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Abstract: In this work, the response of a ship rolling in regular beam waves is studied. The model
is one degree of freedom model for nonlinear ship dynamics. The model consists of the terms
containing inertia, damping, restoring forces, and external forces. The asymptotic perturbation
method is used to study the primary resonance phenomena. The effects of various parameters are
studied on the stability of steady states. It is shown that the variation of bifurcation parameters
affects the bending of the bifurcation curve. The slope stability theorems are also presented.

Keywords: ship-rolling; bifurcation curves; asymptotic perturbation method

1. Introduction

In ship architecture, ship-roll motion is the oscillatory motion of a ship along its
longitudinal axis. The study of roll-motion plays an important role in analyzing the struc-
tural integrity, stability of any floating vessel, optimal crew size, and the overall safety of
the ship. Roll-motions are also widely studied in order to estimate the capsizing load and
help design vessel surfaces for all transportation purposes. The study of roll motion is also
to put the controller in place to stabilize the ship [1,2].

The nonlinear ship-roll models are topics of active investigation for naval architects.
Ship-rolling models in a single degree of freedom and nonlinear damping can be traced
back to the work of Froude [3]. The nonlinearity in the relation between the excitation
and response in the dynamical system may give a possibility where multiples solutions
are possible for certain values of parameters in the system. Furthermore, the roll-stability
of a ship is reduced when it encounters waves near the resonance due to nonlinearity.
In 1973, a considerable work was published by Nayfeh et. al., on the nonlinear coupling
of pitch and roll modes using multiple time scale methods in 2:1 resonance [4]. In 1977,
Zeeman [5] reformulated a modern theory on roll-stability based on some classical theories.
Later, Odabashi, Wellicome, Wright, and Marshfield developed harmonic balance and
perturbation methods for ship dynamics models [6–11]. Most recent work in nonlinear ship
roll modeling includes Jiang et al. [12,13], in which they considered a single-roll capsize
problem in a random sea, including the so-called memory effect, which is the whole history
of motion, plays a role in the analysis because of wave radiation due to ship oscillations
and other viscous effects. The work of Kreuzer and Wendt [14] considered nonlinear
ship dynamics with six degrees of freedom and presented simulations of a realistic ship
behavior in waves during capsize and showed the importance of the nonlinearities of
the mathematical model. Most of the work on capsizing dynamics showed that the steering
diagram is S-shaped, which is evidence of bifurcation and jump from stable to unstable
state due to change in bifurcation parameter/s.

Most of the ship roll modeling has been described by a 1-DOF nonlinear differential
equation neglecting the other degrees of freedom (for example, [15]). The reason for
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neglecting the coupling with other degrees of freedom most of the time is a balance
between simplicity of the model and accuracy [16].

Using Newton’s Law of Motion, the set of equations for the ship motion, depending
on external forces in six degrees of freedom (three translational and three rotational as
shown in Table 1 and Figure 1), is generally written as

Aẍ + Bẋ + Cx = f,

where x and ẋ denote the position and velocity, respectively. The first term on the left side
of the above equation denotes the inertia forces, second term damping forces, and the third
term is the restoring force, depending on the position vector x = [x, y, z, Φ, θ, Ψ]. The right
hand side denotes the external force.

Table 1. Degrees of freedom for ship dynamics.

n Axis Direction of Motion Symbol

1 translation along x surge x

2 translation along y sway y

3 translation along z heave z

4 rotation along x roll Φ

5 rotation along y pitch ψ

6 rotation along z yaw χ

The single degree of freedom rolling equation is generally an ordinary differential
equation of the form [17]

IΦ̈ + N(Φ̇ ) + B(Φ) = F(t), (1)

where Φ = the roll angle, I =roll inertia, N(Φ̇ ) = nonlinear damping function,
B(Φ) = B1Φ + B3Φ3 + · · · =restoring function, F(t) = external excitation, and t denotes
the time.

x

y

z

Heave

Sway

Surge

Yaw

Pitch
Roll (Roll angle Φ)

0

g

Figure 1. Schematic diagram of a ship with six degrees of freedom.
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The computation of the rolling amplitudes of ships in regular and irregular beam seas
under nonlinearity is very important for studying the stability of the vessels. For small mo-
tions, there is not aå significant difference if we only study only linear models. However as
the amplitude of ship oscillation gets larger, the nonlinearity cannot be avoided. The sources
of nonlinearity may come from the damping or restoring forces, as in Equation (1). The non-
linearity gives rise to very important behaviors, such as the multiple solutions, bifurcations,
or possibly chaos.

