3rd
order HAM and DTM with 10 terms of polynomials, . . . ).

Error =
1
K

K

∑
i=0

∣∣∣∣ fNumerical

(
y =

i
K

)
− fAnalytical

(
y =

i
K

)∣∣∣∣ (99)
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Substituting the approximate solution into Equation (17) yields the residual error.
In Figures 6 and 7, we present the residual error of different approaches for the case of
Re = 5, α = 1. Figure 6 presents the residual error for the OHAM and HAM by 4th-order
approximate solution and the DTM by m = 20, and Figure 7 presents the residual error
for the OHAM and HAM by 5th-order approximate solution and the DTM by 30th-order
approximate solution (with a polynomial by 30 terms). It can be seen from Figures 6 and 7
that the accuracy of the solution defined using the OHAM is very good in both cases. In
addition, the residual error obtained by the DTM increases as y increases. This is because
in the DTM the Taylor expansion is used about (y = 0). For the case of the ADM and VIM
solutions, Figures 8 and 9 show the f (y) solution with various Re and α. The ADM shows
different results in larger y and especially in high Reynolds numbers.

In the RKHSM, the residual error (RError) is calculated using

RError =

√
n

∑
i=1

[L( fn(yi)) + N( fn(yi))− F(yi)]
2/n (100)

in Table 6, and we consider M = 10 and n = 40 for Figures 10 and 11. The obtained results
show the high accuracy of this method for large Reynolds numbers.

Figure 12 shows the streamlines and velocity field for Re = 5 and α = 1 that were
obtained employing the FDM for PDEs.
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Table 6. Comparison of the residual error (RError) with the RKHSM solutions for the case α = 1 and different values of Re
and n.

RKHSM n = 10 n = 20 n = 30 n = 40 n = 50 n = 60 n = 70

Re = 5 1.21107 × 10−11 8.44965 × 10−12 6.85690 × 10−12 5.91752 × 10−12 5.28101 × 10−12 4.81348 × 10−12 4.45144 × 10−12

Re = 6 1.23870 × 10−10 8.63987 × 10−11 7.01099 × 10−11 6.05043 × 10−11 5.39960 × 10−11 4.92156 × 10−11 4.55138 × 10−11

Re = 7 7.37340 × 10−10 5.14179 × 10−10 4.17230 × 10−10 3.60064 × 10−10 3.21332 × 10−10 2.92883 × 10−10 2.70854 × 10−10

Re = 8 3.05065 × 10−9 2.12697 × 10−9 1.72590 × 10−9 1.48942 × 10−9 1.32920 × 10−9 1.21152 × 10−9 1.12040 × 10−9

Re = 9 9.75283 × 10−9 6.79880 × 10−9 5.51670 × 10−9 4.76080 × 10−9 4.24867 × 10−9 3.87252 × 10−9 3.58124 × 10−9
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5. Conclusions

In this study, different analytical/numerical methods were proposed to solve 2D
viscous fluid motion between expanding/contracting horizontal permeable plates. The
results were compared with the HAM, ADM, VIM, . . . and numerical results (shooting
procedure combined with a Runge–Kutta fourth-order integration technique and the FDM),
and obtained satisfactory outcomes. The result can be further improved by increasing
the order of approximation. These approaches are simple to use because, unlike other
numerical and approximate methods, they do not require linearization, discretization or
perturbation. The proposed procedures are also valid for nonlinear differential equations.
The OHAM and HAM provide a convenient method to manage the convergence and the
user can easily adjust the desired convergence regions. It is clear that the OHAM has
a high accuracy compared to the DTM. However, having many unknown constants is
time-consuming when simulating the square residual errors for high-order approximation,
as shown in Figure 4 and Table 5. The HAM uses less CPU time compared to the OHAM,
which first has the unique convergence managing characteristic (}) as an unknown and
then gives its effective magnitude by minimizing the square residual error.

Author Contributions: All sections related to DTM, HAM, OHAM are carried out by M.M.R., E.E.,
M.S., F.R. FDM is done M.A.S.; ADM and VIM is done by S.M., P.K.P.; RKHSM is studied by S.A.,
H.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nayfeh, A.H. Introduction to Perturbation Technique; Wiley: New York, NY, USA, 1981.
2. Rand, R.H.; Armbruster, D. Perturbation Methods, Bifurcation Theory and Computer Algebraic; Springer: New York, NY, USA, 1987.
3. Bouchon, F.; Clain, S.; Touzani, R. A perturbation method for the numerical solution of the Bernoulli problem. J. Comput. Math.

2008, 26, 23–36.
4. Adomian, G. New approach to nonlinear partial differential equations. J. Math. Anal. Appl. 1984, 102, 420–434. [CrossRef]
5. Adomian, G. A Review of the Decomposition Method in Applied Mathematics. J. Math. Anal. Appl. 1988, 135, 501–544. [CrossRef]
6. Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Kluwer Academic Publishers: Boston, MA, USA, 1994.
7. He, J.H. A new approach to non-linear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 1997, 2, 4. [CrossRef]
8. He, J.H. Homotopy Perturbation Technique. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [CrossRef]
9. Zhou, J.K. Differential Transformation and Its Applications for Electrical Circuits; Huazhong University Press: Wuhan, China, 1986.

(In Chinese)
10. Pukhov, G.E. Computational structure for solving differential equations by Taylor transformations. Cybern. Syst. Anal. 1978, 14,

383–390. [CrossRef]
11. Chen, C.K.; Ho, S.H. Solving partial differential equations by two dimensional differential transform method. Appl. Math. Comput.

