
Mathematical 

and Computational 

Applications

Article

Mathematical Model and Numerical Simulation for
Electric Field Induced Cancer Cell Migration

Antonino Amoddeo

����������
�������

Citation: Amoddeo, A. Mathematical

Model and Numerical Simulation for

Electric Field Induced Cancer Cell

Migration. Math. Comput. Appl. 2021,

26, 4. https://doi.org/10.3390/

mca26010004

Received: 30 November 2020

Accepted: 28 December 2020

Published: 31 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the author. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Civil, Energy, Environment and Materials Engineering,
Università ‘Mediterranea’ di Reggio Calabria, Via Graziella 1, Feo di Vito, I-89122 Reggio Calabria, Italy;
antonino.amoddeo@unirc.it; Tel.: +39-0965-169-3299; Fax: +39-0965-169-22201

Abstract: A mathematical model describing the interaction of cancer cells with the urokinase plas-
minogen activation system is represented by a system of partial differential equations, in which
cancer cell dynamics accounts for diffusion, chemotaxis, and haptotaxis contributions. The mutual
relations between nerve fibers and tumors have been recently investigated, in particular, the role of
nerves in the development of tumors, as well neurogenesis induced by cancer cells. Such mechanisms
are mediated by neurotransmitters released by neurons as a consequence of electrical stimuli flowing
along the nerves, and therefore electric fields can be present inside biological tissues, in particular,
inside tumors. Considering cancer cells as negatively charged particles immersed in the correct
biological environment and subjected to an external electric field, the effect of the latter on cancer cell
dynamics is still unknown. Here, we implement a mathematical model that accounts for the interac-
tion of cancer cells with the urokinase plasminogen activation system subjected to a uniform applied
electric field, simulating the first stage of cancer cell dynamics in a three-dimensional axial symmetric
domain. The obtained numerical results predict that cancer cells can be moved along a preferred
direction by an applied electric field, suggesting new and interesting strategies in cancer therapy.

Keywords: mathematical modeling; cancer invasion; electric field; finite element method

1. Introduction

The urokinase plasminogen activator (uPA) system is an enzymatic system that
triggers proteolysis and degradation of extracellular matrix (ECM) proteins such as vit-
ronectin (VN), which enable cancer cell proliferation and growth inside human biological
tissue [1]. It is constituted by uPA and plasmin degrading enzymes, by a specific in-
hibitor, the plasminogen activator inhibitor type-1 (PAI-1), and by the VN [2]. Together,
cancer cells and the uPA system, immersed in an aqueous and nutrient medium that
constitutes the ECM, interact, while the cancer cell locomotion driven by diffusion as well
chemotactic and haptotactic mechanisms takes place, the last two relying on concentration
gradients of chemical species sensed by cancer cells.

After the initial cancer cell seeding, the tumor develops first in the avascular phase
in which cells multiply but remain confined in a definite portion of biological tissue [3,4].
In fact, the proposed reaction–diffusion–taxis model refers to the early phase of tumor pro-
gression that begins after cancer cells somehow start to seed. This phase develops in vivo
until the tumor mass reaches an average diameter of a few millimeters (about 2 mm) and is
commonly known as the avascular phase as it precedes the vascular phase characterized by
the tumor-induced angiogenesis [5–7], in which the tumor growth rate increases with the
formation of new vasculature feeding the cells with nutrients [8,9]. Our model, therefore,
does not provide any contribution related to tumor vasculature, because in the avascular
phase nutrients are assumed to feed cancer cells through the healthy tissue vasculature
surrounding the tumor. The final and most lethal phase is represented by invasion and
metastasis [10], the mechanism allowing cancer cells to spread out from the original site
through the vascular and lymphatic systems. The interaction of cancer cells with the

Math. Comput. Appl. 2021, 26, 4. https://doi.org/10.3390/mca26010004 https://www.mdpi.com/journal/mca

https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0003-2311-3131
https://doi.org/10.3390/mca26010004
https://doi.org/10.3390/mca26010004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mca26010004
https://www.mdpi.com/journal/mca
https://www.mdpi.com/2297-8747/26/1/4?type=check_update&version=2


Math. Comput. Appl. 2021, 26, 4 2 of 14

uPA system triggers the degradation of the VN glycoprotein by means of the uPA serine
protease degrading enzyme; plasmin is an activated serine protease catalyzing also the VN
proteolysis, while PAI-1 is a glycoprotein which regulates excess of proteolysis, playing an
inhibition role [2].