Mathisen and Price [18] used a perturbation method and considered a nonlinear damp-
ing ship roll model with weak damping and compared the analytical and experimental
data. Wright and Marshfield [11] considered a nonlinear roll-ship model. Nayfeh and
Khdeir [19] considered different types of nonlinear terms in their model and performed an
analysis using a perturbation method. Later, Nayfeh and Sanchez [20] used computers to
study the bifurcation analysis and basins of safe and capsize regions. El-Bassiouny’s work
on nonlinear models is very extensive [21–24]. In [22], the authors considered a nonlinear
ship dynamics and showed the coexistence of stable solutions. In [25], the researcher
considered the 3:1 resonance in nonlinear oscillation of a shallow arch. In [24], the authors
used methods of multiple time scales and considered linear, quadratic, cubic, and quintic
terms of roll angle. They used Lyanopnov’s first method in their investigation to show
the effects of different parameters of the system. In the next section, we will discuss a ship
roll model from [24] using the Asymptotic Perturbation method.

2. Mathematical Model and Asymptotic Perturbation Method

There are several mathematical tools for studying dynamical systems in science and
engineering. Some of the important tools include perturbation methods, methods of av-
eraging [26], and numerical computation of Lyapunov exponents [27,28]. Perturbations
methods [29–32] have been around for decades and been successfully applied to study
the complex dynamics. Another related work to mention would be functional asymptotic
analysis by Sidorov and Trufanov in [33]. In [34–37], another perturbation method, known
as Fourier perturbation or Asymptotic Perturbation method, have been successfully ap-
plied to nonlinear models, such as a nonlinear oscillator. Maccari applied the asymptotic
perturbation method to study the nonlinear dynamics of a third order ordinary differential
equation obtained by traveling the wave solution of a Burgers–KdV type equation [38].
It is shown that a primary resonance system exhibits a saddle-node bifurcation that leads
to a jump or hysteresis phenomena. Later, in [39], the authors generalized this method to
also study the model containing the damping term. In this work, we consider a ship model
with the general nonlinear damping term N(Φ, Φ̇) in one degree of freedom from [24].

Φ̈ + ω2
0Φ + εN(Φ, Φ̇ ) + δ1Φ + δ3Φ3 + δ5Φ5 = ε f cos(Ωt), (2)

where Φ denotes the roll angle and ε is a small bookkeeping parameter that was intro-
duced to ensure small perturbations. We take the rolling and damping terms, as follows,
with rescaled and perturbed coefficients

Φ̈ + ω2
0Φ + ε(µ1Φ̇ + m21Φ2Φ̇ + µ3Φ̇ 3) + ε(α1Φ + α3Φ3 + α5Φ5) = ε f cos(Ωt), (3)

where µ1 > 0, µ3 > 0, and the dot denotes the derivative with respect to t. In [24],
the author used a multiple time scale method, but, in this work, we are using the Asymptotic
Perturbation (AP) method, which is easy to use and one may use CAS (Computer Algebra
System) for tedious symbolic calculations. Authors have used MAPLE for this work.

To study the primary resonance (ω0 ≈ Ω), first define an external detuning parameter
σ through the relation

ω0 = Ω + εσ, (4)
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where Ω represents the forcing frequency and ω0 represents the linear undamped and
unforced frequency. In order to observe the non-negligible effect of nonlinear terms,
we need a larger time scale and, for that, we define a slow time scale as:

τ = εt,

then express Φ analytically as a function of the parameter ε, in particular:

Φ(t) = ε ψ0(τ; ε) +
∞

∑
m=1

ε(m−1)(ψm(τ; ε) e−imΩt + ψ∗m(τ; ε) eimΩt), (5)

Φ(t) = ε ψ0(τ; ε) +
(

ψ1(τ; ε) e−iΩt + ψ∗1 (τ; ε) eiΩt
)
+ ε
(

ψ2(τ; ε) e−2iΩt + ψ∗2 (τ; ε) e2iΩt
)
+ . . . , (6)

where ψm(τ; ε) is assumed to be analytic in ε. We shall employ the notation ψ
(0)
m = ψm for

m 6= 1 and ψ1 = ψ. Only consider the lowest order(i = 0) to obtain

Φ(t) = ε ψ0(τ; ε) +
(

ψ(τ; ε) e−iΩt + ψ∗(τ; ε) eiΩt
)
+ ε
(

ψ2(τ; ε) e−2iΩt + ψ∗2 (τ; ε) e2iΩt
)
+

ε2
(

ψ3(τ; ε) e−3iΩt + ψ∗3 (τ; ε) e3iΩt
)
+ h.o.t.

