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Abstract: The COVID-19 disease constitutes a global health contingency. This disease has left millions
people infected, and its spread has dramatically increased. This study proposes a new method based
on a Convolutional Neural Network (CNN) and temporal Component Transformation (CT) called
CNN–CT. This method is applied to confirmed cases of COVID-19 in the United States, Mexico,
Brazil, and Colombia. The CT changes daily predictions and observations to weekly components
and vice versa. In addition, CNN–CT adjusts the predictions made by CNN using AutoRegressive
Integrated Moving Average (ARIMA) and Exponential Smoothing (ES) methods. This combination
of strategies provides better predictions than most of the individual methods by themselves. In this
paper, we present the mathematical formulation for this strategy. Our experiments encompass the
fine-tuning of the parameters of the algorithms. We compared the best hybrid methods obtained with
CNN–CT versus the individual CNN, Long Short-Term Memory (LSTM), ARIMA, and ES methods.
Our results show that our hybrid method surpasses the performance of LSTM, and that it consistently
achieves competitive results in terms of the MAPE metric, as opposed to the individual CNN and
ARIMA methods, whose performance varies largely for different scenarios.

Keywords: forecasting; Convolutional Neural Network; LSTM; COVID-19; deep learning

1. Introduction

Coronaviruses are a large family of viruses characterized by having crown-shaped
spikes on their surface. Nowadays, there are seven identified types of coronaviruses that
can be transmitted among humans. The most dangerous coronaviruses known until recent
years are MERS-CoV and SARS-CoV, and they have caused severe diseases, such as MERS
and SARS, in 2003 and 2012, respectively, [1]. However, at the end of 2019, in Wuhan,
China, the new epidemiological outbreak of COVID-19 emerged; it was caused by the new
coronavirus called SARS-CoV2.

The importance of mathematical models and algorithms to analyze this disease has
grown because they allow one to find patterns, make predictions, and understand fluctua-
tions. Epidemiological models can be classified into two groups [2]:

• Dynamic Models. These are old models that usually divide the population into several
subsets known as compartments, for instance, the Susceptible, Infectious, Recovered
or SIR model. The SIR model was proposed in 1902 by Sir Roland Ross and then
expanded by Kermack and McKendrick in 1927 [3].
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• Forecasting models using time series. Here, we find classical methods such as
ARIMA and Exponential Smoothing (ES) [4]. Furthermore, Machine Learning meth-
ods like Support Vector Machines [5] and Deep Learning [6] are also in this group.

This work presents a new method of the second group, based on Convolutional
Neural Network (CNN) [7] and a proposed Component Transformation (CT), which we
named CNN–CT, whose mathematical formulation is presented. The CNN–CT method is
applied to forecast the number of COVID-19 confirmed cases for the United States (US),
Mexico, Brazil, and Colombia [8]. The CT changes daily observations into weekly data and
back. The forecast made by our hybrid CNN–CT method is further adjusted either with
ARIMA or ES methods. We compared the proposed hybrid method versus the individual
methods. Our results show that the combined method consistently achieves competitive
results in terms of the MAPE metric, as opposed to any of its elements—CNN, ARIMA,
or ES—whose performance as individual methods varies largely for different countries.
Moreover, the proposed CNN–CT method also outperforms the Long Short-Term Memory
(LSTM) [9], which is among the most used methods for dealing with time-series.

Both CNN and LSTM are Deep Learning methods, the first of which is equipped
with convolutional filters while the second with recurrent operations, but in both cases
with parameters that are learned though gradient-descent-like methods in a scenarios
where data are used for training as they become available. In contrast, ARIMA and ES are
traditional regression methods that consider a full set of training data at once, thus having
the potential of better approximating such a training set, but losing the ability to adjust
to newly available data as CNN and LSTM can. The proposed CNN–CT method exploits
both the potential of incorporating newly available data as well as the strength of looking
at a complete set at once, which results in an enriched forecast method.

We chose to use CNNs, given that the signal processing literature states that con-
volutional filters are more stable than recurrent operations like LSTM [10]. Moreover,
the superior performance of CNNs over traditional methods, like ARIMA, has been con-
firmed by previous work focused on text classification [11] and sequence modeling [12],
where convolutions obtained higher performance with respect to other methods.