Recently the interaction of cancer cells with the uPA system in one and two spatial
dimensions has been modeled using finite volume discretization [11], and mixed finite
difference/finite element discretization [12]. Furthermore, the moving mesh partial dif-
ferential equation (MMPDE) numerical technique, implemented with the finite element
method (FEM), has been used to solve the partial differential equation (PDE) system arising
from the mathematical modeling of the above biological system, for human tumors in the
avascular phase [13–15]. In particular, the MMPDE numerical results, though in one spatial
dimension, predict that tumor invasion develops and proliferates heterogeneously, depend-
ing on diffusion and crowding properties, as well on the presence of nutrients, while the
behavior at the cancer/healthy cell interface is strongly related to malignancy [6,13].

In recent times, several studies have been carried out aimed at investigating the
mutual interactions between nerves and tumors. Among others, in [16] the distribution
of specific nerve fibers and their interactions in human carcinomas have been studied,
finding that nerves were present inside tumors and around cells, and a regulatory role of
nerve terminals in tumor growth and differentiation was also suggested. Neurotransmitters
are chemicals released by nerve cells (neurons) whenever they are crossed by an appropriate
electrical stimulus, and they play an important role in lymphocyte migration as tumor
inhibitors, but, at the same time, they are involved in tumor progression and metastasis [17].
In Ayala et al. [18], experimental evidence of cancer-induced formation of new nerves
(neurogenesis) in human prostate cancer was presented, together with the mechanism
of perineural invasion, in which the cancer invasion occurred around nerves [19], which,
all together, constituted a mutually beneficial system. In addition, it has recently been
demonstrated that neurogenesis in mice prostate cancer induced tumor formation and
metastasis [20,21]. Moreover, a mathematical model for tumor–nerve interaction was
recently presented in [22], in which the results were in agreement with an experimental
observation of a tumor-induced neurogenesis. Therefore, it is evident that novel nerve
fibers infiltrate tumors through the neurogenesis mechanism, thus, allowing electrical
stimuli to flow through the cancer cells.

Very recently, glucose metabolism in cancer cells has been experimentally investi-
gated by [23,24], providing evidence that an abnormal rate of glycolysis, typical of cancer
metabolism, induced the secretion of lactate anions which removed positive ions from the
cancer cell surface, resulting in a net negative surface charge. As normal cells are neutral or
slightly charged, such behavior is a hallmark of cancer cells, which can be exploited for
diagnostic, and more importantly, for therapeutic purposes, with the use of charged and
super-paramagnetic nanoprobes [23].

Here, we propose a three-dimensional (3D) mathematical model of the interaction of
cancer cells with the uPA system, which, together, are subjected to an external uniform elec-
tric field, in which cancer cells immersed in the ECM behave as charged particles diffusing
in the aqueous medium under the resulting electric force. Due to the cylindrical symmetry
of the model, the simulations are performed over a two-dimensional (2D) axisymmetric
domain, in order to obtain computational savings and improved numerical resolution.
The model is derived from the model presented by Andasari et al. [11], adding new con-
tributions coming from the interaction between the applied electric field and the charged
particles present in the system. The early stage of cancer formation is simulated solving
the resulting PDE system using the FEM, and the obtained results predict a possible way
for controlling cancer cell movement using an external electric field, avoiding the use of
nanoprobes or markers.



Math. Comput. Appl. 2021, 26, 4 3 of 14

2. Materials and Methods

From an electrostatic point of view, serine proteases, such as uPA and plasmin,
are charge neutral, as they contain serine (charge neutral), histidine (positive charged),
and aspartic acid (negative charged) [18]. Cancer cells present a net negative charge due
to glucose metabolism which can be up to 30 times with respect to normal cells [23,24].
Therefore, as an ansatz, we assigned to cancer cells a charge number Zc = −5. Nevertheless,
the model has been tested using two additional values for cancer cell charge number,
eventually accounting for different malignant activity, specifically Zc = −3 and Zc = −7.
Glycoproteins, such as VN and PAI-1, are constituted by negatively charged oligosaccha-
rides [25,26], for which we assume a ”conventional” charge number Zv = −1 and Zp = −1,
respectively, a realistic value in light of the remarks contained in Stylianopoulos et al. [26].

