
Mathematical

and Computational

Applications

Article

Derivative-Free Multiobjective Trust Region Descent Method
Using Radial Basis Function Surrogate Models

Manuel Berkemeier 1,* and Sebastian Peitz 2

����������
�������

Citation: Berkemeier, M.; Peitz, S.

Derivative-Free Multiobjective Trust

Region Descent Method Using Radial

Basis Function Surrogate Models.

Math. Comput. Appl. 2021, 26, 31.

https://doi.org/10.3390/

mca26020031

Academic Editors: Marcela Quiroz,

Juan Gabriel Ruiz, Luis Gerardo de la

Fraga and Oliver Schütze

Received: 26 February 2021

Accepted: 7 April 2021

Published: 15 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Chair of Applied Mathematics, Faculty for Computer Science, Electrical Engineering and Mathematics,
Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany

2 Department of Computer Science, Faculty for Computer Science, Electrical Engineering and Mathematics,
Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; sebastian.peitz@upb.de

* Correspondence: manuelbb@math.upb.de

Abstract: We present a local trust region descent algorithm for unconstrained and convexly con-
strained multiobjective optimization problems. It is targeted at heterogeneous and expensive prob-
lems, i.e., problems that have at least one objective function that is computationally expensive.
Convergence to a Pareto critical point is proven. The method is derivative-free in the sense that
derivative information need not be available for the expensive objectives. Instead, a multiobjective
trust region approach is used that works similarly to its well-known scalar counterparts and comple-
ments multiobjective line-search algorithms. Local surrogate models constructed from evaluation
data of the true objective functions are employed to compute possible descent directions. In contrast
to existing multiobjective trust region algorithms, these surrogates are not polynomial but carefully
constructed radial basis function networks. This has the important advantage that the number of
data points needed per iteration scales linearly with the decision space dimension. The local models
qualify as fully linear and the corresponding general scalar framework is adapted for problems with
multiple objectives.

Keywords: multiobjective optimization; trust region methods; multiobjective descent; derivative-
free optimization; radial basis functions; fully linear models

1. Introduction

Optimization problems arise in a multitude of applications in mathematics, computer
science, engineering and the natural sciences. In many real-life scenarios, there are multiple,
equally important objectives that need to be optimized. Such problems are then called
Multiobjective Optimization Problems (MOP). In contrast to the single objective case, an MOP
often does not have a single solution but an entire set of optimal trade-offs between
the different objectives, which we call Pareto optimal. They constitute the Pareto Set and
their image is the Pareto Frontier. The goal in the numerical treatment of an MOP is to
either approximate these sets or to find single points within these sets. In applications,
the problem can become more difficult when some of the objectives require computationally
expensive or time consuming evaluations. For instance, the objectives could depend on
a computer simulation or some other black-box. It is then of primary interest to reduce
the overall number of function evaluations. Consequently, it can become infeasible to
approximate derivative information of the true objectives using, e.g., finite differences.
This holds true especially if higher order derivatives are required. In this work, optimization
methods that do not use the true objective gradients (which nonetheless are assumed to
exist) are referred to as derivative-free.

There is a variety of methods to deal with MOPs, some of which are also derivative-
free or try to constrain the number of expensive function evaluations. A broad overview of
different problems and techniques concerning multiobjective optimization can be found,

Math. Comput. Appl. 2021, 26, 31. https://doi.org/10.3390/mca26020031 https://www.mdpi.com/journal/mca

https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0002-3958-2277
https://orcid.org/0000-0002-3389-793X
https://doi.org/10.3390/mca26020031
https://doi.org/10.3390/mca26020031
https://doi.org/10.3390/mca26020031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mca26020031
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca26020031?type=check_update&version=3

Math. Comput. Appl. 2021, 26, 31 2 of 37

e.g., in [1–4]. One popular approach for calculating Pareto optimal solutions is scalar-
ization, i.e., the transformation of an MOP into a single objective problem, cf. [5] for an
overview. Alternatively, classical (single objective) descent algorithms can be adapted for
the multiobjective case [6–11]. What is more, the structure of the Pareto Set can be exploited
to find multiple solutions [12,13]. There are also methods for non-smooth problems [14,15]
and multiobjective direct-search variants [16,17]. Both scalarization and descent techniques
may be included in Evolutionary Algorithms (EA) [18–22]. To address computationally
expensive objectives or missing derivative information, there are algorithms that use sur-
rogate models (see the surveys [23–25]) or borrow from ideas from scalar trust region
methods, e.g., [26].

In single objective optimization, trust region methods are well suited for derivative-
free optimization [27,28]. Our work is based on the recent development of multiobjective
trust region methods:

• In [29], a trust region method using Newton steps for functions with positive definite
Hessians on an open domain is proposed.

• In [30], quadratic Taylor polynomials are used to compute the steepest descent di-
rection which is used in a backtracking manner to find solutions for unconstrained
problems.

• In [31], polynomial regression models are used to solve an augmented MOP based
on the scalarization in [17]. The algorithm is designed unconstrained bi-objective
problems, but the general idea has been formulated for more objectives in [32].

• In [33], quadratic Lagrange polynomials are used and the Pascoletti–Serafini scalariza-
tion is employed for the descent step calculation.

Our contribution is the extension of the above-mentioned methods to general fully
linear models (and in particular Radial Basis Function (RBF) surrogates as in [34]), which
is related to the scalar framework in [35]. Most importantly, this reduces surrogate con-
struction complexity, in terms of objective evaluations per iteration, to linear with respect
to the number of decision variables, in contrast to the quadratically increasing number
of function evaluations for methods using second degree polynomials. We further prove
convergence to critical points when the problem is constrained to a convex and compact
set by using an analogous argumentation as in [36]. To this end, we extend the theory in [6]
to provide new results concerning the continuity of the solutions of the projected steepest
descent direction problem, which is based on the alternative formulation by Fliege and
Svaiter [7]. We also show how to keep the convergence properties for constrained problems
when the Pascoletti–Serafini scalarization is employed (like in [33]).

The remainder of the paper is structured as follows: Section 2 provides a brief intro-
duction to multiobjective optimality and criticality concepts. In Section 3 the fundamentals
of the algorithm are explained. In Section 4 we introduce fully linear surrogate models
and describe the construction of suitable polynomial models and RBF models for uncon-
strained and box-constrained problems. We also formalize the main algorithm in this
section. Section 5 deals with the descent step calculation so that a sufficient decrease
is achieved in each iteration. Convergence is proven in Section 6 and a few numerical
examples for unconstrained and finitely box-constrained problems are shown in Section 7.
In Section 7 we also compare the RBF models against linear polynomial models that have
the same linear construction complexity. We conclude with a brief discussion in Section 8.

2. Optimality and Criticality in Multiobjective Optimization

We consider the following (real-valued) multiobjective optimization problem:

min
x∈X

f(x) := min
x∈X

 f1(x)
...

fk(x)

 ∈ Rk, (MOP)

Math. Comput. Appl. 2021, 26, 31 3 of 37

with a feasible set X ⊆ Rn and k objective functions f` : Rn → R, ` = 1, . . . , k. We further
assume (MOP) to be heterogeneous. That is, there is a non-empty subset Iex ⊆ {1, . . . , k}
of indices so that the gradients of f`, ` ∈ Iex, are unknown and cannot be approximated,
e.g., via finite differences. The (possibly empty) index set Icheap = {1, . . . , k} \ Iex indicates
functions whose gradients are available.

Solutions for (MOP) consist of optimal trade-offs x∗ ∈ X between the different ob-
jectives and are called non-dominated or Pareto optimal. That is, there is no x ∈ X
with f(x) ≺ f(x∗) (i.e., f(x) ≤ f(x∗) and f`(x) < f`(x∗) for some index ` ∈ {1, . . . , k}).
The subset PS ⊆ X of non-dominated points is then called the Pareto Set and its image
PF := f(PS) ⊆ Rk is called the Pareto Frontier. All concepts can be defined in a local fashion
in an analogous way.

Similar to scalar optimization, there is a necessary condition for local optima using the
gradients of the objective function. We therefore implicitly assume all objective functions
f`, ` = 1, . . . , k, to be continuously differentiable on X . Moreover, the following assumption
allows for an easier treatment of tangent cones in the constrained case:

Assumption 1. Either the problem is unconstrained, i.e., X = Rn or the feasible set X ⊆ Rn is
compact and convex. All functions are defined on X .

The second case is a standard assumption in the MO literature for constrained prob-
lems [6,7]. Now let ∇ f`(x) denote the gradient of f` and Df(x) ∈ Rk×n the Jacobian of f at
x ∈ X .

Definition 1. We call a vector d ∈ X − x a multi-descent direction for f in x if 〈∇ f`(x), d〉 < 0
for all ` ∈ {1, . . . , k}, or equivalently if

max
`=1,...,k

〈∇ f`(x∗), d〉 < 0 (1)

where 〈•, •〉 is the standard inner product on Rn and we consider X − x = X in the unconstrained
case X = Rn.

A point x∗ ∈ X is called critical for (MOP) iff there is no descent direction d ∈ X − x∗

with (1). As all Pareto optimal points are also critical (cf. [6,37] or [2] [Ch. 17]), it is viable
to search for optimal points by calculating points from the superset Pcrit ⊇ PS of critical
points for (MOP). Similar to single objective optimization, using such a first order condition
makes sense especially in combination with some global method or when exploring the
structure of the critical set. We discuss promising approaches in Section 8. Note, that
due the above restrictions, our method is not a general replacement for other methods,
e.g., scalarization approaches, but rather an additional tool for situations where those are
not applicable.

One intuitive way to approach the critical set is by iteratively performing descent steps.
Fliege and Svaiter [7] propose several ways to compute suitable descent directions. The
minimizer d∗ of the following problem is known as the multiobjective steepest-descent di-
rection.

min
d∈X−x

max
`=1,...,k

〈∇ f`(x), d〉 s.t. ‖d‖ ≤ 1. (P1)

Problem (P1) has an equivalent reformulation as

min
d∈X−x

β s.t. ‖d‖ ≤ 1 and 〈∇ f`(x), d〉 ≤ β ∀ ` = 1, . . . , k, (P2)

which is a linear program, if X is defined by linear constraints and the maximum-norm
‖•‖ = ‖•‖∞ is used [7]. We thus stick with this choice because it facilitates implementation,
but note that other choices are possible (see for example [33]).

Motivated by the next theorem we can use the optimal value of either problem as a
measure of criticality, i.e., as a multiobjective pendant for the gradient norm. As is standard

Math. Comput. Appl. 2021, 26, 31 4 of 37

in most multiobjective trust region works (cf. [29,30,33]), we flip the sign so that the values
are non-negative.

Theorem 1. For x ∈ X let d∗(x) be the minimizer of (P1) and ω(x) be the negative optimal value,
that is

ω(x) := − max
`=1,...,k

〈∇ f`(x), d∗(x)〉.

Then the following statements hold:

1. ω(x) ≥ 0 for all x ∈ X .
2. The function ω : Rn → R is continuous.
3. The following statements are equivalent:

(a) The point x ∈ X is not critical.
(b) ω(x) > 0.
(c) d∗(x) 6= 0.

Consequently, the point x is critical iff ω(x) = 0.

Proof. For the unconstrained case all statements are proven in [7] (Lemma 3).
The first and the third statement hold true for X convex and compact by definition.

The continuity of ω can be shown similarly as in [6], see Appendix A.1.

With further conditions on f and X the criticality measure ω(x) is even Lipschitz
continuous and subsequently uniformly and Cauchy continuous:

Theorem 2. If ∇ f`, ` = 1, . . . , k, are Lipschitz continuous and Assumption 1 holds, then the map
ω(•) as defined in Theorem 1 is uniformly continuous.

Proof. The proof for X = Rn is given by Thomann [38]. A proof for the constrained case
can be found in Appendix A.1 as to not clutter this introductory section.

Together with Theorem 1 this hints at ω(•) being a criticality measure as defined for
scalar trust region methods in [36] ([Ch. 8]):

Definition 2. We call π : N0 ×Rn → R, a criticality measure for (MOP) if π is Cauchy continu-
ous with respect to its second argument and if

lim
t→∞

π(t, x(t)) = 0

implies that the sequence
{

x(t)
}

asymptotically approaches a Pareto critical point.

3. Trust Region Ideas

Multiobjective trust region algorithms closely follow the design of scalar approaches
(see [36] for an extensive treatment) and provide an alternative to (approximate) line-
search algorithms (e.g., [7]). Consequently, the requirements and convergence proofs
in [29,30,33] for the unconstrained multiobjective case are fairly similar to those in [36].
We will reexamine the core concepts to provide a clear understanding and point out the
similarities to the single objective case.

The main idea is to iteratively compute multi-descent steps s(t) in every iteration
t ∈ N0. We could, for example, use the steepest descent direction given by (P1). This would
require knowledge of the true objective gradients, which need not be available for objective
functions with indices in Iex. Hence, benevolent surrogate model functions

m(t) : Rn → Rk, x 7→ m(t)(x) =
[
m(t)

1 (x), . . . , m(t)
k (x)

]T
,

are employed (at least for the expensive objectives).

Math. Comput. Appl. 2021, 26, 31 5 of 37

The surrogate models are constructed to be sufficiently accurate within a trust region

B(t) := B
(

x(t); ∆(t)
)
=
{

x ∈ X :
∥∥∥x− x(t)

∥∥∥ ≤ ∆(t)
}

, with ‖•‖ = ‖•‖∞, (2)

around the current iterate x(t). To be precise, the models are made fully linear as described
in Section 4.1. This ensures that the model error and the model gradient error are uniformly
bounded within the trust region.

The model steepest descent direction d(t)
m can then computed as the optimizer of the

surrogate problem

ω
(t)
m

(
x(t)
)

:=− min
d∈X−x

β

s.t. ‖d‖ ≤ 1, and 〈∇m(t)
` (x), d〉 ≤ β ∀` = 1, . . . , k.

(Pm)

Now let σ(t) > 0 be a step size. The direction d(t)
m need not be a descent direction for

the true objectives f and the trial point x(t)+ = x(t) + σ(t)d(t)
m is only accepted if a measure

ρ(t) of improvement and model quality surpasses a positive threshold ν+. As in [30,33], we
scalarize the multiobjective problems by defining

Φ(x) := max
`=1,...,k

f`(x), Φ(t)
m (x) := max

`=1,...,k
m(t)

` (x).