The rest of this paper is organized as follows. In Section 2, we discuss works related
to the forecast of confirmed cases of COVID-19. In Section 3, we show the proposed
forecasting method for daily confirmed cases of COVID-19, highlighting the application
of Deep Learning, ARIMA, and ES methods. In Section 4, we present details about the
data and tools used to validate our method. Finally, Sections 5 and 6 present results and
conclusions of this work.

2. Related Works

COVID-19 is a disease with a high rate of spread, which has led to an interest in
estimation and forecasting the number of cases of infected people. Recently, several
works have been presented with traditional epidemiological models or Dynamic Models.
The Susceptible, Exposed, Infectious, Recovered (SEIR) model [13] was used to forecast
confirmed cases in the United Kingdom, and the SIR and SEIR models were applied to
forecast cumulative infected and recovered cases in Santiago de Cuba [14]. The Susceptible,
Exposed, Infectious, Recovered, Dead (SEIRD) model [15] was used to forecast confirmed
and death cases in Mexico. At Chen [16], comparative work was conducted to predict 11
days of confirmed cases in some regions of Canada and the United States. They use SIR,
Neural Network, and ARIMA models.

The ARIMA and ES were used as adjusting methods to improve the results obtained
for other models such as those obtained for SIR models, Neural Networks, and Support
Vector Regression algorithms [2,17]. However, in most cases, the number of days forecast
is too short. For instance, the authors of [18] used ARMA to forecast confirmed cases for
three days in Chinese provinces, Asian countries, and a few occidental countries (Germany,
US, Italy, and Spain). Parvez et al. compared an Adaptive Neuro-fuzzy Inference System
versus ARIMA to predict ten days of COVID-19 confirmed cases in Bangladesh [19].
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Furthermore, Petropoulus et al. [20], used the ES method known as Holt-Winter to forecast
ten days of globally accumulated COVID-19 confirmed cases. Hussain et al. [21], used an
ES to estimate twelve days of confirmed cases, and the R0 parameter known as the basic
reproduction number.

ARIMA and Deep Learning methods have been used alone to forecast COVID-19
cases. Chimmula [22] used LSTM to predict daily cases, obtaining with this method an
error of eight percent using MAPE. In Chandraa [23], LSTM, BiLSTM, and EDLSTM were
used to forecast the spread of COVID-19 infections among selected states in India. The
work presented by Zeroul et al. [24] used deep learning to predict 10 days of number of
infected people, obtaining a MAPE error between 1.28% and 59%. Saba et al. [25] compared
polynomial regression, Holt-Winter, ARIMA, and SARIMA models, to predict the con-
firmed and deaths cases. Parbat et al. [26] proposed using an SVR-Radial model to forecast
total deaths and recovered, daily confirmed cumulative, and confirmed daily deaths in
India; this method obtained around thirteen percent MAPE error for the entire country.

Moreover, classical forecast methods have been combined with Machine Learning
techniques [2,17,27]. Katris [27] used ARIMA, ES, Neural Network, and MARS models,
where the combined methods performed better than the individual methods.

In general, ARIMA and ES methods are used to forecast cases with short-term periods,
while Machine Learning and Deep Learning models are able to predict cases over more
extended periods. However, the latter do not always obtain good results when used as
individual methods.

3. CNN–CT Method

We show the proposed CNN–CT method in Figure 1, where a Convolutional Neural
Network is used as primary forecasting method for daily confirmed cases of COVID-19,
and it is complemented by ARIMA or ES, which are used as adjusting methods against
daily errors.

Component 
Transformation !>

Daily estimations
"#>,?

CNN forecast 
component $!>

Tr
ai
ni
ng

Phase 1

Residual 
transformation %?

Residual estimations
'̂?,@A, '̂?,BCDEB

Residual forecast
̂%?,@A = *+ %?

Phase 2

Residual forecast
̂%?,BCDEB = ,-./, %?

Forecasting
FFG = "#>,? + '̂?,H@A?

Evaluation

Input data  #?

Figure 1. Proposed Convolutional Neural Network (CNN) and temporal Component Transformation
(CT) (CNN–CT ) method. Training with two phases: the first phase corresponds to forecast method
using component values, and the second phase used residual values with a residual forecast method.

Firstly, our method’s training stage is composed of two phases, each of which is
formed by three internal sub-processes plus one global integration sub-process, as is shown
in Figure 1.
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In the first sub-process of phase 1, we start by transforming daily values yt into weekly
components wτ , where t is a day index and τ is a component index. These wτ components
represent average weekly forecast estimations. In the second sub-process, a CNN is used
to forecast the component ŵτ . Finally, in the third sub-process, we convert the component
estimation wτ back into daily estimations ŷt,τ .