We considered cancer cells, VN and PAI-1, to be charged particles in electrolytic
solution. Starting from the constitutive relation for the transport of ions under electric field,
being the flux ϕi of the ith ionic species given by the product between the ion drift velocity
and the ion concentration, from foundations of electrochemistry, its final form reads as
ϕi = −ZiuiciE, where Zi denotes the charge number, ui expressed in m2·s−1·V−1 is the ionic
mobility, ci expressed in mol·m−3 is the concentration, and E expressed in V·m−1 is the
applied electric field. VN is fixed in the hydrogel matrix [27,28], then, no mobility terms
can be ascribed to such glycoprotein, while the ionic mobility for cancer cells and PAI-1
is calculated through the Nernst–Einstein relation, in which, referring to the ith species,
each ionic mobility is related to the proper diffusion parameter Di as:

ui = Di
F

RT
(1)

In Equation (1), F = 96,485.33 A·s·mol−1 is the Faraday’s constant; R = 8.31 J·mol−1·K−1

and T are the molar gas constant and the absolute temperature measured in Kelvin, respectively.
Let Ω ⊂ R3 be a portion of a biological tissue having bounding surface S, in which the

components of the uPA system interact with a cluster of cancer cells, there initially seeded.
For t∈ [0,T], and position x = (x,y,z)∈Ω, if c = (c1 . . . cn), where ci= ci (x,t), for i = 1 . . . n

is the concentration of the generic species in Ω, ϕi(x,t) is the flux of ci through S, and si(c)
is a source term taking into account contributions coming from all the interacting species
in Ω, from the mass conservation we obtain the following:

d
dt

∫
V

ci(x, t)dx = −
∫
S

ϕi(x, t) · dS +
∫
V

si(c) dV (2)

The divergence theorem applied to Equation (2) gives us the evolution equation for
the ith species as follows:

∂ci
∂t

= −∇ ·ϕi + si(c), i = 1, . . . n (3)

In our biological system we take into account five different species, in particular,
cancer cells (c), VN (v), uPA (u), PAI-1 (p), and plasmin (m), obtaining the following PDE
system to be solved for the concentration of each of the above species, while further
biological details about the role played by each system component can be found in [2,11]:

∂c
∂t

= ∇ ·
[
Dc∇c− c

(
χv∇v + χu∇u + χp∇p

)
− ZcuccE

]
+ µ1c(1− c/c0) (4)

∂v
∂t

= φ21up + µ2v(1− v/v0)− φ22vp− δvm (5)

∂u
∂t

= ∇ · (Du∇u) + α31c− φ31 pu− φ33cu (6)
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∂p
∂t

= ∇ ·
(

Dp∇p − Zpup pE
)
+ α41m− φ41 pu− φ42 pv (7)

∂m
∂t

= ∇ · (Dm∇m) + φ52 pv + φ53cu− φ54m (8)

The constants c0 and v0 in Equations (4) and (5) represent the maximum carry-
ing capacity, respectively, for cancer cells and VN, and are detailed below. Terms in
Equations (4) and (7) accounting for electric field interaction with, respectively, cancer cells
and PAI-1 inhibitor, are clearly recognizable, the remaining ones in the PDE system, Equa-
tions (4)–(8), have already been detailed elsewhere [11,13,15]. Covering them quickly,
in Equation (4), cancer cell movement is accounted for by cell diffusion by the Dc coeffi-
cient, also including contributions from chemotactic (χu- and χp-rated) and haptotactic
(χv-rated) stimuli, from uPA and PAI-1, and VN, respectively; moreover, a logistic produc-
tion term is present (µ1-rated). The new term ZcuccE accounts for the interaction of the
negatively charged cancer cells with the uniform electric field E, in which Zc is the average
charge number previously introduced as an ansatz and uc is the ionic mobility for cancer
cells calculated through Equation (1).

VN is static [27,28], Equation (5), it is produced from the uPA–PAI-1 interaction at
a rate φ21, and through a logistic term at a rate µ2; it is also neutralized/degraded by
PAI-1–plasmin interaction at a rate φ22/δ, respectively. Equation (6), for uPA, accounts
for diffusion, production by cancer cells, inhibition due to the interaction with PAI-1,
and degradation by cancer cells at rates, Du, α31, φ31, and φ33, respectively.