Whenever Φ(x(t))−Φ(x(t)+) > 0, there is a reduction in at least one objective function
of f because of

0 < Φ(x(t))−Φ(x(t)+) = f`(x(t))− fq(x
(t)
+)

df.
≤ f`(x(t))− f`(x

(t)
+),

where we denoted by ` the (not necessarily unique) maximizing index in Φ(x(t)) and by q
the (neither necessarily unique) maximizing index in Φ(x(t)+). (The abbreviation “df.” above
the inequality symbol stands for “(by) definition” and is used throughout this document
when appropriate.) Of course, the same property holds for Φ(t)

m (•) and m(t).
Thus, the step size σ(t) > 0 is chosen so that the step s(t) = σ(t)d(t)

m satisfies both
x(t) + s(t) ∈ B(t) and a “sufficient decrease condition” of the form

Φ(t)
m (x(t))−Φ(t)

m (x(t) + s(t)) ≥ κsdω
(

x(t)
)

min
{

C ·ω
(

x(t)
)

, 1, ∆(t)
}
≥ 0,

with constants κsd ∈ (0, 1) and C > 0, see Section 5. Such a condition is also required in
the scalar case [35,36] and essential for the convergence proof in Section 6, where we show
limt→∞ ω

(
x(t)
)
= 0.

Due to the decrease condition, the denominator in the ratio of actual versus pre-
dicted reduction

ρ(t) =

Φ(x(t))−Φ(x(t)+)

Φ(t)
m (x(t))−Φ(t)

m (x(t)+)
if x(t) 6= x(t)+ ,

0 if x(t) = x(t)+ ⇔ s(t) = 0,

(3)

is non-negative. A positive ρ(t) implies a decrease in at least one objective f`, so we accept
x(t)+ as the next iterate if ρ(t) > ν+ > 0. If ρ(t) is sufficiently large, say ρ(t) ≥ ν++ > ν+ > 0,
the next trust region might have a larger radius ∆(t+1) ≥ ∆(t). If in contrast ρ < ν++,
the next trust region radius should be smaller and the surrogates improved.

Math. Comput. Appl. 2021, 26, 31 6 of 37

This encompasses the case s(t) = 0, when the iterate x(t) is critical for

min
x∈B(t)

m(t)(x) ∈ Rk. (MOPm)

Roughly speaking, we suppose that x(t) is near a critical point for the original problem
(MOP) if m(t) is sufficiently accurate. If we truly are near a critical point, then the trust
region radius will approach 0. For further details concerning the acceptance ratio ρ(t),
see [33] (Section 2.2).

Remark 1. We can modify ρ(t) in (3) to obtain a descent in all objectives, i.e., if x(t) 6= x(t)+ we test

ρ(t) =
f`(x(t))− f`(x

(t)
+)

m(t)
` (x(t))−m(t)

` (x(t)+)
> ν+ for all ` = 1, . . . , k. This is the strict acceptance test.

4. Surrogate Models and the Final Algorithm

Until now, we have not discussed the actual choice of surrogate models used for
m(t). As is shown in Section 5, the models should be twice continuously differentiable
with uniformly bounded hessians. To prove convergence of our algorithm, we have to
impose further requirements on the (uniform) approximation qualities of the surrogates
m(t). We can meet these requirements using so-called fully linear models. Moreover, fully
linear models intrinsically allow for modifications of the basic trust region method that
are aimed at reducing the total number of expensive objective evaluations. Finally, we
briefly recapitulate how radial basis functions and multivariate Lagrange polynomials can
be made fully linear.

Remark 2. Although the trust region framework is suitable for general convexly constrained
compact sets, we will discuss the construction of fully linear polynomial and RBF models for
unconstrained and box-constrained problems only.

In the constrained case, we treat the constraints as unrelaxable, that is, we do not allow for
evaluations of the true objectives outside X , see the definition of B(t) ⊆ X in (2). We also ensure to
only select training data in X during the construction of surrogate models.

To the best of our knowledge there are no construction procedures for the above model types
for general (unrelaxable) constraints. A discussion of how some model based algorithms deal with
constraints can be found in [28] (Section 7). The issue is also addressed in [27] (Ch. 13) . If the
constraints are treated as relaxable, then techniques from [39] (Ch. 15) might be applicable such as
merit functions or filter methods, but this is left for future research.

4.1. Fully Linear Models

We start by reciting the abstract definition of full linearity as given in [27,35]:

Definition 3. Let ∆ub > 0 be given and let f : R → R be a function that is continuously
differentiable in an open domain containing X and has a Lipschitz continuous gradient on X . A
set of model functionsM = {m : Rn → R} ⊆ C1(Rn,R) is called a fully linear class of models
w.r.t. f if the following hold:

1. There are positive constants ε, ε̇ and Lm such that for any given ∆ ∈ (0, ∆ub) and for
any x ∈ X there is a model function m ∈ M with Lipschitz continuous gradient and
corresponding Lipschitz constant bounded by Lm and such that

• the error between the gradient of the model and the gradient of the function satisfies

‖∇ f (ξ)−∇m(ξ)‖ ≤ ε̇∆, ∀ξ ∈ B(x; ∆),

• the error between the model and the function satisfies

| f (ξ)−m(ξ)| ≤ ε∆2, ∀ξ ∈ B(x; ∆).

Math. Comput. Appl. 2021, 26, 31 7 of 37

2. For this classM there exists “model-improvement” algorithm that, in a finite, uniformly
bounded (w.r.t. x and ∆) number of steps, can:

• either establish that a given model m ∈ M is fully linear on B(x; ∆), i.e., it satisfies the
error bounds in 1,

• or find a model m̃ that is fully linear on B(x; ∆).

Remark 3. In the unconstrained case, the requirements in Definition 3 can be relaxed a bit, at least
when using the strict acceptance test with f(x(T)) ≤ f(x(t)) for all T ≥ t ≥ 0. We can then restrict
ourselves to the set

X ′ :=
⋃

x∈L(x(0))

B
(

x; ∆ub
)

, where L(x(0)) :=
{

x ∈ Rn : f(x) ≤ f(x(0))
}

.

For the convergence analysis in Section 6, we further cite [27] ([Lemma 10.25]).
The lemma states that a fully linear model is also fully linear in enlarged regions if the error
constants are chosen appropriately:

Lemma 1. For x ∈ X and ∆ ≤ ∆ub consider a function f and a fully-linear model m as in
Definition 3 with constants ε, ε̇, Lm > 0. Let L f > 0 be a Lipschitz constant of ∇ f .
Assume w.l.o.g. that

Lm + L f ≤ ε and
ε̇

2
≤ ε.

Then m is fully linear on B
(
x; ∆̃

)
for any ∆̃ ∈ [∆, ∆ub] with respect to the same constants

ε, ε̇, Lm.

Finally, we generalize the definition to a vector of real valued functions.

Definition 4. Let ∆ub > 0 be given and let f = [f1, . . . , fk]
T be a vector of functions satisfying

the requirements of Definition 3. Then m = [m1, . . . , mk]
T , with m` : Rn → R, ` ∈ {1, . . . , k},

belongs to a collection of fully linear classes w.r.t. f if for each ` the function m` belongs to a fully
linear class w.r.t. f`, with error constants ε` and ε̇`.

The model-improvement algorithm of m consists in applying the individual improvement
algorithms for all indices ` ∈ {1, . . . , k} and m is deemed fully linear iff all m` are fully linear with
constants ε` and ε̇`.

Definition 4 is stated in a way that allows for different model types for the different
objectives. Most importantly, we can use m` = f` and ∇m` = ∇ f` if the objective is
cheap, i.e., ` ∈ Icheap, and if f` not only has Lipschitz gradients but also has a Hessian
that is uniformly bounded in terms of its norm. The latter requirement is formalized in
Assumption 3 and needed for the convergence analysis.

Algorithm Modifications

With Definitions 3 and 4 we have formalized our assumption that the surrogates
become more accurate when we decrease the trust region radius. This motivates the
following modifications to the basic procedure:

• “Relaxing” the (finite) surrogate construction process to try for a possible descent even
if the surrogates are not fully linear.

• A criticality test depending on v
(t)
m

(
x(t)
)

. If this value is very small at the current

iterate, then x(t) could lie near a Pareto critical point. With the criticality test and
Algorithm 1 we ensure that the next model is fully linear and the trust region is not too
large. This allows for a more accurate criticality measure and descent step calculation.

Math. Comput. Appl. 2021, 26, 31 8 of 37

• A trust region update that also takes into consideration v
(t)
m

(
x(t)
)

. The radius should

be enlarged if we have a large acceptance ratio ρ(t) and the ∆(t) is small as measured
against βω

(t)
m

(
x(t)
)

for a constant β > 0.

These changes are implemented in Algorithm 2. For more detailed explanations we
refer to [27] (Ch. 10).

Algorithm 1: Criticality Routine.

Configuration: A backtracking constant α ∈ (0, 1), µ > 0 from Algorithm 2;
Input: Current trust region radius ∆(t), current models m(t);
Output: Fully linear models m(t) and the (possibly shrunken) radius ∆(t);
Set ∆0 ← ∆(t);
for j = 1, 2, . . . do

Set radius: ∆(t) ← αj−1∆0;

Make models m(t) fully linear on B(t) ; /* can change v
(t)
m

(
x(t)
)

*/

if ∆(t) ≤ µv
(t)
m

(
x(t)
)

then
Break;

end
end

From Algorithm 2 we see that we can classify the iterations based on ρ(t) as in Definition 5.

Definition 5. For given constants 0 ≤ ν+ ≤ ν++ < 1, ν++ 6= 0, we call the iteration with index
t ∈ N0 of Algorithm 2.

• . . . successful if ρ(t) ≥ ν++. The set of successful indices is S = {t ∈ N0 : ρ(t) ≥ ν++} ⊆ N0.
The trial point is accepted and the trust region radius can be increased.

• . . . model-improving if ρ(t) < ν++ and the models m(t) = [m(t)
1 , . . . , m(t)

k]T are not fully
linear. In these iterations the trial point is rejected and the trust region radius is not changed.

• . . . acceptable if ν++ > ρ(t) ≥ ν+ and the models m(t) are fully linear. If ν++ = ν+ ∈ (0, 1),
then there are no acceptable indices. The trial point is accepted but the trust region radius is
decreased.

• . . . inacceptable otherwise, i.e., if ρ(t) < ν++ and m(t) are fully linear. The trial point is
rejected and the radius decreased.

Math. Comput. Appl. 2021, 26, 31 9 of 37

Algorithm 2: General Trust Region Method (TRM) for (MOP).
Configuration: Criticality parameters εcrit > 0 and µ > β > 0, acceptance

parameters 1 > ν++ ≥ ν+ ≥ 0, ν++ 6= 0, update factors
γ↑ ≥ 1 > γ↓ ≥ γ� > 0 and ∆ub > 0;

Input: The initial site x(0) ∈ Rn;
for t = 0, 1, . . . do

if t > 0 and iteration (t− 1) was model-improving (cf. Definition 5) then
Perform at least one improvement step on m(t−1) and then let
m(t) ← m(t−1);

else
Construct surrogate models m(t) on B(t);

end
/* Criticality Step: */

if v
(t)
m

(
x(t)
)
< εcrit and

(
m(t) not fully linear or ∆(t) > µv

(t)
m

(
x(t)
))

then

Set ∆(t)
∗ ← ∆(t);

Call Algorithm 1 so that m(t) is fully linear on B(t) with
∆(t) ∈

(
0, µv

(t)
m

(
x(t)
)]

;

Then set ∆(t) ← min
{

max
{

∆(t), βv
(t)
m

(
x(t)
)}

, ∆(t)
∗
}

;

end
Compute a suitable descent step s(t);

Set x(t)+ ← x(t) + s(t), evaluate f(x(t)+) and compute ρ(t) with (3);
Perform the following updates:

x(t+1) ←
{

x(t) if ρ(t) < ν+ or ν+ ≤ ρ(t) < ν++ & m(t) is not fully linear,

x(t)+ if ρ(t) ≥ ν++ or ν+ ≤ ρ(t) < ν++ & m(t) is fully linear,

∆(t+1) ← ∆+, where

∆+

= ∆(t) if ρ(t) < ν++ & m(t) is not fully linear,
∈ [γ�∆(t), γ↓∆(t)] if ρ(t) < ν++ & m(t) is fully linear,

∈
[
∆(t), min{γ↑∆(t), ∆ub}

]
if ν++ ≤ ρ(t) and ∆(t) ≥ βω

(t)
m

(
x(t)
)

,

= min{γ↑∆(t), ∆ub} if ν++ ≤ ρ(t) and ∆(t) < βω
(t)
m

(
x(t)
)

.

end

4.2. Fully Linear Lagrange Polynomials

Quadratic Taylor polynomial models are used very frequently. As explained in [27]
we can alternatively use multivariate interpolating Lagrange polynomial models when
derivative information is not available. We will consider first and second degree Lagrange
models. Even though the latter require O(n2) function evaluations they are still cheaper
than second degree finite difference models. For this reason, these models are also used
in [33,38].

To construct an interpolating polynomial model we have to provide p data sites,
where p is the dimension of the space Πd

n of real-valued n-variate polynomials with degree

d. For d = 1 we have p = n + 1 and for d = 2 it is p =
(n + 1)(n + 2)

2
. If n ≥ 2,

the Mairhuber–Curtis theorem [40] applies and the data sites must form a so-called poised
set in X . The set Ξ = {ξ1, . . . ,ξp} ⊂ Rn is poised if for any basis {ψi}i of Πd

n the matrix
Mψ :=

[
ψi(ξj)

]
1≤i,j≤p is non-singular. Then for any function f : Rn → R there is a unique

interpolating polynomial m(x) = ∑
p
i=1 λiψi(x) with m(ξj) = f (ξj) for all j = 1, . . . , p.

Math. Comput. Appl. 2021, 26, 31 10 of 37

Given a poised set Ξ the associated Lagrange basis {li}i of Πd
n is defined by li(ξj) = δi,j.

The model coefficients then simply are the data values, i.e., λi = f (ξi).
Same as in [38], we implement Algorithm 6.2 from [27] to ensure poisedness. It selects

training sites Ξ from the current (slightly enlarged) trust region of radius θ1∆(t), θ1 ≥ 1, and
calculates the associated lagrange basis. We can then separately evaluate the true objectives
f` on Ξ to easily build the surrogates m(t)

` , ` ∈ {1, . . . , k}. Our implementation always
includes ξ1 = x(t) and tries to select points from a database of prior evaluations first.

We employ an additional algorithm (Algorithm 6.3 in [27]) to ensure that the set Ξ is
even Λ-poised, see [27] ([Definition 3.6]). The procedure is still finite and ensures the models
are actually fully linear. The quality of the surrogate models can be improved by choosing a
small algorithm parameter Λ > 1. Our implementation tries again to recycle points from
a database. Different to before, interpolation at x(t) can no longer be guaranteed. This
second step can also be omitted first and then used as a model-improvement step in a
subsequent iteration.