(7)

Now, differentiate (7) with respect to t to obtain first and second order derivatives
Φ̇ and Φ̈. Only considering terms up to the order of ε2, we have

Φ̇ (t) = −iΩψ e−iΩt + iΩψ∗ eiΩt + ε
(

ψτ e−iΩt + ψ∗τ eiΩt − 2iΩψ2 e−2iΩt + 2iΩψ∗2 e2iΩt
)

ε2
(

ψ0τ + ψ2τe−2iΩt + ψ∗2τe2iΩt − 3iΩψ3e−3iΩt + 3iΩψ∗3 e3iΩt
)
+ h.o.t.

(8)

Φ̈(t) = −Ω2ψe−iΩt −Ω2ψ∗eiΩt + ε
(
−2iΩψτe−iΩt + 2iΩψ∗τeiΩt − 4Ω2ψ2e−2iΩt

−4Ω2ψ∗2 e2iΩt
)
+ h.o.t.

(9)

Using (7)–(9), into (3); replacing Ω = ω0 − εσ and Ω2 = ω2
0 − 2Ωσε, and equating

coefficients of εe−iΩt, we obtain the following:

2ω0σψ− 2iΩψτ − iµ1Ωψ−m21iΩ|ψ|2ψ− 3iµ3Ωω2
0 |ψ|2ψ + α1ψ

+ 3α3|ψ|2ψ + 10α5|ψ|4ψ =
f

2Ω

(10)

Because we are looking at the primary resonance ω0 = 1 = Ω, the above equation
takes the form (also known as the normal form)

ψτ + iA |ψ|4ψ + (B1 + iB2)|ψ|2ψ + (C1 + iC2)ψ + iF = 0, (11)

where the coefficients in terms of parameters are defined as:

A = 5α5, B1 =
m21

2
+

3µ3

2
, B2 = −3α3

2
, C1 =

µ1

2
, C2 = −α1

2
+ σ, F = − f

4
. (12)

Next, for the complex-valued function ψ, we introduce polar form ψ(τ) = ρ(τ) ei θ(τ) in (11)
to obtain the following system of ordinary differential equations:

dρ

dτ
= −C1 ρ− B1ρ3 − F sin θ,

ρ
dθ

dτ
= −C2 ρ− B2ρ3 − Aρ5 − F cos θ.

(13)
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3. Stability of Steady State Solutions

For the steady state solutions (ρ0, θ0), setting
dρ

dτ
= 0 and

dθ

dτ
= 0 in (13) and

eliminating θ from the fixed points, we obtain the following equation, which is known as
the external excitation response curve

F2 = (C1ρ + B1ρ3)2 + (C2ρ + B2ρ3 + Aρ5)2. (14)

We first consider a special case of the absence of external forcing (F = 0). For nontrivial

solution (ρ∗, θ∗), we have
C1

B1
< 0 and B2

2 − 4AC2 ≥ 0.

In this case, the linear stability analysis of the steady state ρ∗ > 0 implies that the state

will be stable if (ρ∗)2 >
−C1

3B1
.

Next, we consider the nontrivial state (ρ0, θ0) in the presence of forcing (F 6= 0 and
ρ0 > 0). Consider small perturbations δρ and δθ in ρ0 and θ0, respectively. Namely, let

ρ = ρ0 + δρ, θ = θ0 + δθ.

The linearization of (13) about (ρ0, θ0) yields the Jacobian Matrix

J =

 −C1 − 3B1ρ2
0 F cos θ0

−2B2ρ0 − 4Aρ3
0 +

F
ρ2

0
cos θ0

F
ρ0

sin θ0

.

We get the characteristic polynomial λ2 + pλ + q = 0, where

p = 2(C1 + 2B1ρ2
0) = −Trace(J),

and

q = (C1 + 3B1ρ2
0)(C1 + B1ρ2

0)+ (C2 + B2ρ2
0 + Aρ4

0)(C2 + 3B2ρ2 + 5Aρ4
0) = Determinant(J).

If both p and q are real numbers, then Re(λ±) ≤ 0 if and only if p > 0 and q > 0.
Thus, for two roots to have negative real parts, the necessary and sufficient condition is

(C1 + 2B1ρ2
0) > 0 or ρ2

0 > − C1

2B1
,

and
(C1 + 3B1ρ2

0)(C1 + B1ρ2
0) + (C2 + B2ρ2

0 + Aρ4
0)(C2 + 3B2ρ2 + 5Aρ4

0) > 0.