In the evolution equation for PAI-1, i.e., Equation (7), the flux term takes into account
the diffusion through the coefficient Dp, and also the diffusion of the negatively charged
glycoprotein under the action of the electric field, as arising from Equation (1). The remain-
ing terms are related to production of PAI-1 by plasmin, and its degradation due to the
uPA–VN interaction, respectively, at rates α41, φ41, and φ42.

For plasmin, the evolution equation, i.e., Equation (8), accounts for diffusion, indirect
production due to the PAI-1–VN and cancer cell–uPA interactions, and degradation, at rates,
respectively, Dm, φ52, φ53 and φ54.

To solve the above PDE system, we impose zero flux boundary conditions, since
the interacting species stay confined in the simulated domain. The initial conditions
are c(x,0) = exp(−|x|2ε−1), v(x,0) = 1 − 0.5c(x,0), u(x,0) = 0.5c(x,0), p(x,0) = 0.05c(x,0),
and m(x,0) = 0, where ε = 0.01 mm3 means that at t = 0 a small cancer cell cluster exists.
The other conditions depend on the biological characteristics of the uPA system [11],
keeping in mind that, initially, the domain is filled by VN.

We simulated the early stage of the avascular phase, under the action of an electric
field with intensity E = 15 V·m−1 directed in the negative z-axis direction of a physical
domain Ω = [0,r] × [0,ψ] × [−z,z] consisting of a cylinder with radius r = 0.5 mm and half-
height z = 0.5 mm, where ψ = 360◦. Due to the axial symmetry of the model, the domain
volume is, therefore, defined by the 2D cross section in the rz-plane, R = [0,r] × [−z,z],
revolved by 360 degrees in the circumferential direction, i.e., around the axis of the cylinder
in the z direction. The PDE system has been solved discretizing the 2D cross section
with 12,482 triangular elements and interpolating the dependent variables inside each
element with quadratic shape functions, using the Galerkin’s method for the residuals of
the differential equations [29], while a backward differentiation formula has been used for
time stepping.

We used the model parameters taken from the literature, see [2,11] and references
therein. The model was nondimensionalized introducing the following scaling quanti-
ties [15]: for cancer cells, c0 = 6.7 × 107 cell cm−3; for VN, v0 = 1 nM; for uPA, u0 = 1 nM;
for PAI-1, p0 = 1 nM; and for plasmin, m0 = 0.1 nM. Diffusivities were scaled according to the
reference value D = 10−6 cm2 s−1, and assuming as a reference distance L = 0.1 cm, we also
obtained the time scaling factor τ = L2D−1 = 104 s. It follows that the nondimensional
parameters introduced in the model are Dc = 3.5 × 10−4, Du = 2.5 × 10−3, Dp = 3.5 × 10−3,
Dm = 4.91 × 10−3, χu = 3.05 × 10−2, χp = 3.75 × 10−2, χv = 2.85 × 10−2, µ1 = 0.25, µ2 = 0.15,
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α31 = 0.215, α41 = 0.5, δ = 8.15, ϕ13 = 0.1, φ21 = 0.75, φ22 = 0.55, φ31 = 0.75, φ33 = 0.3, φ41 = 0.75,
φ42 = 0.55, φ52 = 0.11, φ53 = 0.75, and φ54 = 0.5.

To obtain a reference value for the electric quantities involved in our model, we con-
sidered that typical values for the membrane potential of cells were in the range from
−50 to −70 mV [25]. Assuming, therefore, a reference electric potential V0 = −60 mV,
ionic mobility obtained through Equation (1) was scaled according to V0D−1, while the
applied electric field was scaled according to LV0

−1. It follows that the nondimensional
values for uc, up, and E are, respectively, 8.1 × 10−4, 8.1 × 10−3, and 0.25. Table 1 summa-
rizes the model parameters used, showing only their nondimensional values together with
the procedure used to obtain them, so that for each parameter its dimensional value can
be inferred.

Table 1. Model parameter values used in the simulations. The fourth column shows the procedure used to nondimensional-
ize the parameters. For reference values, please see text.