4.3. Fully Linear Radial Basis Function Models

The main drawback of quadratic Lagrange models is that we still needO(n2) function
evaluations in each iteration of Algorithm 2. A possible fix is to use under-determined
regression polynomials instead [27,31,41]. Motivated by the findings in [34] we chose
so-called Radial Basis Function (RBF) models as an alternative. RBF are well-known for
their approximation capabilities on irregular data [40]. In our implementation they have
the form

m(x) =
N

∑
i=1

ci ϕ(‖x− ξi‖2) + π(x), with π =
n+1

∑
j=1

λjψj ∈ Π1
n and N ≥ n + 1, (4)

which conforms to the construction by Wild et al. [34]. Here, ϕ is a function from a domain
containing R≥0 to R. For a fixed ϕ the mapping ϕ(‖•‖) from Rn → R is radially symmetric
with respect to its argument and the mapping (x,ξ) 7→ ϕ(‖x− ξ‖2) is called a kernel.

We will describe the procedure only briefly and refer to [34,42] and the dissertation [41]
for more details. To conform to the algorithmic framework the models must have Hessians
of uniformly bounded norm. Additionally, we want them to be twice differentiable due to
the following, very general result:

Theorem 3 (Th 4.1 in [41]). Suppose that f and m are continuously differentiable in an open
domain containing B(t) and that ∇ f and ∇m are Lipschitz in B(t). Further suppose that m
interpolates f on a Λ-poised set Ξ = {ξ1, . . . ,ξn+1} (for a fixed Λ < ∞). Then m is fully linear
for f as in Definition 3.

The Λ-poised set is determined using pivotal algorithms from [34,41] in an enlarged
trust region of radius θ1∆(t), θ1 ≥ 1. If we restrict ourselves to functions ϕ that are condi-
tionally positive definite (c.p.d.—see [34] for the definition) of order D ≤ 2, then for any
f : Rn → R an interpolating model m of form (4) is uniquely determined by solving a linear
equation system. If further ϕ is either twice continuously differentiable on an open domain
containing [0, ∞) with ϕ′(0) = 0 , then m from (4) is twice continuously differentiable
and has Lipschitz gradients exactly if its Hessian stays bounded. This is the case for all
ϕ we consider (see Table 1). The hessian norm is determined by the magnitudes of the
coefficients ci and by |ϕ′(r)/r| and |ϕ′′(r)|.

Math. Comput. Appl. 2021, 26, 31 11 of 37

Table 1. Some radial functions ϕ : R≥0 → R that are c.p.d. of order D ≤ 2, cf. [34].

Name ϕ(r) c.p.d. order D

Cubic r3 2
Multiquadric −

√
1 + (αr)2, α > 0 1

Gaussian exp(−(αr)2), α > 0 0

If there are exactly N = n + 1 points from a poised set Ξ, then the coefficients ci vanish
and the model (4) is a linear polynomial. The values |ϕ′(r)/r| and |ϕ′′(r)| are bounded
because of r ∈ [0, ∆ub] and ϕ′(0) = 0. To exploit the nonlinear modeling capabilities of
RBF and perform exploration, there is a procedure in [34] to select additional (database)
points from within a region of maximum radius θ2∆ub, θ2 ≥ θ1 ≥ 1, so that the values |ci|
stay bounded. Modifications for box constraints can be found in [41] ([Sec. 6.3.1]) and [43].

Table 1 shows the RBF we are using and of which order they are. Both the Gaussian
and the Multiquadric allow for fine-tuning with a shape parameter α > 0. This can
potentially improve the conditioning of the interpolation system.

Figure 1b illustrates the effect of the shape parameter. As can be seen, the radial
functions become narrower for larger shape parameters. Hence, we do not only use a
constant shape parameter α = 1 like [34] do, but we also use an α that is (within lower and
upper bounds) inversely proportional to ∆(t).

Figure 1a shows interpolation of a nonlinear function by a surrogate based on the
Multiquadric with a linear tail.

Figure 1. (a) Interpolation of a nonlinear function (black) by a Multiquadric surrogate (blue) based on 5 discrete training
points (orange). Dashed lines show the kernels and the polynomial tail. (b) Different kernels in 1D with varying shape
parameter (1 or 10), see also Table 1.

5. Descent Steps

In this section we introduce some possible steps s(t) to use in Algorithm 2. We begin by
defining the best step along the steepest descent direction as given by (Pm). Subsequently,
backtracking variants are defined that use a multiobjective variant of Armijo’s rule.

5.1. Pareto–Cauchy Step

Both the Pareto–Cauchy point as well as a backtracking variant, the modified Pareto–
Cauchy point, are points along the descent direction d(t)

m within B(t) so that a sufficient
decrease measured by Φ(t)

m (•) and ω
(t)
m (•) is achieved. Under mild assumptions we can

then derive a decrease in terms of ω(•).

Math. Comput. Appl. 2021, 26, 31 12 of 37

Definition 6. For t ∈ N0 let d(t)
m be a minimizer for (Pm). The best attainable trial point x(t)PC

along d(t)
m is called the Pareto–Cauchy point and given by

x(t)PC := x(t) + σ(t) · d(t)
m ,

σ(t) = arg min
0≤σ

Φ(t)
m

(
x(t) + σ · d(t)

m

)
s.t. x(t)PC ∈ B(t).

(5)

Let σ(t) be the minimizer in (5). We call s(t)PC := σ(t)d(t)
m the Pareto–Cauchy step.

If we make the following standard assumption, then the Pareto–Cauchy point allows
for a lower bound on the improvement in terms of Φ(t)

m .

Assumption 2. For all t ∈ N0 the surrogates m(t)(x) = [m(t)
1 (x), . . . , m(t)

k (x)]T are twice

continuously differentiable on an open set containing X . Denote by Hm(t)
` (x) the Hessian of m(t)

`
for ` = 1, . . . , k.

Theorem 4. If Assumptions 1 and 2 are satisfied, then for any iterate x(t) the Pareto–Cauchy point
x(t)PC satisfies

Φ(t)
m (x(t))−Φ(t)

m (x(t)PC) ≥
1
2

ω
(t)
m

(
x(t)
)
·min

ω
(t)
m

(
x(t)
)

cH(t)
m

, ∆(t), 1

, (6)

where
H(t)

m = max
`=1,...,k

max
x∈B(t)

∥∥∥Hm(t)
` (x)

∥∥∥
F

(7)

and the constant c > 0 relates the trust region norm ‖•‖ to the Euclidean norm ‖•‖2 via

‖x‖2 ≤
√

c‖x‖ ∀x ∈ Rn. (8)

If ‖•‖ = ‖•‖∞ is used, then c can be chosen as c = k. The proof for Theorem 4 is
provided after the next auxiliary lemma.

Lemma 2. Under Assumptions 1 and 2, let d be a non-increasing direction at x(t) ∈ Rn for
m(t), i.e., 〈

∇m(t)
` (x(t)), d

〉
≤ 0 ∀` = 1, . . . , k.

Let q ∈ {1, . . . , k} be any objective index and σ̄ ≥ min
{

∆(t), ‖d‖
}

. Then it holds that

m(t)
q (x(t))− min

0<σ<σ̄
m(t)

q

(
x(t) + σ

d
‖d‖

)
≥ w

2
min

{
w

‖d‖2cH(t)
m

,
∆(t)

‖d‖ , 1

}
,

where we have used the shorthand notation

w = − max
`=1,...,k

〈
∇m(t)

` (x(t)), d
〉
≥ 0.

Lemma 2 states that a minimizer along any non-increasing direction d achieves a
minimum reduction w.r.t. Φ(t)

m . Similar results can be found in in [30] or [33]. But since
we do not use polynomial surrogates m(t), we have to employ the multivariate version
of Taylor’s theorem to make the proof work. We can do this because according to Assump-
tion 2, the functions m(t)

q , q ∈ {1, . . . , k} are twice continuously differentiable in an open
domain containing X . Moreover, Assumption 1 ensures that the function is defined on the

Math. Comput. Appl. 2021, 26, 31 13 of 37

line from χ to x. As shown in [44] (Ch. 3) a first degree expansion at x ∈ B(χ, ∆) around
χ ∈ X then leads to

m(t)
q (x) = mq(χ) +∇m(t)

q (χ)Th +
1
2

hT Hm(t)
q (ξq)h, with h = (x− χ),

for some ξq ∈ {x + θ(χ− x) : θ ∈ [0, 1]}, for all q = 1, . . . , k.
(9)

Proof of Lemma 2. Let the requirements of Lemma 2 hold and let d be a non-increasing
direction for m(t). Then:

m(t)
q (x(t))− min

0<σ<σ̄
m(t)

q

(
x(t) + σ

d
‖d‖

)
= max

0≤σ≤σ̄

{
m(t)

q (x(t))−m(t)
q

(
x(t) + σ

d
‖d‖

)}
(9)
= max

0≤σ≤σ̄

{
m(t)

q (x(t))−
(

m(t)
q (x(t)) +

σ

‖d‖ 〈∇m(t)
q (x(t)), d〉+ σ2

2‖d‖2 〈d, Hm(t)
q (ξq)d〉

)}

≥ max
0≤σ≤σ̄

{
− σ

‖d‖ max
j=1,...,k

〈∇m(t)
j (x(t)), d〉 − σ2

2‖d‖2 〈d, Hm(t)
q (ξq)d〉

}
.

We use the shorthand w = −maxj〈∇m(t)
j (x(t)), d〉 and the Cauchy–Schwartz inequality to

get

. . . ≥ max
0≤σ≤σ̄

{
σ

‖d‖w− σ2

2‖d‖2 ‖d‖
2
2

∥∥∥Hm(t)
q (ξ)

∥∥∥
F

}
(8),(7)
≥ max

0≤σ≤σ̄

{
σ

‖d‖w− σ2

2
cH(t)

m

}
.

The RHS is concave and we can thus easily determine the global maximizer σ∗.
Similar to [30] (Lemma 4.1) we find

m(t)
q (x(t))− min

0<σ<σ̄
m(t)

q

(
x(t) + σ

d
‖d‖

)
≥ w

2
min

{
w

‖d‖2cH(t)
m

,
∆(t)

‖d‖ , 1

}
,

where we have additionally used σ̄ ≥ min{∆(t), 1}.

Proof of Theorem 4. If x(t) is Pareto critical for (MOPm), then d(t)
m = 0 and ω

(t)
m

(
x(t)
)
= 0

and the inequality holds trivially.
Else, let the indices `, q ∈ {1, . . . , k} be such that

Φ(t)
m (x(t))−Φ(t)

m (x(t)PC) = m(t)
` (x(t))−m(t)

q (x(t)PC) ≥ mq(x(t))−mq(x
(t)
PC)

and define

σ̄ :=

{
min

{
∆(t),

∥∥∥d(t)
m

∥∥∥} if
∥∥∥d(t)

m

∥∥∥ < 1 or ∆(t) ≤ 1,

∆(t) else.
(10)

Then clearly σ̄ ≥ min
{

∆(t),
∥∥∥d(t)

m

∥∥∥} and for the Pareto–Cauchy point we have

m(t)
q

(
x(t)PC

)
= min

0≤σ≤σ̄
mq

x(t) +
σ∥∥∥d(t)
m

∥∥∥d(t)
m

.

From Lemma 2 and
∥∥∥d(t)

m

∥∥∥ the bound (6) immediately follows.

Math. Comput. Appl. 2021, 26, 31 14 of 37

Remark 4. Some authors define the Pareto–Cauchy point as the actual minimizer x(t)min of Φ(t)
m

within the current trust region (instead of the minimizer along the steepest descent direction). For
this true minimizer the same bound (6) holds. This is due to

Φ(t)
m (x(t))−Φ(t)

m (x(t)min) = m`(x
(t))− min

x∈B(t)
mq(x) ≥ mq(x(t))−mq(x

(t)
PC).

5.2. Modified Pareto–Cauchy Point via Backtracking

A common approach in trust region methods is to find an approximate solution
to (5) within the current trust region. Usually a backtracking procedure similar to Armijo’s
inexact line-search is used for the Pareto–Cauchy subproblem, see [36] (Section 6.3) and [30].
Doing so, we can still guarantee a sufficient decrease.

Before we actually define the backtracking step along d(t)
m , we derive a more general

lemma. It illustrates that backtracking along any suitable direction is well-defined.

Lemma 3. Suppose Assumptions 1 and 2 hold. For x(t) ∈ Rn, let d be a descent direction for m(t)

and let q ∈ {1, . . . , k} be any objective index and σ̄ > 0. Then, for any fixed constants a, b ∈ (0, 1)
there is an integer j ∈ N0 such that

Ψ
(

x(t) +
bjσ̄

‖d‖d
)
≤ Ψ(x(t))− abjσ̄

‖d‖ w (11)

where, again, we have used the shorthand notation w = −max`=1,...,k

〈
∇m(t)

` (x(t)), d
〉
> 0 and

Ψ is either some specific model, Ψ = m`, or the maximum value, Ψ = Φ(t)
m .

Moreover, if we define the step s(t) = bj σ̄
‖d‖d for the smallest j ∈ N0 satisfying (11), then there is a

constant κsd
m ∈ (0, 1) such that

Ψ(x(t))−Ψ
(

x(t) + s(t)
)
≥ κsd

m w min

{
w

‖d‖2cH(t)
m

,
σ̄

‖d‖

}
. (12)

Proof. The first part can be derived from the fact that d is a descent direction, see e.g., [6].
However, we will use the approach from [30] to also derive the bound (12). With Taylor’s
Theorem we obtain

Ψ
(

x(t) +
bjσ̄

‖d‖d
)
= m`

(
x(t) +

bjσ̄

‖d‖d
)

(for some ` ∈ {1, . . . , k})

= m(t)
` (x(t)) +

bjσ̄

‖d‖ 〈∇m(t)
` (x(t)), d〉+ (bjσ̄)2

2‖d‖2 〈d, Hm(t)
` (ξ`)d〉

≤ Ψ(x(t)) + max
q=1,...,k

bjσ̄

‖d‖ 〈∇m(t)
q (x(t)), d〉+ max

q=1,...,k

(bjσ̄)2

2‖d‖2 〈d, Hm(t)
q (ξq)d〉

(Pm),(7)
≤ Ψ(x(t))− bjσ̄

‖d‖w +
(bjσ̄)2

2
cH(t)

m . (13)

In the last line, we have additionally used the Cauchy–Schwartz inequality.
For a constructive proof, suppose now that (11) is violated for some j ∈ N0, i.e.,

Ψ
(

x(t) +
bjσ̄

‖d‖d
)
> Ψ(x(t))− abjσ̄

‖d‖ w.