In phase 2, the adjusting methods are trained. First, we obtain the residual εt from
the difference between the daily prediction and its corresponding ground truth value,
i.e., ŷτ,t − yt. We scale these residual values to be in the range [1, 10], as required by the
Holt-Winter methods.

In the second sub-process of phase 2, we use the residuals εt to train an autoregressive
model using either ARIMA or ES, which is used to forecast residual values ε̂t (concretely,
ε̂t,es and ε̂t,arima for ES and ARIMA, respectively).

Later, in the third sub-process of phase 2, residual forecasts et,es or et,arima are obtained
from the previously computed residual forecast values. Finally, this residual forecast et,X is
added to the daily estimation ˆyτ,t obtained from the CNN, resulting in the final prediction
value F′t .

3.1. Data Transformation

Prediction models reflect an increased error as the number of forecasting periods
increases. We chose to forecast more cases by transforming daily records into weekly
components with the CT module, which maps the daily cases yt into components wτ that
represent a weighted average of the daily cases obtained within a week. The values wτ are
calculated with Equation (1).

wτ =
∑7τ

t=7τ−6 yt

7
, (1)

where wτ is the weekly average of week τ and w1, w2, . . . , wτ is a set of transformed
observation into components. For instance, w2 = y8+y9+...+y14

7 .

3.2. CNN Forecast Component

We used a CNN as a component forecasting method. The training and validation
stages are composed of wτ values. The CNN architecture contains an input layer with
50 convolutional neurons, a maxpooling layer of size equals 2. A complete MLP layer
of 50 neurons, and one output layer with a single neuron. The convolutional layers use
the ReLU activation function. The training configuration parameters is as follows: Adam
optimizer [28], mean absolute error as loss function, 100 epochs, and batch size equal to 10.
The above configuration is used to forecast weekly components ŵτ .

3.3. Daily Estimations

The reverse transformation or daily estimations involves converting the weekly com-
ponents wτ back into daily values. For this, it is necessary to calculate the subcomponents
of a component, which we define as shown in Table 1.

Table 1. Component segmentation into subcomponents.

Week wτ

subcomponent δτ,1 subcomponent δτ,2

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

The segmentation of the week into two subcomponents provides insights about the
social behavior of countries separately into beginning and end of a week. The distribution
of the daily cases with respect to their subcomponents can be obtained by Equations (2)
and (3).

δτ,1 =
∑4,τ

t=1,τ yt,τ

4
, (2)
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δτ,2 =
∑7,τ

t=5,τ yt,τ

3
, (3)

where δτ,1, δτ,2 are subcomponents ADS-1 (Monday to Thursday) and ADS-2 (Friday
to Sunday) for the component τ. We determine that the daily ratio µτ,t represents the
proportion of the original daily values for subcomponent 1 and 2 for the component τ
(Equation (4)). The daily ratio µτ,t lets us to determine weekday normalized cases xt
(Equation (5)) of the training phase. In other words, x1 = mondeysavg, . . . , x7 = sundaysavg
are average confirmed cases of each day of the week throughout the time series.

µτ,t =

{ yτ,t
δτ,1

, if 1 ≤ t ≤ 4,
yτ,t
δτ,2

if 5 ≤ t ≤ 7,
(4)

xt =
∑τ

i=1 µi

τ
. (5)

The weighting of the daily cases obtained with the ratio µτ,t allows obtaining a statis-
tical estimation on the relevance of persons infected in the first and second subcomponent
τ, j of each component τ throughout the training period. The inverse transformation
determines the daily cases predicted from the components using Equations (6) and (7).

δ̂τ,i = ŵτ
wτ

δτ,i
, (6)

ŷτ,t =

{
xt δ̂τ,1, if 1 ≤ t ≤ 4,
xt δ̂τ,2 if 5 ≤ t ≤ 7,

(7)

where ŷτ,t represents the forecasting case values of the component τ at time t, and δ̂τ,i is the
forecast of the average number of infected sub-component i in the τ component. The data
for the learning of the adjustment methods are obtained from the daily prediction values
of the validation phase of components yτ,t.