Next we determine the stability of the steady-state solutions and prove the slope-
stability theorems [40,41] while using implicit differentiation. We know that we must have
two real negative roots to make the Routh stability, which means that both p and q must
larger than 0. Here, we recall Equation (14) for steady-state solutions:

F2 = (C1ρ + B1ρ3)2 + (C2ρ + B2ρ3 + Aρ5)2.

We then apply the Implicit Function Theorem to obtain the following derivative in
order to analyze the stability of the equation with respect to ρ and f ,

dρ

d f
=

f
16

2ρ0
(
(C1 + 3B1ρ2

0)(C1 + B1ρ2
0) + (C2 + B2ρ2

0 + Aρ4
0)(C2 + 3B2ρ2 + 5Aρ4

0)
) . (15)
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Using q = (C1 + 3B1ρ2
0)(C1 + B1ρ2

0) + (C2 + B2ρ2
0 + Aρ4

0)(C2 + 3B2ρ2 + 5Aρ4
0),

we rewrite (15) as:

q
dρ

d f
=

f
32ρ

(16)

Theorem 1. If dρ/d f > 0, then the steady state solution (ρ0, θ0) is stable. Otherwise, the steady
state solution is unstable.

Proof. For the fixed points (ρ0, θ0) of (13), the Jacobian matrix that is associated with
the linear system has characteristics equation of the form

λ2 + p λ + q = 0

Eigenvalues have negative real parts if p > 0 and q > 0.
Thus, dρ/d f and q have the same sign; a solution is stable if and only if dρ/d f > 0,

otherwise iti is unstable.

From Figures 2–4, we can see that the points A and B of vertical tangents corresponds
to q = 0. These figures also show the softening (bending) of the curve with the increase
in parameters µ3, m21, and µ1. With the increase in the factor of nonlinear damping m21,
the region of multiple values of f has become smaller. These curves exhibit the jump
phenomenon that is the transition between the stable and unstable solution. Newton’s
method is used for the numerical solutions of the external excitation response curve in
Figures 2–4.

0 10 20 30 40 50 60 70 80 90 100

f

0

0.2

0.4

0.6

0.8

1
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1.4

1.6
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f vs. 
*

3
 = 2

3
 = 5

3
 = 15

A

B

Figure 2. External Excitation Response Curve (µ3 = 2, 5, 15 and µ1 = 0.4, α1 = 0.2, α3 = 1.5,
α5 = 2, σ = 30, k = 1 and m21 = 0.7).
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Figure 3. External Excitation Response Curve (µ1 = 4, 15, 25 and α1 = 0.2, α3 = 1.5, α5 = 2,
σ = 30, k = 1 and m21 = 0.7).
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Figure 4. External Excitation Response Curve (m21 = 4, 15, 25 and µ1 = 0.4, α1 = 0.2, α3 = 1.5,
α5 = 2, σ = 30, k = 1).

Similarly, using the same approach, we can derive a relation between the parameters
ρ and σ as:

q
dρ

dσ
= −(C2ρ + B2ρ3 + Aρ5). (17)
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Theorem 2. If
dρ

dσ
< 0 then the steady state solution (ρ0, θ0) is stable. Otherwise, the steady state

solution is unstable.

Proof. For the fixed points (ρ0, θ0) of (13), the Jacobian matrix that is associated with
the linear system has characteristics equation of the form

λ2 + p λ + q = 0

Eigenvalues have negative real parts if p > 0 and q > 0, which is a condition
for stability.

Thus, dρ/dσ and q have the opposite signs, which implies that a solution is stable if
and only if dρ/dσ < 0, otherwise it is unstable.

Next, using the Implicit Function Theorem, we obtain a relation between the parame-
ters ρ and µ1:

dρ

dµ1
= − (C1 + B1ρ2)

2q
. (18)

Theorem 3. If
dρ

dµ1
< 0, then the steady state solution (ρ0, θ0) is stable. Otherwise, the steady

state solution is unstable.

Proof. For the fixed points (ρ0, θ0) of (13), the Jacobian matrix that is associated with
the linear system has the characteristics equation of the form

λ2 + p λ + q = 0

Eigenvalues have negative real parts if p > 0 and q > 0. Recall that p > 0 implies

ρ0 >
√
− C1

2B1
and, hence, also C1 + B1ρ2 > 0.

Thus, dρ/dµ1 and q have the opposite signs, so a solution is stable if and only if
dρ/dµ1 < 0, otherwise it is unstable.