Plugging in (13) for the LHS and substracting Ψ(x(t)) then leads to

bj >
2(1− a)w

‖d‖σ̄cH(t)
m

,

Math. Comput. Appl. 2021, 26, 31 15 of 37

where the right hand side is positive and completely independent of j. Since b ∈ (0, 1),

there must be a j∗ ∈ N0, j∗ > j, for which bj∗ ≤ 2(1− a)w

‖d‖σ̄cH(t)
m

so that (11) must also be fulfilled

for this bj∗ .
Analogous to the proof of [30] ([Lemma 4.2]) we can now derive the constant κsd

m
from (12) as κsd

m = min{2b(1− a), a}.

Lemma 3 applies naturally to the step along d(t)
m :

Definition 7. For x(t) ∈ B(t) let d(t)
m be a solution to (Pm) and define the modified Pareto–

Cauchy step as

s̃(t)PC := bjσ̄
d(t)

m∥∥∥d(t)
m

∥∥∥ ,

where again σ̄ as in (10) and j ∈ N0 is the smallest integer that satisfies

Φ(t)
m (x(t) + s̃(t)PC) ≤ Φ(t)

m (x(t))− abjσ̄∥∥∥d(t)
m

∥∥∥ω
(t)
m

(
x(t)
)

(14)

for predefined constants a, b ∈ (0, 1).

The definition of σ̄ ensures, that x(t) + s̃(t)PC is contained in the current trust region B(t).
Furthermore, these steps provide a sufficient decrease very similar to (6):

Corollary 1. Suppose Assumptions 1 and 2 hold. For the step s̃(t)PC the following statements
are true:

1. A j ∈ N0 as in (14) exists.

2. There is a constant κsd
m ∈ (0, 1) such that the modified Pareto–Cauchy step s̃(t)PC satisfies

Φ(t)
m (x(t))−Φ(t)

m (x(t) + s̃(t)PC) ≥ κsd
m ω

(t)
m

(
x(t)
)

min

ω
(t)
m

(
x(t)
)

cH(t)
m

, ∆(t), 1

.

Proof. If x(t) is critical, then the bound is trivial. Otherwise, the existence of a j satisfying
(14) follows from Lemma 3 for Ψ = Φ(t)

m . The lower bound on the decrease follows
immediately from σ̄ ≥ min

{∥∥∥d(t)
m

∥∥∥, ∆(t)
}

.

From Lemma 3 it follows that the backtracking condition (14) can be modified to
explicitly require a decrease in every objective:

Definition 8. Let j ∈ N0 the smallest integer satisfying

min
`=1,...,k

m(t)
` (x(t))−m(t)

`

x(t) + bjσ̄
d(t)

m∥∥∥d(t)
m

∥∥∥
 ≥ abjσ̄∥∥∥d(t)

m

∥∥∥ω
(t)
m

(
x(t)
)

.

We define the strict modified Pareto–Cauchy point as x̂(t)PC = x(t) + ŝ(t)PC and the corresponding

step as ŝ(t)PC = bjσ̄
d(t)

m∥∥∥d(t)
m

∥∥∥ .

Corollary 2. Suppose Assumptions 1 and 2 hold.

Math. Comput. Appl. 2021, 26, 31 16 of 37

1. The strict modified Pareto–Cauchy point exists, the backtracking is finite.
2. There is a constant κsd

m ∈ (0, 1) such that

min
`=1,...,k

{
m(t)

` (x(t))−m(t)
`

(
x̂(t)PC

)}
≥ κsd

m ω
(t)
m

(
x(t)
)

min

ω
(t)
m

(
x(t)
)

cH(t)
m

, ∆(t), 1

. (15)

Remark 5. In the preceding subsections, we have shown descent steps along the model steepest
descent direction. Similar to the single objective case we do not necessarily have to use the steep-
est descent direction and different step calculation methods are viable. For instance, Thomann
and Eichfelder [33] use the well-known Pascoletti–Serafini scalarization to treat the subproblem
(MOPm). We refer to their work and Appendix B to see how this method can be related to the
steepest descent direction.

5.3. Sufficient Decrease for the Original Problem

In the previous subsections, we have shown how to compute steps s(t) to achieve
a sufficient decrease in terms of Φ(t)

m and ω
(t)
m (•). For a descent step s(t) the bound is of

the form

Φ(t)
m (x(t))−Φ(t)

m (x(t) + s(t)) ≥ κsd
m ω

(t)
m

(
x(t)
)

min

ω
(t)
m

(
x(t)
)

cH(t)
m

, ∆(t), 1

, κsd
m ∈ (0, 1), (16)

and thereby very similar to the bounds for the scalar projected gradient trust region
method [36]. By introducing a slightly modified version of ω

(t)
m (•), we can transform (16)

into the bound used in [30,33].

Lemma 4. If π(t, x(t)) is a criticality measure for some multiobjective problem, then π̃(t, x(t)) =
min

{
1, π(t, x(t))

}
is also a criticality measure for the same problem.

Proof. We have 0 ≤ π̃(t, x(t)) ≤ π(t, x(t)). Thus, π̃ → 0 whenever π → 0. The minimum
of uniformly continuous functions is again uniformly continuous.

We next make another standard assumption on the class of surrogate models.

Assumption 3. The norm of all model hessians is uniformly bounded above on X , i.e., there is a
positive constant Hm such that∥∥∥Hm(t)

` (x)
∥∥∥

F
≤ Hm ∀` = 1, . . . , k, ∀x ∈ B(t), ∀t ∈ N0.

W.l.o.g., we assume
Hm · c > 1, with c as in (8). (17)

Remark 6. From this assumption it follows that the model gradients are then Lipschitz as well.
Together with Theorem 2, we then know that ω

(t)
m (•) is a criticality measure for (MOPm).

Motivated by the previous remark, we will from now on refer to the following functions

v(x) := min{ω(x), 1} and v
(t)
m (x) := min

{
ω
(t)
m (x), 1

}
∀t = 0, 1, . . . (18)

We can thereby derive the sufficient decrease condition in “standard form”:

Math. Comput. Appl. 2021, 26, 31 17 of 37

Corollary 3. Under Assumption 3, suppose that for x(t) and some descent step s(t) the bound (16)
holds. For the criticality measure v

(t)
m (•) it follows that

Φ(t)
m (x(t))−Φ(t)

m (x(t) + s(t)) ≥ κsd
m v

(t)
m

(
x(t)
)

min

v
(t)
m

(
x(t)
)

cHm
, ∆(t)

. (19)

Proof. v
(t)
m (•) is a criticality measure due to Assumption 3 and Lemma 4. Further, from (18)

and (17) it follows that
v
(t)
m

(
x(t)
)

cHm
≤ 1

cHm
≤ 1

and if we plug this into (16) we obtain (19).

To relate the RHS of (19) to the criticality ω(•) of the original problem, we require
another assumption.

Assumption 4. There is a constant κω > 0 such that∣∣∣ω(t)
m

(
x(t)
)
−ω

(
x(t)
)∣∣∣ ≤ κωω

(t)
m

(
x(t)
)

.

This assumption is also made by Thomann and Eichfelder [33] and can easily be
justified by using fully linear surrogate models and a bounded trust region radius in
combination with a criticality test, see Lemma 7.

Assumption 4 can be used to formulate the next two lemmata relating the model
criticality and the true criticality. They are proven in Appendix A.2. From these lemmata
and Corollary 3 the final result, Corollary 4, easily follows.

Lemma 5. If Assumption 4 holds, then it holds for v
(t)
m (•) and v(•) from (18) that∣∣∣v(t)

m

(
x(t)
)
−v

(
x(t)
)∣∣∣ ≤ κωv

(t)
m

(
x(t)
)

.

Lemma 6. From Assumption 4 it follows that

v
(t)
m

(
x(t)
)
≥ 1

κω + 1
v
(

x(t)
)

with (κω + 1)−1 ∈ (0, 1).

Corollary 4. Suppose that Assumptions 3 and 4 hold and that x(t) and s(t) satisfy (19). Then

Φ(t)
m (x(t))−Φ(t)

m (x(t) + s(t)) ≥ κsdv
(

x(t)
)

min

v
(

x(t)
)

cHm
, ∆(t)

, (20)

where κsd = κsd
m

1+κω
∈ (0, 1).

6. Convergence
6.1. Preliminary Assumptions and Definitions

To prove convergence of Algorithm 2 we first have to make sure that at least one of
the objectives is bounded from below. This is a weaker requirement than the standard
assumption that all objectives are bounded from below:

Assumption 5. The maximum max`=1,...,k f`(x) of all objective functions is bounded from below
on X .

Math. Comput. Appl. 2021, 26, 31 18 of 37

To be able to use v(•) as a criticality measure and to refer to fully linear models, we
further require:

Assumption 6. The objective f : Rn → Rk is continuously differentiable in an open domain
containing X and has a Lipschitz continuous gradient on X .

We summarize the assumptions on the surrogates as follows:

Assumption 7. The vector of surrogate model functions m(t)
1 , . . . , m(t)

k belongs to a collection of
fully linear classes as in Definition 4: For each objective objective index ` = 1, . . . , k there are error
constants ε` so that ε̇` and m(t)

` can be made to satisfy the bounds in Definition 3.

For the subsequent analysis we define component-wise maximum constants as

ε := max
`=1,...,k

ε`, ε̇ := max
`=1,...,k

ε̇`. (21)

We also wish for the descent steps to fulfill a sufficient decrease condition for the
surrogate criticality measure as discussed in Section 5.

Assumption 8. For all t ∈ N0 the descent steps s(t) are assumed to fulfill both x(t) + s(t) ∈ B(t)

and (19).

Finally, to avoid a cluttered notation when dealing with subsequences we define the
following shorthand notations:

v
(t)
m := v

(t)
m

(
x(t)
)

, v(t) := v
(

x(t)
)
∀t ∈ N0.

6.2. Convergence Proof

In the following we prove convergence of Algorithm 2 to Pareto critical points. We
account for the case that no criticality test is used, i.e., εcrit = 0. We then require all
surrogates to be fully linear in each iteration and need Assumption 4. The proof is an
adapted version of the scalar case in [35].

It is also similar to the proofs for the multiobjective algorithms in [30,33]. However,
in both cases, no criticality test is employed, there is no distinction between successful and
acceptable iterations (ν+ = ν++) and interpolation at x(t) by the surrogates is required. We
indicate notable differences when appropriate.

We start with two results concerning the criticality test in Algorithm 2.

Lemma 7. For each iteration t ∈ N0 Assumption 4 is fulfilled if the model m(t) is fully-linear and
the criticality test was performed and—if applicable—Algorithm 1 has finished.

Proof. Let `, q ∈ {1, . . . , k} and d`, dq ∈ X − x(t) be solutions of (P1) and (Pm), respectively,
such that

ω
(t)
m

(
x(t)
)
= −〈∇m(t)

` (x(t)), d`〉, ω
(

x(t)
)
= −〈∇ fq(x(t)), dq〉.

If ω
(t)
m

(
x(t)
)
≥ ω

(
x(t)
)

, then, using Cauchy–Schwartz and ‖d`‖ ≤ 1,∣∣∣ω(t)
m

(
x(t)
)
−ω

(
x(t)
)∣∣∣ = 〈∇ fq(x(t)), dq〉 − 〈∇m(t)

` (x(t)), d`〉
df.
≤ 〈∇ fq(x(t)), d`〉 − 〈∇m(t)

q (x(t)), d`〉

≤
∥∥∥∇ fq(x(t))−∇m(t)

q (x(t))
∥∥∥

2
,

Math. Comput. Appl. 2021, 26, 31 19 of 37

and if ω
(t)
m

(
x(t)
)
< ω

(
x(t)
)

, we obtain∣∣∣ω(t)
m

(
x(t)
)
−ω

(
x(t)
)∣∣∣ ≤ ∥∥∥∇m(t)

` (x(t))−∇ f`(x(t))
∥∥∥

2
.

Because m(t) is fully linear, it follows that∣∣∣ω(t)
m

(
x(t)
)
−ω

(
x(t)
)∣∣∣ ≤ √cε̇∆(t), with ε̇ from (21).

If we just left Algorithm 1, then the model is fully linear for ∆(t) due to Lemma 1 and
we have ∆(t) ≤ µv

(t)
m

(
x(t)
)
≤ µω

(t)
m

(
x(t)
)

. If we otherwise did not enter Algorithm 1 in

the first place, it must hold that ω
(t)
m

(
x(t)
)
≥ εcrit and

∆(t) ≤ ∆ub =
∆ub

εcrit
εcrit ≤

∆ub

εcrit
ω
(t)
m

(
x(t)
)

and thus∣∣∣ω(t)
m

(
x(t)
)
−ω

(
x(t)
)∣∣∣ ≤ κωω

(t)
m

(
x(t)
)

, κω =
√

cε̇ max
{

µ, ε−1
crit∆

ub
}
> 0.

In the subsequent analysis, we require mainly steps with fully linear models to achieve
sufficient decrease for the true problem. Due to Lemma 7, we can dispose of Assumption 4
by using the criticality routine:

Assumption 9. Either εcrit > 0 or Assumption 4 holds.

We have also implicitly shown the following property of the criticality measures.

Corollary 5. If m(t) is fully linear for f with ε̇ > 0 as in (21) then∣∣∣v(t)
m

(
x(t)
)
−v

(
x(t)
)∣∣∣ ≤ ∣∣∣ω(t)

m

(
x(t)
)
−ω

(
x(t)
)∣∣∣ ≤ √cε̇∆(t).

Lemma 8. If x(t) is not critical for the true problem (MOP), i.e., v
(

x(t)
)
6= 0, then Algorithm 1

will terminate after a finite number of iterations.

Proof. At the start of Algorithm 1, we know that m(t) is not fully linear or ∆(t) >

µv
(t)
m

(
x(t)
)

. For clarity, we denote the first model by m(t)
0 and define ∆0 = ∆(t). We

then ensure that the model is made fully linear on ∆(t)
1 = ∆0 and denote this fully linear

model by m(t)
1 . If afterwards ∆(t)

1 ≤ µv
(t)
m1

(
x(t)
)

, then Algorithm 1 terminates.
Otherwise, the process is repeated: the radius is multiplied by α ∈ (0, 1) so that in the

j-th iteration we have ∆(t)
j = αj−1∆0 and m(t)

j is made fully linear on ∆(t)
j until

∆(t)
j = αj−1∆0 ≤ µv

(t)
mj

(
x(t)
)

.

The only way for Algorithm 1 to loop infinitely is

v
(t)
mj

(
x(t)
)
<

αj−1∆0

µ
∀j ∈ N. (22)

Math. Comput. Appl. 2021, 26, 31 20 of 37

Because m(t)
j is fully linear on αj−1∆0, we know from Corollary 5 that∣∣∣v(t)

mj

(
x(t)
)
−v

(
x(t)
)∣∣∣ ≤ √cε̇αj−1∆0 ∀j ∈ N.