3.4. Residual Transformation

A residual value is given by the difference in the ground truth and the predicted value,
as shown in Equation (8).

et = yt − ŷt = yt − yt−1, (8)

where yt is the ground truth in time t, ŷt is the forecast value in time t. Using Equation (8),
the residuals et are obtained by subtraction of yt and yτ,t, as shown in Equation (9).

et = yτ,t − yt, (9)

where yτ,t is the forecasting value in time t of component τ. ARIMA and ES methods used
positive numbers; because of this, the residuals were normalized as shown in Equation (10).

εt = |yτ,t − yt|, (10)

where |.| represents normalization of et in the range of values [1, 10].

3.5. Residual Forecast

We used ARIMA and ES forecasting methods as forecasting adjustments methods.
The training and validation sets are composed by εt values.

The configuration of the ARIMA method is as follows: start_p = 0, d = 0, start_q = 0,
max_p = 5, max_q = 5, max_d = 5, start_Q = 0, max_P = 5, max_D = 5, max_Q = 5, m = 4, sea-
sonal = True, error_action = ‘warn’, trace = True, suppress_warnings = True, stepwise = True,
random_state = 20, n_fits = 50, information_criterion = ‘aic’, and alpha = 0.05.
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Furthermore, ES obtained a configuration that used the Holt–Winter (HW) method.
The variants of HW used are: additive, multiplicative, additive damped, multiplicative
damped. These variants were trained with a norm residuals εt.

3.6. Residual Estimations

We use residual transformations εt to train ARIMA and ES, from which we obtained
four hybrid methods, CNN-ARIMA, CNN-ES, LSTM-ARIMA, and LSTM-ES. The forecasts
εt,es and εt,arima from these hybrid methods are transformed into residuals et,es, et,arima,
which are in the non-normalized domain.

3.7. Forecasting

Finally, we evaluated the forecast values of the validation phase F′t , which is com-
posed of the daily forecasts yτ,t of CNN and adjustment forecasts et,best, as is shown in
Equation (11).

F′t = yτ,t + et,best. (11)

4. Experimental Setup

The source of the data, the pre-processing applied, the data separation criterion
in training, validation, and testing are described below. Finally, the evaluation metrics
are described.

4.1. Data

The COVID-19 database used in this work is the Novel Coronavirus 2019 dataset [8],
whose records report the number of infected, recovered, and deceased people in each coun-
try of the world. From this database, we used a time series starting from 22 January 2020,
and that is called Time_Series_Covid_19_confirmed. We selected the records corresponding
to the US, Mexico, Brazil, and Colombia.

We used data records from 2 March 2020 until 28 June 2020 for training (17 weeks);
from 29 June 2020 to 19 July 2020 for validation (3 weeks); and from 20 July 2020 to 9
August 2020 for test (3 weeks). Figure 2 shows a scheme for this split of data.

With this split, the training of the CNN–CT method for the US was carried out with
17 weekly components wτ , as explained in Section 3.1. In the case of Mexico, Brazil,
and Colombia, we used only 15 weekly components since the data corresponding to the
first week were discarded due to the lack of significant information; that is, the values of
the first week were considerably low with respect to the rest of the series. We noticed that
processing this first week results in underestimation of the forecast values.

Training &% Validation '&% → )%,&

03-02-2020

06-29-2020

07-20-2020 08-09-2020

07-19-2020

Forecasting '&% → (y(,)

Observations )&

03-02-2020 08-09-2020

Entrenamiento &% Validación &%* → )%,&*

02-03-2020 29-06-2020

20-07-2020 09-08-2020

19-07-2020

Observaciones w% Pronóstico '&% → (y(,)

Observaciones )&

02-03-2020 09-08-2020

06-28-2020

Figure 2. Split of the observations in training and validation set by CNN method.

Although training is conducted using weekly components wτ , the forecast for the
validation and test stages happens in daily values yτ,t, as explained in Section 3.3.

Residual forecasts allow adjusting daily forecast with ARIMA and ES. In addition, it
trained with the residuals of forecast daily validation means, and wτ forecasts obtained in
the validation phase were transformed into daily estimations yτ,t to be used in the training
and validation phase of the adjustment methods. Figure 3 shows a scheme for this split of
data for the adjusting methods.
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Observations -& Residual daily forecasts ̂-&→ /&

Training -& Validation ̂-&→ /&

06-29-2020

07-17-2020

07-20-2020 09-08-2020

07-19-2020

Observations )&

03-02-2020 08-09-2020

06-29-2020

Observaciones /& Pronóstico /̂& → /̂&

Entrenamiento /& Validación /&*

29-06-2020 17-06-2020

20-07-2020 09-08-2020

19-07-2020

Observaciones )&

02-03-2020 09-08-2020

29-06-2020

07-16-2020

07-19-2020

Figure 3. Split of the observations in training and validation set by adjusting methods.