1999, 106, 171–179.

http://doi.org/10.1016/0022-247X(84)90182-3
http://doi.org/10.1016/0022-247X(88)90170-9
http://doi.org/10.1016/S1007-5704(97)90007-1
http://doi.org/10.1016/S0045-7825(99)00018-3
http://doi.org/10.1007/BF01074670


Math. Comput. Appl. 2021, 26, 41 24 of 24

12. Ayaz, F. On the two-dimensional differential transform method. Appl. Math. Comput. 2003, 143, 361–374. [CrossRef]
13. Ayaz, F. Solutions of the systems of differential equations by differential transform method. Appl. Math. Comput. 2004, 147,

547–567. [CrossRef]
14. Rashidi, M.M.; Erfani, E. New analytical method for solving Burgers’ and nonlinear heat transfer equations and comparison with

HAM. Comput. Phys. Commun. 2009, 180, 1539–1544. [CrossRef]
15. Rashidi, M.M.; Erfani, E. A Novel Analytical Solution of the Thermal Boundary-Layer over a Flat Plate with a Convective Surface

Boundary Condition Using DTM-Padé. Int. Conf. Signal Process. Syst. 2009, 905–909.
16. Rashidi, M.M.; Basiri Parsab, A.; Anwar Bég, O.; Shamekhi, L.; Sadri, S.M.; Bég, T.A. Parametric analysis of entropy generation in

magneto-hemodynamic flow in a semi-porous channel with OHAM and DTM. Appl. Bionics Biomech. 2014, 11, 47–60. [CrossRef]
17. Liao, S.J. Beyond Perturbation: An Introduction to Homotopy Analysis Method; Chapman Hall/CRC Press: Boca Raton, FL, USA, 2003.
18. Rashidi, M.M.; Freidoonimehr, N.; Hosseini, A.; Anwar Bég, O.; Hung, T.-K. Homotopy simulation of nanofluid dynamics from a

non-linearly stretching isothermal permeable sheet with transpiration. Meccanica 2014, 49, 469–482. [CrossRef]
19. Marinca, V.; Herisanu, N. Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat

transfer. Int. Commun. Heat Mass Transf. 2008, 35, 710–715. [CrossRef]
20. Manafian, J.; Sindi, C.T. An optimal homotopy asymptotic method applied to the nonlinear thin film flow problems. Int. J. Numer.

Methods Heat Fluid Flow 2018, 28, 2816–2841. [CrossRef]
21. Khan, M.A.; Ali, N.H.M.; Ullah, S. Application of optimal homotopy asymptotic method for Lane-Emden and Emden-Fowler

initial and boundary value problems. AIP Conf. Proc. 2019, 2184, 060022.
22. Majdalani, J.; Zhou, C.; Dawson, C.A. Two-dimensional viscous flow between slowly expanding or contracting walls with weak

permeability. J. Biomech. 2002, 35, 1399–1403. [CrossRef]
23. Yabushita, K.; Yamashita, M.; Tsuboi, K. An analytic solution of projectile motion with the quadratic resistance law using the

homotopy analysis method. J. Phys. A 2007, 40, 8403–8416. [CrossRef]
24. Cui, M.; Lin, Y. Nonlinear Numerical Analysis in the Reproducing Kernel Space; Nova Science: Hauppauge, NY, USA, 2009.
25. Wang, Y.; Chaolu, T.; Chen, Z. Using reproducing kernel for solving a class of singular weakly nonlinear boundary value problems.

Int. J. Comput. Math. 2010, 87, 367–380. [CrossRef]
26. Sahihi, H.; Abbasbandy, S.; Allahviranloo, T. Reproducing kernel method for solving singularly perturbed differential-difference

equations with boundary layer behavior in Hilbert space. J. Comput. Appl. Math. 2018, 328, 30–43. [CrossRef]
27. Sahihi, H.; Allahviranloo, T.; Abbasbandy, S. Solving system of second-order BVPs using a new algorithm based on reproducing

kernel Hilbert space. Appl. Numer. Math. 2020, 151, 27–39. [CrossRef]
28. Sahihi, H.; Abbasbandy, S.; Allahviranloo, T. Computational method based on reproducing kernel for solving singularly perturbed

differential-difference equations with a delay. Appl. Math. Comput. 2019, 361, 583–598. [CrossRef]
29. Dinarvand, S.; Rashidi, M.M. A Reliable Treatment of Homotopy Analysis Method for Two-Dimensional Viscous Flow in a

Rectangular Domain Bounded by Two Moving Porous Walls. Nonlinear Anal. Real World Appl. 2010, 11, 1502–1512. [CrossRef]

http://doi.org/10.1016/S0096-3003(02)00368-5
http://doi.org/10.1016/S0096-3003(02)00794-4
http://doi.org/10.1016/j.cpc.2009.04.009
http://doi.org/10.1155/2014/413213
http://doi.org/10.1007/s11012-013-9805-9
http://doi.org/10.1016/j.icheatmasstransfer.2008.02.010
http://doi.org/10.1108/HFF-08-2017-0300
http://doi.org/10.1016/S0021-9290(02)00186-0
http://doi.org/10.1088/1751-8113/40/29/015
http://doi.org/10.1080/00207160802047640
http://doi.org/10.1016/j.cam.2017.06.030
http://doi.org/10.1016/j.apnum.2019.12.008
http://doi.org/10.1016/j.amc.2019.06.010
http://doi.org/10.1016/j.nonrwa.2009.03.006

	Introduction 
	Basic Ideas 
	Differential Transform Method 
	Optimal Homotopy Asymptotic (Analysis) Method 

	Solution 
	Differential Transform Method 
	Optimal Homotopy Asymptotic Method 
	Homotopy Analysis Method 
	Adomian Decomposition Method 
	Variation Iteration Method 
	Reproducing Kernel Hilbert Space Method 
	Finite Difference Method for ODEs 
	Finite Difference Method for PDE 

	Results and Discussion 
	Conclusions 
	References