Using the triangle inequality together with (22) gives us∣∣∣v(x(t)
)∣∣∣ ≤ ∣∣∣v(t)

mj

(
x(t)
)
−v

(
x(t)
)∣∣∣+ ∣∣∣v(t)

mj

(
x(t)
)∣∣∣ ≤ (µ−1 +

√
cε
)

αj−1∆0 ∀j ∈ N.

As α ∈ (0, 1), this implies v
(

x(t)
)
= 0 and x(t) is hence critical.

We next state another auxiliary lemma that we need for the convergence proof.

Lemma 9. Suppose Assumptions 6 and 7 hold. For the iterate x(t) let s(t) ∈ Rn be a any step with
x(t)+ = x(t) + s(t) ∈ B(t). If m(t) is fully linear on B(t) then it holds that∣∣∣Φ(x(t)+)−Φ(t)

m (x(t)+)
∣∣∣ ≤ ε

(
∆(t)

)2
.

Proof. The proof follows from the definition of Φ and Φ(t)
m and the full linearity of m(t). It

can be found in [33] (Lemma 4.16).

Convergence of Algorithm 2 is proven by showing that in certain situations, the
iteration must be acceptable or successful as defined in Definition 5. This is done indirectly
and relies on the next two lemmata. They use the preceding result to show that in a
(hypothetical) situation where no Pareto critical point is approached, the trust region radius
must be bounded from below.

Lemma 10. Suppose Assumptions 1, 3 and 6 to 8 hold. If x(t) is not Pareto critical for (MOPm)
and m(t) is fully linear on B(t) and

∆(t) ≤
κsd

m (1− ν++)v
(t)
m

(
x(t)
)

2λ
, where λ = max{ε, cHm} and κsd

m as in (19),

then the iteration is successful, that is, t ∈ S and ∆t+1 ≥ ∆(t).

Proof. The proof is very similar to [35] (Lemma 5.3) and [33] (Lemma 4.17). In contrast to
the latter, we use the surrogate problem and do not require interpolation at x(t):

By definition we have κsd
m (1− ν++) < 1 and hence it follows from Assumptions 4 and

8 and Corollary 3 that

∆(t) ≤
κsd

m (1− ν++)v
(t)
m

(
x(t)
)

2λ
(23)

≤ v
(t)
m

2λ
≤ v

(t)
m

2cHm
≤ v

(t)
m

cHm
.

With Assumption 8 we can plug this into (19) and obtain

Φ(t)
m (x(t))−Φ(t)

m (x(t)+) ≥ κsd
m v

(t)
m min

{
v
(t)
m

cHm
, ∆(t)

}
≥ κsd

m v
(t)
m ∆(t). (24)

Math. Comput. Appl. 2021, 26, 31 21 of 37

Due to Assumption 7 we can take Definition (3) and estimate

∣∣∣ρ(t) − 1
∣∣∣ = ∣∣∣∣∣Φ(x(t))−Φ(x(t)+)− (Φ(t)

m (x(t))−Φ(t)
m (x(t)+)

Φ(t)
m (x(t))−Φ(t)

m (x(t)+)

∣∣∣∣∣
≤

∣∣∣Φ(x(t))−Φ(t)
m (x(t))

∣∣∣+ ∣∣∣Φ(t)
m (x(t)+)−Φ(x(t)+)

∣∣∣∣∣∣Φ(t)
m (x(t))−Φ(t)

m (x(t)+)
∣∣∣

Lemma 9, (24)
≤

2ε
(

∆(t)
)2

κsd
m v

(t)
m ∆(t)

≤ 2λ∆(t)

κsd
m v

(t)
m

(23)
≤ 1− ν++.

Therefore ρ(t) ≥ ν++ and the iteration t using step s(t) is successful.

The same statement can be made for the true problem and v(•):

Corollary 6. Suppose Assumptions 1, 3 and 6 to 9 hold. If x(t) is not Pareto critical for (MOP)
and m(t) is fully linear on B(t) and

∆(t) ≤
κsd(1− ν++)v

(
x(t)
)

2λ
, where λ = max{ε, cHm}, κsd

m as in (20),

then the iteration is successful, that is t ∈ S and ∆t+1 ≥ ∆(t).

Proof. The proof works exactly the same as for Lemma 10. But due to Assumption 9 we
can use Lemma 7 and employ the sufficient decrease condition (20) for v(•) instead.

As in [35] (Lemma 5.4) and [33] (Lemma 4.18), it is now easy to show that when no
Pareto critical point of (MOPm) is approached the trust region radius must be bounded:

Lemma 11. Suppose Assumptions 1, 3 and 6 to 8 hold and that there exists a constant vlb
m > 0

such that v
(t)
m

(
x(t)
)
≥ vlb

m for all t. Then there is a constant ∆lb > 0 with

∆(t) ≥ ∆lb for all t ∈ N0.

Proof. We first investigate the criticality step and assume εcrit > v
(t)
m ≥ vlb

m. After we
finish the criticality loop, we get radius ∆(t) so that ∆(t) ≥ min{∆(t)

∗ , βv
(t)
m } and therefore

∆(t) ≥ min{βvlb
m, ∆(t)

∗ } for all t.
Outside the criticality step, we know from Lemma 10 that whenever ∆(t) falls below

∆̃ :=
κsd

m (1− ν++)vlb
m

2λ
,

iteration t must be either model-improving or successful and hence ∆(t+1) ≥ ∆(t) and the
radius cannot decrease until ∆(k) > ∆̃ for some k > t. Because γ� ∈ (0, 1) is the severest
possible shrinking factor in Algorithm 2, we therefore know that ∆(t) can never be actively
shrunken to a value below γ�∆̃.

Combining both bounds on ∆(t) results in

∆(t) ≥ ∆lb := min{βvlb
m, γ�∆̃, ∆(0)

∗ } ∀t ∈ N0,

where we have again used the fact that ∆(t)
∗ cannot be reduced further if it is less than or

equal to ∆̃ due to the update mechanism in Algorithm 2.

We can now state the first convergence result:

Math. Comput. Appl. 2021, 26, 31 22 of 37

Theorem 5. Suppose that Assumptions 1, 3 and 6 to 8 hold. If Algorithm 2 has only a finite
number 0 ≤ |S| < ∞ of successful iterations S = {t ∈ N0 : ρ(t) ≥ ν++} then

lim
t→∞

v
(

x(t)
)
= 0.

Proof. If the criticality loop runs infinitely, then the result follows from Lemma 8.
Otherwise, let t0 any index larger than the last successful index (or t0 ≥ 0 if S = ∅).

All t ≥ t0 then must be model-improving, acceptable or inacceptable. In all cases, the trust
region radius ∆(t) is never increased. Due to Assumption 7, the number of successive
model-improvement steps is bounded above by M ∈ N. Hence, ∆(t) is decreased by a
factor of γ ∈ [γ�, γ↓] ⊆ (0, 1) at least once every M iterations. Thus,

∞

∑
t>t0

∆(t) ≤ N
∞

∑
i=1

γi
↓∆

(t0) =
Nγ↓

1− γ↓
∆(t0),

and ∆(t) must go to zero for t→ ∞.
Clearly, for any τ ≥ t0, the iterates (and trust region centers) x(τ) and x(t0) cannot be

further apart than the sum of all subsequent trust region radii, i.e.,∥∥∥x(τ) − x(t0)
∥∥∥ ≤ ∞

∑
t≥t0

∆(t) ≤ Nγ↓
1− γ↓

∆(t0).

The RHS goes to zero as we let t0 go to infinity and so must the norm on the LHS, i.e.,

lim
t0→∞

∥∥∥x(τ) − x(t0)
∥∥∥ = 0. (25)

Now let τ = τ(t0) ≥ t0 be the first iteration index so that m(τ) is fully linear. Then∣∣∣v(t0)
m

∣∣∣ ≤ ∣∣∣v(t0) −v(τ)
∣∣∣+ ∣∣∣v(τ) −v

(τ)
m

∣∣∣+ ∣∣∣v(τ)
m

∣∣∣
and for the terms on the right and for t0 → ∞, we find:

• Because of Assumptions 1 and 6 and Theorem 2 v(•) is Cauchy-continuous and with
(25) the first term goes to zero.

• Due to Corollary 5 the second term is in O(∆(τ)) and goes to zero.

• Suppose the third term does not go to zero as well, i.e., {v(t)
m

(
x(τ)

)
} is bounded

below by a positive constant. Due to Assumptions 1 and 7 the iterates x(τ) are not
Pareto critical for (MOPm) and because of ∆(τ) → 0 and Lemma 10 there would be a
successful iteration, a contradiction. Thus the third term must go to zero as well.

We conclude that the left side, v
(

x(t0)
)

, goes to zero as well for t0 → ∞.

We now address the case of infinitely many successful iterations, first for the surrogate
measure v

(t)
m (•) and then for v(•). We show that the criticality measures are not bounded

away from zero.
We start with the observation that in any case the trust region radius converges to zero:

Lemma 12. If Assumptions 1, 3 and 6 to 8 hold, then the subsequence of trust region radii generated
by Algorithm 2 goes to zero, i.e., limt→∞ ∆(t) = 0.

Proof. We have shown in the proof of Theorem 5 that this is the case for finitely many
successful iterations.

Math. Comput. Appl. 2021, 26, 31 23 of 37

Suppose there are infinitely many successful iterations. Take any successful index
t ∈ S . Then ρ(t) ≥ ν++ and from Assumption 8 it follows for x(t+1) = x(t)+ = x(t) + s(t) that

Φ(x(t))−Φ(x(t)+) ≥ ν++

(
Φ(t)

m (x(t))−Φ(t)
m (x(t)+)

)(19)
≥ ν++κsd

m v
(t)
m min

{
v
(t)
m

cHm
, ∆(t)

}
.

The criticality step ensures that v
(t)
m ≥ min

{
εcrit,

∆(t)

µ

}
so that

Φ(x(t))−Φ(x(t)+) ≥ ν++κsd
m min

{
εcrit,

∆(t)

µ

}
min

{
∆(t)

µcHm
, ∆(t)

}
≥ 0. (26)

Now the right hand side has to go to zero: Suppose it was bounded below by a
positive constant ε > 0. We could then compute a lower bound on the improvement from
the first iteration with index 0 up to t + 1 by summation

Φ(x(0))−Φ(x(t+1)) ≥ ∑
τ∈St

Φ(x(τ))−Φ(x(τ+1)) ≥ |St|ε

where St = S ∩ {0, . . . , t} are all successful indices with a maximum index of t. Because S
is unbounded, the right side diverges for t→ ∞ and so must the left side in contradiction
to Φ being bounded below by Assumption 5. From (26) we see that this implies ∆(t) → 0
for t ∈ S , t→ ∞.

Now consider any sequence T ⊆ N of indices that are not necessarily successful, i.e.,
|T \ S| ≥ 0. The radius is only ever increased in successful iterations and at most by a
factor of γ↑. Since S is unbounded, there is for any τ ∈ T a largest tτ ∈ S with tτ ≤ τ.
Then ∆(τ) ≤ γ↑∆(tτ) and because of ∆(tτ) → 0 it follows that

lim
τ∈T ,
τ→∞

∆(τ) = 0,

which concludes the proof.

Lemma 13. Suppose Assumptions 1, 3 and 5 to 8 hold. For the iterates produced by Algorithm 2
it holds that

lim inf
t→∞

v
(t)
m

(
x(t)
)
= 0.

Proof. For a contradiction, suppose that lim inft→∞ v
(t)
m

(
x(t)
)
6= 0. Then there is a constant

vlb
m > 0 with v

(t)
m ≥ vlb

m for all t ∈ N0. According to Lemma 11, there exists a constant
∆lb > 0 with ∆(t) ≥ ∆lb for all t. This contradicts Lemma 12.

The next result allows us to transfer the result to v(•).

Lemma 14. Suppose Assumptions 1, 6 and 7 hold. For any subsequence {ti}i∈N ⊆ N0 of iteration
indices of Algorithm 2 with

lim
i→∞

v
(ti)
m

(
x(ti)

)
= 0, (27)

it also holds that
lim
i→∞

v
(

x(ti)
)
= 0. (28)

Proof. By (27), v
(ti)
m < εcrit for sufficiently large i. If x(ti) is critical for (MOP), then the

result follows from Lemma 8. Otherwise, m(ti) is fully linear on B
(

x(ti); ∆(ti)
)

for some

∆(ti) ≤ µv
(ti)
m . From Corollary 5 it follows that∣∣∣v(ti)

m −v(ti)
∣∣∣ ≤ √cε̇∆(ti) ≤

√
cε̇µv

(ti)
m .

Math. Comput. Appl. 2021, 26, 31 24 of 37

The triangle inequality yields

v(ti) ≤
∣∣∣v(ti) −v

(ti)
m

∣∣∣+ v
(ti)
m ≤ (

√
cε̇µ + 1)v(ti)

m

for sufficiently large i and (27) then implies (28).

The next global convergence result immediately follows from Theorem 5 and Lemmas
13 and 14:

Theorem 6. Suppose Assumptions 1, 3 and 5 to 8 hold. Then lim inft→∞ v
(

x(t)
)
= 0.

This shows that if the iterates are bounded, then there is a subsequence of iterates in
Rn approximating a Pareto critical point. We next show that all limit points of a sequence
generated by Algorithm 2 are Pareto critical.

Theorem 7. Suppose Assumptions 1 and 3 to 8 hold. Then limt→∞ v
(

x(t)
)
= 0.

Proof. We have already proven the result for finitely many successful iterations, see
Theorem 5. We thus suppose that S is unbounded.

For the purpose of establishing a contradiction, suppose that there exists a sequence{
tj
}

j∈N of indices that are successful or acceptable with

v(tj) ≥ 2ε > 0 for some ε > 0 and all j. (29)

We can ignore model-improving and inacceptable iterations: During those the iter-
ate does not change, and we find a larger acceptable or successful index with the same
criticality value.

From Theorem 6 we obtain that for every such tj, there exists a first index τj > tj such

that v
(

x(τj)
)
< ε. We thus find another subsequence indexed by {τj} such that

v(t) ≥ ε for tj ≤ t < τj and v(τj) < ε. (30)

Using (29) and (30), it also follows from a triangle inequality that∣∣∣v(tj) −v(τj)
∣∣∣ ≥ v(tj) −v(τj) > 2ε− ε = ε ∀j ∈ N. (31)

With {tj} and {τj} as in (30), define the following subset set of indices

T =
{

t ∈ N0 : ∃j ∈ N such that tj ≤ t < τj
}

.

By (30) we have v(t) ≥ ε for t ∈ T , and due to Lemma 14, we also know that then
v
(t)
m cannot go to zero neither, i.e., there is some εm > 0 such that

v
(t)
m ≥ εm > 0 ∀t ∈ T .