Given that the problem we address corresponds to a scenario of auto-regression,
the actual structure of the data is such that each output variable yt depends on a vector
of past values x = [yt−1, yt−2, . . . , yt−T ]. For this work, we used lags of up to three past
values, t− 3, t− 2, and t− 1.

4.2. Metrics

The proposed hybridized CNN–CT method and its individual composing methods
are evaluated by the MAPE [29], as it has been widely used in the works discussed in
Section 2. The MAPE computes the percentage of accuracy in the predicted value with
respect to the ground truth. The closer to zero, the more accurate it is. Another common
metric is RMSPE [4] which is also used in part of this paper.

MAPE =
100
n

n

∑
t=1

|yt − ŷt|
yt

, (12)

RMSPE =

√
∑n

t=1(yt − ŷt)2

n
∗ 100, (13)

where, yt is the ground truth, ŷt is the predicted value, and n indicates the total number
of samples.

4.3. Tools

This work was developed with a computer with an iOS operating system, 8 GB, and a
2.3 GHz Dual-Core Intel Core i5 processor. We used Python 3.7.1, and the CNN model was
built using Tensorflow and Keras libraries [30].

5. Results

This section shows the results of the CNN–CT method proposed for daily forecast-
ing cases of COVID-19 in the US, Mexico, Brazil, and Colombia. First, we compare the
performance of using CNN and LSTM as the main forecasting methods with ARIMA and
ES (Holt-Winter, HW) as adjusting methods. Then, we present the comparison of the
CNN–CT model versus the individual CNN, LSTM, ARIMA, and Holt-Winters models for
each country.

We can see in Figure 4 the comparison of best-performing forecast models for the
countries of The United States, Mexico, Brazil, and Colombia. In the US, Figure 4a, the fore-
casts of LSTM-ARIMA manage to maintain the trend and seasonality patterns with respect
to the ground truth. However, the CNN-HW prognosis is well below the actual data. We
can see in Table 2 that LSTM-ARIMA achieves the lowest MAPE for the US.
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Figure 4. Daily forecast with CNN–CT method using CNN and Long Short-Term Memory (LSTM)
as main forecast methods.

Likewise, Figure 4b shows the behavior of the forecasts for daily cases of COVID-19
in Mexico. We can see that all four models are able to maintain trend and seasonality
patterns with respect to ground truth. However, LSTM–ARIMA shows a high error rate
because of the difference with respect to the actual data. On the other hand, the forecast of
CNN-HW is very close to the real data, which allows us to obtain a better performance with
respect to the other methods. The average MAPE and its standard deviation are shown in
Table 2, where we can see that CNN-HW achieves the best average performance among
the four models.

Similarly, Figure 4c shows the comparative Brazil forecast for all the models. We can
see that LSTM-ARIMA manages to maintain seasonality patterns concerning the ground
truth. In the case of CNN-HW, it follows the trend and seasonality patterns with respect
to the ground truth. The average MAPE and its standard deviation are shown in Table 2.
However, as we noticed before with the average MAPE and its standard deviation, CNN–
HW has the best performance.

We can see in Figure 4d that LSTM–ARIMA manages to maintain seasonality patterns
concerning the ground truth for Colombia. In the case of CNN–HW, it follows the trend
and seasonality patterns concerning the ground truth. According to Table 2 CNN-ARIMA
shows the best MAPE performance, as its curve is the closest to the ground truth.

In general, our experiments show that smoothing with ARIMA or ES helps obtain
lower MAPE in the case of CNN. This is not the case with LSTM. Table 2 shows a summary
of the MAPE and RMSPE daily forecasting values of the CNN–CT and LSTM–CT for US,
Mexico, Brazil, and Colombia. In the case of US, the method with the best performance
is LSTM-ARIMA, having a MAPE ≈ 14%. In the case of Mexico and Brazil, CNN–HW is
better with MAPE 14.18% and 29.3%. It is possible to see that LSTM–ARIMA and CNN–
HW obtain better results in different countries. In Colombia, CNN-ARIMA obtains the
best MAPE and RMSPE.