Similarly, we now look at the relation between the parameters ρ and m21

q
dρ

dm21
= −ρ3(C1 + B1ρ2)

2
. (19)

Theorem 4. If
dρ

dm21
< 0 then the steady state solution (ρ0, θ0) is stable. Otherwise, the steady

state solution is unstable.

Proof. For the fixed points (ρ0, θ0) of (13), the Jacobian matrix that is associated with
the linear system has characteristics equation of the form

λ2 + p λ + q = 0.

Eigenvalues have negative real parts if p > 0 and q > 0.
Thus, dρ/dm21 and q have opposite signs, which implies that a solution is stable if

and only if dρ/dm21 < 0, otherwise it is unstable.

Finally, we obtain a relation between the parameters ρ and µ3, using the Implicit
Function Theorem

q
dρ

dµ3
= −3ρ3(C1 + B1ρ2). (20)
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Theorem 5. If
dρ

dµ3
< 0, then the steady state solution (ρ0, θ0) is stable. Otherwise, the steady

state solution is unstable.

Proof. For the fixed points (ρ0, θ0) of (13), the Jacobian matrix that is associated with
the linear system has a characteristics equation of the form

λ2 + p λ + q = 0

Eigenvalues have negative real parts if p > 0 and q > 0.
Thus, dρ/dµ3 and q have the opposite signs; a solution is stable if and only if

dρ/dµ3 < 0, otherwise it is unstable.

Theorem 6. (Bendixson-Dulac criterion)
Suppose that there exists a continuously differentiable function β(x, y) that is defined on a

simply connected domain G. Suppose that the function:
∂

∂ x
(β f ) +

∂

∂ y
(β g) doesn’t change sign in

G. Subsequently, there are no periodic solutions of x′ = f (x, y), y′ = g(x, y) in the region G.

dρ

dτ
= −C1ρ− B1ρ3 − F sin(θ) = f (ρ, θ),

dθ

dτ
= −C2 − B2ρ2 − Aρ4 − F

ρ
cos(θ) = g(ρ, θ),

(21)

we set β = 1
d

dρ
β f +

d
dθ

β g = −C1 − 3B1ρ2 +
F
ρ

sin(θ),

= −2(C1 + 2B1ρ2) = −p
(22)

By the above theorem, there is no periodic solutions for our system.
The use of Lyapunov exponents is another way to quantify chaos [27]. For a system of

differential equations

dx
dt

= f(x), where f : Rn → Rn and x(t) = (ρ, θ)

Let x∗(t) be a reference trajectory, and y(t), a neighboring trajectory with
y(0) = x∗(0) + ∆x(0). As t → ∞, we expect ∆x(t) = y(t)− x∗(t) ∼ ∆x(0)eλt. If λ < 0
trajectories will converge, otherwise they will diverge. The measure of the rate of conver-
gence is defined as the maximum Lyapunov exponent with respect to reference trajectory
of a flow:

λmax = lim
‖∆x(0)‖→0

t→∞

1
t

log
‖∆x(t)‖
‖∆x(0)‖ .

The authors have computed the Lyapunov exponent for one of the case to verify
the stability, as seen in Figure 5 by a negative Lyapunov exponent.
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Figure 5. ω0 = 1; µ1 = 3; m21 = 0.7; µ3 = 5; α1 = 0.2; α3 = 1.5; α5 = 2; k = 1; f = 1; σ = 0.1.

4. Conclusions

In this work, the authors have applied the Asymptotic Perturbation method to study
one degree of freedom nonlinear ship roll model. Under primary resonance 1:1, the authors
study the response of system varying different system parameters. For the resulting system
of differential equations, it is observed that the external excitation response curve (S-shaped)
curve changes with the change in parameters. Qualitative behavior of the response of ship
rolling under primary resonance is presented. The external excitation-response curves show
the softening and hardening of the bifurcation curve between ρ and f . From the external
excitation response curves, it is evident that all of the solutions are stable for the variation of
the parameters µ1, m21, µ3, σ, α1, α3, and α5. The Bendixson–Dulac criterion is used to rule
out the periodic solutions. The authors have also computed the Lyapunov exponents as
another way of quantifying stability. This research provides another method for analyzing
the ship roll model for various parameters. In this manuscript, the authors have considered
the 1:1 resonance. For future work, similar techniques can be generalized to more cases
of p:q, where p and q are relatively prime integers, just like the cases discussed in [26]
for modified Duffing’s equation and forced van der Pol equation by Henrard and Meyer.
In such cases, one needs to include higher order terms in (7).
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