From Lemma 12 we know that ∆(t) t→∞−−→ 0 so that by Corollary 6, any sufficiently
large t ∈ T must be either successful or model-improving (if m(t) is not fully linear). For
t ∈ T ∩ S , it follows from Assumption 8 that

Φ(x(t))−Φ(x(t+1)) ≥ ν++

(
Φm(x(t))−Φm(x(t+1))

)
≥ ν++κsd

m εm min
{

εm

cHm
, ∆(t)

}
≥ 0.

Math. Comput. Appl. 2021, 26, 31 25 of 37

If t ∈ T ∩ S is sufficiently large, we have ∆(t) ≤ εm

cHm
and

∆(t) ≤ 1
ν++κsd

m εm

(
Φ(x(t))−Φ(x(t+1))

)
.

Since the iteration is either successful or model-improving for sufficiently large t ∈ T ,
and since x(t) = x(t+1) for a model-improving iteration, we deduce from the previous
inequality that

∥∥∥x(tj) − x(τj)
∥∥∥ ≤ τj−1

∑
t=tj ,

t∈T ∩S

∥∥∥x(t) − x(t+1)
∥∥∥ ≤ τj−1

∑
t=tj ,

t∈T ∩S

∆(t) ≤ 1
ν++κsd

m εm

(
Φ(x(tj))−Φ(x(τj))

)

for j ∈ N sufficiently large. The sequence
{

Φ(x(t))
}

t∈N0
is bounded below (Assumption 5)

and monotonically decreasing by construction. Hence, the RHS above must converge to
zero for j→ ∞. This implies limj→∞

∥∥∥x(tj) − x(τj)
∥∥∥ = 0.

Because of Assumptions 1 and 6, v(•) is uniformly continuous so that then

lim
j→∞

v
(

x(tj)
)
−v

(
x(τj)

)
= 0,

which is a contradiction to (31). Thus, no subsequence of acceptable or successful indices
as in (29) can exist.

7. Numerical Examples

In this section we provide some more details on the actual implementation of Algo-
rithm 2 and present the results of various experiments. We compare different surrogate
model types with regard to their efficacy (in terms of expensive objective evaluations) and
their ability to find Pareto critical points.

7.1. Implementation Details

We implemented the framework in the Julia language (the code is available under
https://github.com/manuelbb-upb/Morbit.jl, accessed on 15 April 2021) and used the
surrogate construction algorithms from Sections 4.2 and 4.3. Concerning the RBF models,
the algorithms are thus the same as in [41]. The OSQP solver [45] is used to solve (Pm). For
non-linear problems we use the NLopt.jl [46] package. More specifically we use the MMA
algorithm [47] in conjunction with DynamicPolynomials.jl [48] to construct the Lagrange
polynomials. The Pascoletti–Serafini subproblems is solved using the population based
ISRES method [49] with MMA for polishing. The derivatives of cheap objective functions are
obtained by means of automatic differentiation [50] and Taylor models use FiniteDiff.jl.

In accordance with Algorithm 2, we perform the shrinking trust region update via

∆(t+1) ←
{

γ�∆(t) if ρ(t) < ν+,
γ↓∆(t) if ρ(t) < ν++.

Note that for box-constrained problems we internally scale the feasible set to the unit
hypercube [0, 1]n and all radii are measured with regard to this scaled domain.

For stopping, we use a disjunction of different criteria:

• We have an upper bound Nit. ∈ N on the maximum number of iterations and an upper
bound Nexp. ∈ N on the number of expensive objective evaluations.

https://github.com/manuelbb-upb/Morbit.jl
https://github.com/manuelbb-upb/Morbit.jl

Math. Comput. Appl. 2021, 26, 31 26 of 37

• The surrogate criticality naturally allows for a stopping test and due to Lemma 11 the
trust region radius can also be used (see also [33] [Sec. 5]). We combine this with a
relative tolerance test and stop if

∆(t) ≤ ∆min OR
(

∆(t) ≤ ∆crit AND ω
(

x(t)
)
≤ ωmin

)
.

• At a truly critical point the criticality loop Algorithm 1 runs infinitely. We stop after a
maximum number Nloops ∈ N0 of iterations.

• We also employ the common relative stopping criteria∥∥∥x(t) − x(t+1)
∥∥∥

∞
≤ δx

∥∥∥x(t)
∥∥∥

∞
and∥∥∥f(x(t))− f(x(t+1))

∥∥∥
∞
≤ δ f

∥∥∥f(x(t))
∥∥∥

∞

to provoke early stopping.

7.2. A First Example

We ran our method on a multitude of academic test problems with a varying number
of decision variables n and objective functions k. We were able to approximate Pareto
critical points in both cases, if we treat the problems as heterogeneous and if we declare
them as expensive. We benchmarked RBF against polynomial models, because in [33] it was
shown that a trust region method using second degree Lagrange polynomials outperforms
commercial solvers on scalarized problems. Most often, RBF surrogates outperform other
model types with regard to the number of expensive function evaluations.

This is illustrated in Figure 2. It shows two runs of Algorithm 2 on the non-convex
problem (T6), taken from [38]:

min
x∈X

[
x1 + ln(x1) + x2

2,
x2

1 + x4
2

]
, X = [ε, 30]× [0, 30] ⊆ R2, ε = 10−12. (T6)

Figure 2. Two runs with maximum number of expensive evaluations set to 20 (soft limit). Test points are light-gray,
the iterates are black, final iterate is red, white markers show other points where the objectives are evaluated. The successive
trust regions are also shown. (a) Using Radial Basis Function (RBF) surrogate models we converge to the optimum using
only 12 expensive evaluations. (b) Quadratic Lagrange models do not reach the optimum using 19 evaluations. (c) Iterations
and test points in the objective space.

Math. Comput. Appl. 2021, 26, 31 27 of 37

The first objective function is treated as expensive while the second is cheap. In con-
trast to most other MOPs, there is only one solution and this Pareto optimal point is [ε, 0]T .
When we set a very restrictive limit of Nexp. = 20 then we run out of budget with second
degree Lagrange surrogates before we reach the optimum, see Figure 2b. As evident
in Figure 2a, surrogates based on (cubic) RBF do require significantly less training data.
For the RBF models the algorithm stopped after two critical loops and the model refinement
during these loops is made clear by the samples on the problem boundary converging to
zero. The complete set of relevant parameters for the test runs is given in Table 2. We used
a strict acceptance test and the strict Pareto–Cauchy step.

Table 2. Parameters for Figure 2, radii relative to [0, 1]n.

Param. εcrit Nexp. Nloops µ β ∆ub ∆min ∆(0) ν+ ν++ γ� γ↓ γ↑

Value 10−3 20 2 2× 103 103 0.5 10−3 0.1 0.1 0.4 0.51 0.75 2

7.3. Benchmarks on Scalable Test-Problems

To assess the performance with a growing number of decision variables n, we per-
formed tests on scalable problems of the ZDT and DTLZ family [51,52]. Figure 3 shows
results for the bi-objective problems ZDT1-ZDT3 and for the k-objective problems DTLZ1
and DTLZ6 (we used k = max{2, n− 4} objectives). All problems are box constrained.
Twelve feasible starting points (from the Halton sequence) were generated for each problem
setting, i.e., for each combination of n, a test problem and a descent method. The acceptance
test and the backtracking were strict.

Figure 3. Average number of expensive objective evaluations by number of decision variables n,
surrogate type and descent method. “SD” refers to steepest descent and “PS” to Pascoletti–Serafini.
“LP1” (orange) are linear Lagrange models, “LP2” (yellow) quadratic Lagrange models, “TP1” (blue)
are linear Taylor polynomials based on finite differences and “cubic” (black) refers to cubic RBF
models. Additionally the results for weighted sum runs are shown in green, using the COBYLA solver
and a single objective variant of the trust region framework, ORBIT.

In all cases the first objective was considered cheap and all other objectives expensive.
First and second degree Lagrange models were compared against linear Taylor models and
(cubic) RBF surrogates. The Lagrange models were built using a Λ-poised set, with Λ = 1.5.
In the case of quadratic models we used a precomputed set of points for n ≥ 6. The Taylor
models used finite differences and points outside of box constraints were simply projected
back onto the boundary. The RBF models were allowed to include up to (n + 1)(n + 2)/2
training points from the database if n ≤ 10 and else the maximum number of points was
2n + 1. Points were first selected from a box of radius θ1∆(t) with θ1 = 2 and then from
a box of radius θ2∆ub with θ2 = 2. All other parameters differing from the parameters in
Table 2 are listed in Table 3. The stopping parameters were chosen so as to exit early and
save evaluations.

Math. Comput. Appl. 2021, 26, 31 28 of 37

Table 3. Parameters for Figure 3, radii relative to [0, 1]n.

Parameter εcrit Nit. Nexp. Nloops ∆crit ωmin ∆min δx δ f ν+ ν++

Value 10−2 100 n× 103 3 10−2 10−3 10−6 10−3 10−3 0 0.1

As expected, the second degree Lagrange polynomials require the most objective
evaluations and the quadratic dependence on n is clearly visible in Figure 3, and the
quadratic growth of the dark-blue line continues for n ≥ 8. On average, the linear Lagrange
models perform better than the linear Taylor polynomials when using the steepest descent
steps—also in accordance with our expectations, because only n + 1 points are needed
for each model (versus 2n points). Most models—even the linear ones—profit from using
the Pascoletti–Serafini subproblems (see Appendix B) over the steepest descent steps.
By far the least evaluations (on average) are needed for the RBF models: The black line
consistently stays below all other data points. Note, that the RBF models likely appear
to perform slightly better with the steepest descent steps because of the early stopping.
In other experiments we noticed that RBF models with Pascoletti–Serafini steps can save
evaluations when more precise solutions are required.

For comparison, we also used the weighted sum approach with the single objective
∑` f` on each problem instance. We tested both the derivative-free COBYLA solver (de-
scribed in [53] and implemented by NLopt.jl) and the trust region method using steepest
descent and cubic RBF models, i.e., our own implementation of ORBIT [34]. Both solvers
were restricted to the same number of maximum function evaluations. In fact, ORBIT
was configured with the exact same parameters as in Table 3 and the relative stopping
tolerances for COBYLA were δx = δ f = 10−2. Although, COBYLA also uses linear models
it requires significantly more evaluations than most other algorithms. The results of the
ORBIT scalarization are more comparable to that of the multiobjective runs.

7.3.1. Solution Quality

Figure 4 illustrates that not only do RBF perform better on average, but also overall.
With regard to the final solution criticality, there are a few outliers mostly due to DTLZ1
(see also Figure 5). However, in most cases the solution criticality is acceptable, except for
the linear Lagrange models. Moreover, Figure 5 shows that a good percentage of problem
instances is solved with RBF, especially when compared to the other linear models. Note,
that in cases where the true objectives are not differentiable at the final iterate, ω was set
to 0 because the selected problems are non-differentiable only in Pareto optimal points.
In Figure 5 it also becomes apparent that the bi-objective DTLZ1 instances were the most
challenging for all algorithms. DTLZ1 has many local minima and it is likely to exit early
near such a local minimum due to repeated unsuccessful iterations. Likewise, ZDT3 is
“flat” towards the true Pareto Front so that it becomes hard to make progress there.

Figure 4. Box-plots of the number of evaluations and the solution criticality for n = 5 and n = 15 for
the runs from Figure 3. Outliers are not shown. “WS_C” and “WS_O” refer to the weighted sum
approach using COBYLA and ORBIT, respectively.

Math. Comput. Appl. 2021, 26, 31 29 of 37

Figure 5. Each group of bars shows the percentage of solved problem instances, i.e., test runs were
the final solution criticality has a value below 0.1. From left to right, the bars correspond to the
Trust Region Method (TRM) using linear Lagrange polynomials, the TRM with quadratic Lagrange
polynomials, TRM with linear Taylor polynomials, weighted sum with COBYLA, weighted sum with
ORBIT and TRM with cubic RBF. Per model and n-value there were 60 runs.

Besides criticality, another metric of interest is the spread of solutions for different start-
ing points. Figure 6 shows the final iterates when the algorithm is applied to the bi-objective
problems ZDT1 and ZDT2 for 10 different starting points. Additionally, the problems are
solved using the weighted sum approach with the derivative-free COBYLA solver. For each
starting point the optimizers were allowed 30 objective evaluations and no data were
re-used between runs.

Figure 6. Final iterates in objective space for the bi-objective problems ZDT1 and ZDT2 in 10 variables.
The weighted sum method (WS) is compared against the trust region method using steepest descent
(DS) and the Pascoletti–Serafini (PS) method.

As can bee seen, for these problems, the trust region method readily reaches the
critical set using only 30 evaluations. Here, the steepest descent direction tends to generate
solutions on the problem boundary when applied in such a global manner—with relatively
large trust region radii (∆(0) = 0.1 and ∆ub = 0.5). Nonetheless, the method remains
applicable for local refinement of approximate solutions, e.g., after a coarse search for
good starting points using global methods or as a corrector in continuation frameworks.
The Pascoletti–Serafini step can be employed with different reference points/directions
to provide a better covering than both the steepest descent steps and the weighted sum
approach. For Figure 6, the points {[0,−10i], i = 1, . . . , 10} were used. The weighted sum
approach (with fixed weights) tends to produce clustered solutions. Especially for the

Math. Comput. Appl. 2021, 26, 31 30 of 37

non-convex problem ZDT2 only the boundary points of the true Pareto Front are reached,
as expected [1].

7.3.2. RBF Comparison

Furthermore, we compared the RBF kernels from Table 1. In [34], the cubic kernel
performs best on single-objective problems while the Gaussian does worst. As can be seen
in Figure 7 this holds for multiple objective functions, too: The Gaussian and the Multi-
quadric require more function evaluations than the Cubic, especially in higher dimensions.
If, however, we use a very simple adaptive strategy to fine-tune the shape parameter, then
both kernels can finish significantly faster. In both cases, the shape parameter was set to
α = 20/∆(t) in each iteration. Nevertheless, the cubic function appears to be a good choice
in general.

Figure 7. Each group of bars shows the influence of a adaptive shape radius on the performance of
different RBF models (tested on ZDT3) for different decision space dimensions. From left to right
the bars correspond to the cubic RBF, the Gaussian—with constant shape factor 1 and with adaptive
shape factor 20/∆(t)—and the Multiquadric—with shape factors 1 and 20/∆(t).

8. Conclusions

We have developed a trust region framework for heterogeneous and expensive mul-
tiobjective optimization problems. It is based on similar work [29–31,33] and our main
contributions are the integration of constraints and of radial basis function surrogates.
Subsequently, our method is is provably convergent to first order critical points for un-
constrained problems and when the feasible set is convex and compact, while requiring
significantly less expensive function evaluations due to a linear scaling of model construc-
tion complexity with respect to the number of decision variables.