We averaged the MAPE of all the countries for each method in Table 2. We observed
that CNN–CT methods have better performance than that of LSTM–CT. Furthermore,
for each country, we determined the standard deviation of the error metrics. We noticed that
CNN–CT has the lower deviation, which indicates that its best performance is consistent
across countries.
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Table 2. CNN–CT methods performance. Best MAPE results are marked in bold.

Country CNN-HW CNN-ARIMA LSTM-HW LSTM-ARIMA
MAPE RMSPE MAPE RMSPE MAPE RMSPE MAPE RMSPE

United States 15.53 19.35 22.64 26.57 38.57 43.64 13.35 16.70
Mexico 14.19 18.78 36.82 47.37 71.66 73.32 25.73 31.53
Brazil 29.30 31.27 39.69 62.58 62.63 70.75 44.26 54.59

Colombia 21.76 28.46 13.39 16.84 24.56 32.48 20.00 26.07

Average 20.19 24.47 28.14 38.34 49.36 55.05 25.84 32.22
Standar Desv 5.98 5.50 10.68 17.82 18.74 17.46 11.51 13.96

Finally, in Figure 5, we show a comparison of the MAPE for the CNN-HW model
versus the individual CNN, LSTM, ARIMA, and Holt–Winters models for each country.

Although ARIMA obtained good performance for the US (11.18) and Mexico (16.31),
first and third place, respectively, it provides high MAPE for Brazil (50.99) and Colombia
(29.75), with the last and second-last places, respectively. Similarly, pure CNN is a good
method for Mexico (14.04) and Colombia (14.96) but not so good for US (42.75) and Brazil
(38.19).

In contrast, CNN–CT (CNN-HW) is consistently competitive for all cases, obtaining
second place for US (15.53), Mexico (14.18, as good as the best-performing CNN alone),
and Colombia (21.75), and first for Brazil (29.30).
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Figure 5. Daily forecast with CNN–CT (using Holt–Winters (HW)) versus the individual methods
CNN, LSTM, ARIMA, and HW.

We show the comparison of CNN–HW versus the four individual methods in Table 3.
We can see that CNN–HW surpasses all of these individual methods for Brazil and Colom-
bia. For the case of Mexico, CNN–HW is below the best performing method (CNN) only
by 0.14 MAPE points. Furthermore, CNN–HW achieves competitive results for the US.

Table 3. The performance of the CNN–CT vs. individual methods. Best MAPE results are marked
in bold.

MAPE Metric
Country CNN-HW CNN LSTM ARIMA HW

United States 15.53 42.75 23.96 11.18 23.65
Mexico 14.18 14.04 39.07 16.31 17.71
Brazil 29.30 38.19 42.34 50.99 33.76

Colombia 21.75 14.96 38.59 29.75 29.29

MAPE Average 20.19 27.49 35.99 27.06 26.10
Standard Desv 5.98 13.09 7.09 15.39 6.03
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6. Conclusions

This paper investigates the problem of forecasting confirmed daily cases of COVID-19
in Mexico, Brazil, Colombia, and the US. Given the limited number of data available at the
time of conducting our experiments, several limitations of the prediction methods became
evident. These limitations were even more obvious due to the presence of noise in the
daily data, which might very well be a consequence of the restrictions on the flow of data
imposed by the sanitary crisis related to COVID-19 worldwide.

In particular, most prediction methods decrease their accuracy as the periods for
forecast become larger. To mitigate this issue, we proposed a component transformation
that converts daily values into weekly components for correct prediction in those cases.

We present a hybrid forecasting method termed Convolutional Neural Network–
Component Transformation (CNN–CT), which uses CNN and LSTM as the main prediction
method and ES and ARIMA as adjusting methods for daily error correction. As a result,
there are two variants of the proposed method: CNN–CT with Holt–Winters, and LSTM–CT
with ARIMA.

We compared the prediction performance of the individual methods that compose
the proposed CNN–CT using the MAPE metric. We noticed that CNN and LSTM are
very good with learning trend and seasonality of the time series; however, LSTM forecasts
tends to generate increasing and decreasing trend, which causes the error to increase. Our
experiments show that smoothing with ARIMA or ES helps obtain lower MAPE in the case
of CNN. This is not the case with LSTM.

As future works, we propose applying this methodology to other popular forecasting
methods such as SVR, Recurrent Neural Network, and so on; measuring the performance
quality in more countries; and applying powerful data cleaning as a preprocessing stage.
Furthermore, it could be interesting to use different adjusting methods. Finally, we propose
testing if the proposed methodology is completely general or determines which strategy
applies in different forecast scenarios.
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