For future work, several modifications and extensions can likely be transferred from
the single-objective to the multiobjective case. For examples, the trust region update can be
made step-size-dependent (rather than to depend ρ(t) alone) to allow for a more precise
model refinement, see [36] ([Ch. 10]). We have also experimented with the nonlinear
CG method [9] for a multiobjective Steihaug–Toint step [36] ([Ch. 7]) and early results
look promising.

Going forward, we would like to apply our algorithm to a real world application, simi-
lar to what has been done in [54]. Moreover, it would be desirable to obtain not just one but
multiple Pareto critical solutions. Because the Pascoletti–Serafini scalarization is still com-
patible with constraints, the iterations can be guided in image space by providing different
global reference points. Furthermore, it is straightforward to use RBF with the heuristic
methods from [55] for heterogeneous problems. We believe that it should also be possible to
propagate multiple solutions and combine the TRM method with non-dominance testing as
has been done [31] and in [56]. One can think of other globalization strategies as well: RBF
models have been used in multiobjective Stochastic Search algorithms [57] and trust region
ideas have been included into population based strategies [26]. It will thus be interesting to
see whether the theoretical convergence properties can be maintained within these contexts

Math. Comput. Appl. 2021, 26, 31 31 of 37

by employing a careful trust-region management. Finally, re-using the data sampled near
the final iterate within a continuation framework like in [58] is a promising next step.

Supplementary Materials: Our Julia implementation of the solver is available online at https://
github.com/manuelbb-upb/Morbit.jl accessed on 15 April 2021.

Author Contributions: Conceptualization, M.B. and S.P.; methodology, M.B.; software, M.B.; val-
idation, M.B. and S.P.; formal analysis, M.B. and S.P.; investigation, M.B.; writing—original draft
preparation, M.B.; writing—review and editing, S.P.; visualization, M.B.; supervision, S.P.; All authors
have read and agreed to the published version of the manuscript.

Funding: This research has been funded by the European Union and the German Federal State of
North Rhine-Westphalia within the EFRE.NRW project “SET CPS”.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Miscellaneous Proofs

Appendix A.1. Continuity of the Constrained Optimal Value

In this subsection we show the continuity of ω(x) in the constrained case, where ω(x)
is the negative optimal value of (P1), i.e.,

ω(x) :=− min
d∈X−x

max
`=1,...,k

〈∇ f`(x), d〉,

s.t. ‖d‖ ≤ 1.

The proof of the continuity of ω(x), as stated in Theorem 1, follows the reasoning
from [6], where continuity is shown for a related constrained descent direction program.

Proof of Item 2 in Theorem 1. Let the requirements of Item 1 be fulfilled, i.e., let f be
continuously differentiable and let X ⊂ Rn be convex and compact. Further, let x be a
point in X and denote the minimizing direction in (P1) by d(x) and the optimal value by
θ(x). We show that θ(x) is continuous, by which ω(x) = −θ(x) is continuous as well.

First, note the following properties of the maximum function:

1. u 7→ max` u` is positively homogenous and hence

max
`

(〈∇ f`(x), d1〉+ 〈∇ f`(x), d2〉) ≤ max
`
〈∇ f`(x), d1〉+ max

`
〈∇ f`(x), d2〉.

2. u 7→ max` u` is Lipschitz with constant 1 so that∣∣∣∣max
`
〈∇ f`(x1), d1〉 −max

`
〈∇ f`(x2), d2〉

∣∣∣∣ ≤ ‖Df(x1)d1 −Df(x2)d2‖,

for both the maximum and the Euclidean norm.

Now let {x(t)} ⊆ X be a sequence with x(t) → x. Due to the constraints, we have that
d(x) ∈ X − x and thereby d(x) + x− x(t) ∈ X − x(t). Let

(0, 1] 3 σ(t) :=

min

{
1,

1∥∥d(x) + x− x(t)
∥∥
}

if d(x) 6= x(t) − x,

1 else.

Then σ(t)
(

d(x) + x− x(t)
)

is feasible for (P1) at x(t):

https://github.com/manuelbb-upb/Morbit.jl
https://github.com/manuelbb-upb/Morbit.jl

Math. Comput. Appl. 2021, 26, 31 32 of 37

• σ(t)
(

d(x) + x− x(t)
)
∈ X − x(t) because X − x(t) is convex and 0,

(
d(x) + x− x(t)

)
∈

X − x(t) as well as σ(t) ∈ (0, 1].
•

∥∥∥σ(t)
(

d(x) + x− x(t)
)∥∥∥ ≤ 1 by the definition of σ(t).

By the definition of (P1) it follows that

max`〈∇ f`(x(t)), d(x(t))〉 ≤ σ(t) max`〈∇ f`(x(t)), d(x) + x− x(t)〉
and by the maximum property 1
max`〈∇ f`(x(t)), d(x(t))〉 ≤ σ(t) max`〈∇ f`(x(t)), d(x)〉+ σ(t) max`〈∇ f`(x(t)), x− x(t)〉.

(A1)
We make the following observations:

• Because of
∥∥∥d(x) + x− x(t)

∥∥∥ t→∞−−→ ‖d(x)‖ ≤ 1, it follows that σ(t) t→∞−−→ 1.

• Because all objective gradients are continuous, it holds for all ` ∈ {1, . . . , k} that
∇ f`(x(t))→ ∇ f`(x) and because u 7→ max` u` is continuous as well, it then follows
that

max
`
〈∇ f`(x(t)), d(x)〉 → max

`
〈∇ f`(x), d(x)〉 for t→ ∞.

• The last term on the RHS of (A1) vanishes for t→ ∞.

By taking the limit superior on (A1), we then find that

lim sup
t→∞

θ(x(t)) = lim sup
t→∞

max
`
〈∇ f`(x(t)), d(x(t))〉 ≤ max

`
〈∇ f`(x), d(x)〉 = θ(x) (A2)

Vice versa, we know that because of d(x(t)) ∈ X − x(t), it holds that d(x(t))+ x(t)− x ∈
X − x and as above we find that

max
`
〈∇ f`(x), d(x)〉 ≤ λ(t) max

`
〈∇ f`(x), d(x(t))〉+ λ(t) max

`
〈∇ f`(x), x(t) − x〉 (A3)

with

λ(t) :=

min

{
1,

1∥∥d(x) + x(t) − x
∥∥
}

if d(x) 6= x(t) − x,

1 else.

Again, the last term of (A3) vanishes in the limit so that by using the properties of the

maximum function and the continuity of ∇ f`, as well as λ(t) t→∞−−→ 1, in taking the limit
inferior on (A3) we find that

θ(x) = max`〈∇ f`(x), d(x)〉 ≤ lim inft→∞ max`〈∇ f`(x), d(x(t))〉
≤ lim inft→∞

[(
max`〈∇ f`(x), d(x(t))〉 −max`〈∇ f`(x(t)), d(x(t))〉

)
+ max`〈∇ f`(x(t)), d(x(t))〉

]
≤ lim inft→∞

[∥∥∥Df(x)−Df(x(t))
∥∥∥∥∥∥d(x(t))

∥∥∥+ max`〈∇ f`(x(t)), d(x(t))〉
]

≤ lim inft→∞ max`〈∇ f`(x(t)), d(x(t))〉 = lim inft→∞ θ(x(t)).
(A4)

Combining (A2) and (A4) shows that θ(x(t)) t→∞−−→ θ(x).

Theorem 2 claims that ω(x) is uniformly continuous, provided the objective gradients
are Lipschitz. The implied Cauchy continuity is an important property in the convergence
proof of the algorithm.

Proof of Theorem 2. We will consider the constrained case only, when X is convex and
compact and show uniform continuity a fortiori by proving that ω(•) is Lipschitz. Let the
objective gradients be Lipschitz continuous. Then Df is Lipschitz as well with constant
L > 0. Let x, y ∈ X with x 6= y (the other case is trivial) and let again d(x), d(y) be the
respective optimizers.

Math. Comput. Appl. 2021, 26, 31 33 of 37

Suppose w.l.o.g. that∣∣∣∣max
`
〈∇ f`(x), d(x)〉 −max

`
〈∇ f`(y), d(y)〉

∣∣∣∣ = max
`
〈∇ f`(x), d(x)〉 −max

`
〈∇ f`(y), d(y)〉

If we define

(0, 1] 3 σ :=

{
min

{
1, 1
‖d(y)+y−x‖

}
if d(y) 6= x− y,

1 else,

then again σ(d(y) + y− x) is feasible for (P1) at y. Thus,

max`〈∇ f`(x), d(x)〉 −max`〈∇ f`(y), d(y)〉
df.
≤ max`〈∇ f`(x), σ(d(y) + y− x)〉 −max`〈∇ f`(y), d(y)〉
≤ ‖σDf(x)(d(y) + y− x)−Df(y)d(y)‖
σ≤1
≤ ‖σDf(x)−Df(y)‖‖d(y)‖+ ‖Df(x)‖‖x− y‖,

(A5)

where we have again used the maximum property 2 for the second inequality. We now
investigate the first term on the RHS. Using ‖d(y)‖ ≤ 1 and adding a zero, we find

‖σDf(x)−Df(y)‖‖d(y)‖ ≤ ‖Df(x)−Df(y)− (1− σ)Df(x)‖
≤ L‖x− y‖+ (1− σ)‖Df(x)‖. (A6)

Furthermore, ‖d(y) + y− x‖ ≤ 1 + ‖y− x‖ implies 1/(1 + ‖y− x‖) ≤ σ and

1− σ ≤ 1− 1
1 + ‖y− x‖ =

‖y− x‖
1 + ‖y− x‖ ≤ ‖y− x‖.

We use this inequality and plug (A6) into (A5) to obtain

max
`
〈∇ f`(x), d(x)〉 −max

`
〈∇ f`(y), d(y)〉 ≤ L‖x− y‖+ 2‖Df(x)‖‖x− y‖

≤ (L + 2D)‖x− y‖,

with D = maxx∈X ‖Df(x)‖ which is well-defined because X is compact and ‖Df(•)‖ is
continuous.

Appendix A.2. Modified Criticality Measures

Proof of Lemma 5. There are two cases to consider:

• If ω
(t)
m

(
x(t)
)
≥ ω

(
x(t)
)

then∣∣∣ω(t)
m

(
x(t)
)
−ω

(
x(t)
)∣∣∣ = ω

(t)
m

(
x(t)
)
−ω

(
x(t)
)
≤ κωω

(t)
m

(
x(t)
)

.

Now

∣∣∣v(t)
m

(
x(t)
)
−v

(
x(t)
)∣∣∣ ∈

ω
(t)
m

(
x(t)
)
−ω

(
x(t)
)

1−ω
(

x(t)
)
≤ ω

(t)
m

(
x(t)
)
−ω

(
x(t)
)

1− 1 = 0

 ≤ κωω
(t)
m

(
x(t)
)

.

• The case ω
(

x(t)
)
< ω

(t)
m

(
x(t)
)

can be shown similarly.

Proof of Lemma 6. Use Lemma 5 and then investigate the two possible cases:

Math. Comput. Appl. 2021, 26, 31 34 of 37

• If v
(t)
m

(
x(t)
)
≥ v

(
x(t)
)

, then the first inequality follows because of 1 ≥ 1/(1 + κω).

• If v
(t)
m

(
x(t)
)
< v

(
x(t)
)

, then v
(

x(t)
)
−v

(t)
m

(
x(t)
)
≤ κωv

(t)
m

(
x(t)
)

, and again the first
inequality follows.

Appendix B. Pascoletti–Serafini Step

One example of an alternative descent step s(t) ∈ Rn is given in [33]. Thomann and
Eichfelder [33] leverage the Pascoletti–Serafini scalarization to define local subproblems
that guide the iterates towards the (local) model ideal point. To be precise, it is shown that
the trial point x(t)+ can be computed as the solution to

min
τ∈R,x∈B(t)

τ s.t. m(t)(x(t)) + τr(t) −m(t)(x) ≥ 0, (A7)

where r(t) = m(t)(x(t))− i(t)m ∈ Rk
≥0 is the direction vector pointing from the local model

ideal point

i(t)m =
[
i(t)1 , . . . , i(t)k

]T
, with i(t)` = min

x∈X
m(t)

` (x) for ` = 1, . . . , k, (A8)

to the current iterate value. If the surrogates are linear or quadratic polynomials and the
trust region use a p-norm with p ∈ {1, 2, ∞} these sub-problems are linear or quadratic pro-
grams.

A convergence proof for the unconstrained case is given in [33]. It relies on a sufficient
decrease bound similar to (20). However, it is not shown that κsd ∈ (0, 1) exists independent
of the iteration index t but stated as an assumption.

Furthermore, constraints (in particular box constraints) are integrated into the defini-
tion of ω(•) and ω

(t)
m (•) using an active set strategy (see [38]). Consequently, both values

are no longer Cauchy continuous. We can remedy both drawbacks by relating the (possibly
constrained) Pascoletti–Serafini trial point to the strict modified Pareto–Cauchy point in
our projection framework. To this end, we allow in (A7) and (A8) any feasible set fulfilling
Assumption 1. Moreover, we recite the following assumption:

Assumption A1 (Assumption 4.10 in [33]). There is a constant r ∈ (0, 1] so that if x(t) is not

Pareto critical, the components r(t)1 , . . . , r(t)k , of r(t) satisfy
min` r(t)`

max` r(t)`

≥ r.

The assumption can be justified because r(t)` > 0 if x(t) is not critical and r(t)` can

be bounded above and below by expressions involving ω
(t)
m (•), see Remark 4 and [33]

(Lemma 4.9). We can then derive the following lemma:

Lemma A1. Suppose Assumptions 1 and 2 and Appendix B hold. Let (τ+, x(t)+) be the solution to
(A7). Then there exists a constant κ̃sd

m ∈ (0, 1) such that it holds

Φ(t)
m (x(t))−Φ(t)

m (x(t)+) ≥ κ̃sd
m ω

(t)
m

(
x(t)
)

min

ω
(t)
m

(
x(t)
)

cH(t)
m

, ∆(t), 1

.

Math. Comput. Appl. 2021, 26, 31 35 of 37

Proof. If x(t) is critical for (MOPm), then τ+ = 0 and x(t)+ = x(t) and the bound is trivial [5].
Otherwise, we can use the same argumentation as in [33] ([Lemma 4.13]) to show that for
the strict modified Pareto–Cauchy point x̂(t)PC it holds that

Φ(t)
m (x(t))−Φ(t)

m (x(t)+) ≥ r min
`

{
m(t)

` (x(t))−m(t)
` (x̂(t)PC)

}
and the final bound follows from Corollary 2 with the new constant κ̃sd

m = rκsd
m .

References
1. Ehrgott, M. Multicriteria Optimization, 2nd ed.; Springer: Berlin, Germany, 2005.
2. Jahn, J. Vector Optimization: Theory, Applications, and Extensions, 2nd ed.; Springer: Berlin, Germany, 2011; OCLC: 725378304.
3. Miettinen, K. Nonlinear Multiobjective Optimization; Springer: Berlin, Germany, 2013; OCLC: 1089790877.
4. Eichfelder, G. Twenty Years of Continuous Multiobjective Optimization. Available online: http://www.optimization-online.org/

DB_FILE/2020/12/8161.pdf (accessed on 8 April 2021).
5. Eichfelder, G. Adaptive Scalarization Methods in Multiobjective Optimization; Springer: Berlin, Germany, 2008. [CrossRef]
6. Fukuda, E.H.; Drummond, L.M.G. A Survay on Multiobjective Descent Methods. Pesqui. Oper. 2014, 34, 585–620. [CrossRef]
7. Fliege, J.; Svaiter, B.F. Steepest descent methods for multicriteria optimization. Math. Method. Operat. Res. (ZOR) 2000, 51, 479–494.

[CrossRef]
8. Graña Drummond, L.; Svaiter, B. A steepest descent method for vector optimization. J. Comput. Appl. Math. 2005, 175, 395–414.

[CrossRef]
9. Lucambio Pérez, L.R.; Prudente, L.F. Nonlinear Conjugate Gradient Methods for Vector Optimization. SIAM J. Optim. 2018,

28, 2690–2720. [CrossRef]
10. Lucambio Pérez, L.R.; Prudente, L.F. A Wolfe Line Search Algorithm for Vector Optimization. ACM Transact. Math. Softw. 2019,

45, 1–23. [CrossRef]
11. Gebken, B.; Peitz, S.; Dellnitz, M. A Descent Method for Equality and Inequality Constrained Multiobjective Optimization

Problems. In Numerical and Evolutionary Optimization—NEO 2017; Trujillo, L., Schütze, O., Maldonado, Y., Valle, P., Eds.; Springer:
Cham, Switzerland, 2019; pp. 29–61.

12. Hillermeier, C. Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach; Springer Basel AG: Basel, Switzerland,
2001; OCLC: 828735498.

13. Gebken, B.; Peitz, S.; Dellnitz, M. On the hierarchical structure of Pareto critical sets. J. Glob. Optim. 2019, 73, 891–913. [CrossRef]
14. Wilppu, O.; Karmitsa, N.; Mäkelä, M. New Multiple Subgradient Descent Bundle Method for Nonsmooth Multiobjective Optimization;

Report no. 1126; Turku Centre for Computer Science: Turku, Sweden, 2014.
15. Gebken, B.; Peitz, S. An Efficient Descent Method for Locally Lipschitz Multiobjective Optimization Problems. J. Optim. Theor.

Appl. 2021. [CrossRef]
16. Custódio, A.L.; Madeira, J.F.A.; Vaz, A.I.F.; Vicente, L.N. Direct Multisearch for Multiobjective Optimization. SIAM J. Optim.

2011, 21, 1109–1140. [CrossRef]
17. Audet, C.; Savard, G.; Zghal, W. Multiobjective Optimization Through a Series of Single-Objective Formulations. SIAM J. Optim.

2008, 19, 188–210. [CrossRef]
18. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
19. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; Wiley: Hoboken, NJ, USA, 2001.
20. Coello, C.A.C.; Lamont, G.B.; Veldhuizen, D.A.V. Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd ed.; Springer:

New York, NY, USA, 2007.
21. Abraham, A.; Jain, L.C.; Goldberg, R. (Eds.) Evolutionary multiobjective optimization: Theoretical advances and applications.

In Advanced Information and Knowledge Processing; Springer: New York, NY, USA, 2005.
22. Zitzler, E. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. Thesis, ETH, Zurich,

Switzerland, 1999.
23. Peitz, S.; Dellnitz, M. A Survey of Recent Trends in Multiobjective Optimal Control—Surrogate Models, Feedback Control and

Objective Reduction. Math. Comput. Appl. 2018, 23, 30. [CrossRef]
24. Chugh, T.; Sindhya, K.; Hakanen, J.; Miettinen, K. A survey on handling computationally expensive multiobjective optimization

problems with evolutionary algorithms. Soft Comput. 2019, 23, 3137–3166. [CrossRef]
25. Deb, K.; Roy, P.C.; Hussein, R. Surrogate Modeling Approaches for Multiobjective Optimization: Methods, Taxonomy, and

Results. Math. Comput. Appl. 2020, 26, 5. [CrossRef]
26. Roy, P.C.; Hussein, R.; Blank, J.; Deb, K. Trust-Region Based Multi-objective Optimization for Low Budget Scenarios. In Evo-

lutionary Multi-Criterion Optimization; Series Title: Lecture Notes in Computer Science; Deb, K., Goodman, E., Coello Coello,
C.A., Klamroth, K., Miettinen, K., Mostaghim, S., Reed, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019;
Volume 11411; pp. 373–385. [CrossRef]

http://www.optimization-online.org/DB_FILE/2020/12/8161.pdf
http://www.optimization-online.org/DB_FILE/2020/12/8161.pdf
http://doi.org/10.1007/978-3-540-79159-1
http://dx.doi.org/10.1590/0101-7438.2014.034.03.0585
http://dx.doi.org/10.1007/s001860000043
http://dx.doi.org/10.1016/j.cam.2004.06.018
http://dx.doi.org/10.1137/17M1126588
http://dx.doi.org/10.1145/3342104
http://dx.doi.org/10.1007/s10898-019-00737-6
http://dx.doi.org/10.1007/s10957-020-01803-w
http://dx.doi.org/10.1137/10079731X
http://dx.doi.org/10.1137/060677513
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.3390/mca23020030
http://dx.doi.org/10.1007/s00500-017-2965-0
http://dx.doi.org/10.3390/mca26010005
http://dx.doi.org/10.1007/978-3-030-12598-1_30

Math. Comput. Appl. 2021, 26, 31 36 of 37

27. Conn, A.R.; Scheinberg, K.; Vicente, L.N. Introduction to Derivative-Free Optimization; Number 8 in MPS-SIAM Series on
Optimization; Society for Industrial and Applied Mathematics/Mathematical Programming Society: Philadelphia, PA, USA,
2009; OCLC: Ocn244660709.

28. Larson, J.; Menickelly, M.; Wild, S.M. Derivative-free optimization methods. arXiv 2019, arXiv:1904.11585.
29. Qu, S.; Goh, M.; Liang, B. Trust region methods for solving multiobjective optimisation. Optim. Method. Softw. 2013, 28, 796–811.

[CrossRef]
30. Villacorta, K.D.V.; Oliveira, P.R.; Soubeyran, A. A Trust-Region Method for Unconstrained Multiobjective Problems with

Applications in Satisficing Processes. J. Optim. Theor. Appl. 2014, 160, 865–889. [CrossRef]
31. Ryu, J.H.; Kim, S. A Derivative-Free Trust-Region Method for Biobjective Optimization. SIAM J. Optim. 2014, 24, 334–362.

[CrossRef]
32. Audet, C.; Savard, G.; Zghal, W. A mesh adaptive direct search algorithm for multiobjective optimization. Eur. J. Oper. Res. 2010,

204, 545–556. [CrossRef]
33. Thomann, J.; Eichfelder, G. A Trust-Region Algorithm for Heterogeneous Multiobjective Optimization. SIAM J. Optim. 2019,

29, 1017–1047. [CrossRef]
34. Wild, S.M.; Regis, R.G.; Shoemaker, C.A. ORBIT: Optimization by Radial Basis Function Interpolation in Trust-Regions. SIAM J.

Sci. Comput. 2008, 30, 3197–3219. [CrossRef]
35. Conn, A.R.; Scheinberg, K.; Vicente, L.N. Global Convergence of General Derivative-Free Trust-Region Algorithms to First- and

Second-Order Critical Points. SIAM J. Optim. 2009, 20, 387–415. [CrossRef]
36. Conn, A.R.; Gould, N.I.M.; Toint, P.L. Trust-Region Methods; MPS-SIAM series on optimization; Society for Industrial and Applied

Mathematics: Harrisburg, PA, USA, 2000.
37. Luc, D.T. Theory of Vector Optimization; Lecture Notes in Economics and Mathematical Systems; Springer: Berlin, Heidelberg,

1989; Volume 319. [CrossRef]
38. Thomann, J. A Trust Region Approach for Multi-Objective Heterogeneous Optimization. Ph.D. Thesis, TU Ilmenau, Illmenau,

Germany, 2018.
39. Nocedal, J.; Wright, S.J. Numerical Optimization, 2nd ed.; Springer Series in Operations Research; Springer: Berlin, Germany, 2006;

OCLC: Ocm68629100.
40. Wendland, H. Scattered Data Approximation, 1st ed.; Cambridge University Press: Cambridge, UK, 2004. [CrossRef]
41. Wild, S.M. Derivative-Free Optimization Algorithms for Computationally Expensive Functions; Cornell University: Ithaca, NY,

USA, 2009.
42. Wild, S.M.; Shoemaker, C. Global Convergence of Radial Basis Function Trust Region Derivative-Free Algorithms. SIAM J. Optim.

2011, 21, 761–781. [CrossRef]
43. Regis, R.G.; Wild, S.M. CONORBIT: Constrained optimization by radial basis function interpolation in trust regions. Optim.

Methods Softw. 2017, 32, 552–580. [CrossRef]
44. Fleming, W. Functions of Several Variables; Undergraduate Texts in Mathematics; Springer: New York, NY, USA, 1977. [CrossRef]
45. Stellato, B.; Banjac, G.; Goulart, P.; Bemporad, A.; Boyd, S. OSQP: An operator splitting solver for quadratic programs. Math.

Program. Comput. 2020, 12, 637–672. [CrossRef]
46. Johnson, S.G. The NLopt Nonlinear-Optimization Package. Available online: https://nlopt.readthedocs.io/en/latest/ (accessed

on 8 April 2021).
47. Svanberg, K. A class of globally convergent optimization methods based on conservative convex separable approximations.

SIAM J. Optim. 2002, 12, 555–573. [CrossRef]
48. Legat, B.; Timme, S.; Weisser, T.; Kapelevich, L.; Rackauckas, C.; TagBot, J. JuliaAlgebra/DynamicPolynomials.jl: V0.3.15. 2020.

Available online: https://zenodo.org/record/4153432#.YG5wjj8RVPY (accessed on 8 April 2021).
49. Runarsson, T.P.; Yao, X. Search biases in constrained evolutionary optimization. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 2005,

35, 233–243. [CrossRef]
50. Revels, J.; Lubin, M.; Papamarkou, T. Forward-Mode Automatic Differentiation in Julia. arXiv 2016, arXiv:1607.07892.
51. Zitzler, E.; Deb, K.; Thiele, L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evol. Comput. 2000,

8, 173–195. [CrossRef]
52. Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable Test Problems for Evolutionary Multiobjective Optimization. In Evolutionary

Multiobjective Optimization; Series Title: Advanced Information and Knowledge Processing; Abraham, A., Jain, L., Goldberg, R.,
Eds.; Springer: London, UK, 2005; pp. 105–145. [CrossRef]

53. Powell, M.J. A direct search optimization method that models the objective and constraint functions by linear interpolation.
In Advances in Optimization and Numerical Analysis; Gomez, S., Hennart, J.P., Eds.; Springer: Dordrecht, The Netherlands, 1994;
pp. 51–67.

54. Prinz, S.; Thomann, J.; Eichfelder, G.; Boeck, T.; Schumacher, J. Expensive multi-objective optimization of electromagnetic mixing
in a liquid metal. Optim. Eng. 2020. [CrossRef]

55. Thomann, J.; Eichfelder, G. Representation of the Pareto front for heterogeneous multi-objective optimization. J. Appl. Numer.
Optim. 2019, 1, 293–323.

56. Deshpande, S.; Watson, L.T.; Canfield, R.A. Multiobjective optimization using an adaptive weighting scheme. Optim. Methods
Softw. 2016, 31, 110–133. [CrossRef]

http://dx.doi.org/10.1080/10556788.2012.660483
http://dx.doi.org/10.1007/s10957-013-0392-7
http://dx.doi.org/10.1137/120864738
http://dx.doi.org/10.1016/j.ejor.2009.11.010
http://dx.doi.org/10.1137/18M1173277
http://dx.doi.org/10.1137/070691814
http://dx.doi.org/10.1137/060673424
http://dx.doi.org/10.1007/978-3-642-50280-4
http://dx.doi.org/10.1017/CBO9780511617539
http://dx.doi.org/10.1137/09074927X
http://dx.doi.org/10.1080/10556788.2016.1226305
http://dx.doi.org/10.1007/978-1-4684-9461-7
http://dx.doi.org/10.1007/s12532-020-00179-2
https://nlopt.readthedocs.io/en/latest/
http://dx.doi.org/10.1137/S1052623499362822
https://zenodo.org/record/4153432#.YG5wjj8RVPY
http://dx.doi.org/10.1109/TSMCC.2004.841906
http://dx.doi.org/10.1162/106365600568202
http://dx.doi.org/10.1007/1-84628-137-7_6
http://dx.doi.org/10.1007/s11081-020-09561-4
http://dx.doi.org/10.1080/10556788.2015.1048861

Math. Comput. Appl. 2021, 26, 31 37 of 37

57. Regis, R.G. Multi-objective constrained black-box optimization using radial basis function surrogates. J. Comput. Sci. 2016,
16, 140–155. [CrossRef]

58. Schütze, O.; Cuate, O.; Martín, A.; Peitz, S.; Dellnitz, M. Pareto Explorer: A global/local exploration tool for many-objective
optimization problems. Eng. Optim. 2020, 52, 832–855. [CrossRef]

http://dx.doi.org/10.1016/j.jocs.2016.05.013
http://dx.doi.org/10.1080/0305215X.2019.1617286

	Introduction
	Optimality and Criticality in Multiobjective Optimization
	Trust Region Ideas
	Surrogate Models and the Final Algorithm
	Fully Linear Models
	Fully Linear Lagrange Polynomials
	Fully Linear Radial Basis Function Models

	Descent Steps
	Pareto–Cauchy Step
	Modified Pareto–Cauchy Point via Backtracking
	Sufficient Decrease for the Original Problem

	Convergence
	Preliminary Assumptions and Definitions
	Convergence Proof

	Numerical Examples
	Implementation Details
	A First Example
	Benchmarks on Scalable Test-Problems
	Solution Quality
	RBF Comparison

	Conclusions
	Miscellaneous Proofs
	Continuity of the Constrained Optimal Value
	Modified Criticality Measures

	Pascoletti–Serafini Step
	References