Description Symbol Unit Dimensionless Parameter Value

Cancer cell diffusion coefficient Dc cm2 s−1 DcD−1 3.5 × 10−4

uPA diffusion coefficient Du cm2 s−1 DuD−1 2.5 × 10−3

PAI-1 diffusion coefficient Dp cm2 s−1 DpD−1 3.5 × 10−3

Plasmin diffusion coefficient Dm cm2 s−1 DmD−1 4.91 × 10−3

uPA chemotactic coefficient χu cm2 s−1 nM−1 u0D−1χu 3.05 × 10−2

PAI-1 chemotactic coefficient χp cm2 s−1 nM−1 p0D−1χp 3.75 × 10−2

VN haptotactic coefficient χv cm2 s−1 nM−1 v0D−1τv 2.85 × 10−2

Cancer cell proliferation rate µ1 s−1 τµ1 0.25

ECM proliferation rate µ2 s−1 τµ2 0.15

uPA production rate α cell−1 cm3 s−1 nM τc0u0
−1α31 0.215

PAI-1 production rate α41 s−1 τm0p0
−1α41 0.5

VN degradation rate from interaction with plasmin δ s−1 nM−1 τm0δ 8.15

VN production rate from uPA–PAI-1 interaction φ21 s−1 nM−1 τu0p0v0
−1φ21 0.75

VN neutralization rate from interaction with PAI-1 φ22 s−1 nM−1 τp0φ22 0.55

uPA inhibition rate from interaction with PAI-1 φ31 s−1 nM−1 τp0φ31 0.75

uPA degradation rate from interaction with uPAR φ33 cell−1 cm3 s−1 τc0φ33 0.3

PAI-1 degradation rate from interaction with uPA φ41 s−1 nM−1 τu0φ41 0.75

PAI-1 degradation rate from interaction with VN φ42 s−1 nM−1 τv0φ42 0.55

Plasmin production rate from PAI-1–VN interaction φ52 s−1 nM−1 τp0v0m0
−1φ52 0.11

Plasmin production rate from cancer cell–uPA interaction φ53 cell−1 cm3 s−1 τu0c0m0
−1φ53 0.75

Plasmin degradation rate φ54 s−1 τφ54 0.5

Ionic mobility for cancer cells uc m2 V−1 s−1 ucV0D−1 8.1 × 10−4

Ionic mobility for PAI-1 up m2 V−1 s−1 upV0D−1 8.1 × 10−3

Electric field intensity E V m−1 ELV0
−1 0.25

3. Results and Discussion

The computations were performed in the nondimensional 2D domain R = [0,r] × [−z,z],
r∈[0,0.5], and z∈[−0.5,0.5], monitoring the dynamical evolution of the biological system
with a dimensionless time step size δt = 0.1. The full axial symmetric 3D domain was
recovered by a 360 degrees revolution of the obtained 2D data around the axis of the
cylinder, as previously defined.

In order to obtain a benchmark for cancer cell progression in the absence of an applied
electric field, we put E = 0 in Equations (4) and (7). In Figure 1, the 3D iso-surface cancer
cell distribution is shown in the first column, while, in the second column, the cancer cell
distribution is cut along three slices lying in the yz-planes, and then normal to the x-axis,
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for x = −0.38, 0, and 0.38. In all figures the cancer cell concentration is mapped in color
scale. At t = 0, due to the imposed initial conditions, a cluster of cancer cells is isotropically
distributed around the domain origin, as expected. At t = 8 (≈ 0.9 days), the surface delim-
iting the cancer/healthy cells is smooth; such behavior is unchanged up to t = 9 (≈ 1 day),
when the cells growth reaches the boundary surfaces of the simulated domain, as evi-
denced by the central slice of the second column, while for t = 9.5 (≈ 1.1 days), because of
the imposed boundary conditions, cancer cells begin to spread on the boundary surfaces.
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Slices cutting the plots of the first column along planes normal to the x direction. Snapshots taken at
t = 0, t = 8, t = 9, and t = 9.5.
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In Figure 2, the plot of the reciprocal of the time step size versus the time step of the
time-dependent solver is shown, providing the goodness of mesh convergence. The results
of convergence plots relative to subsequent simulations, being quite similar, are not shown.
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In Figure 3, we show the cancer evolution obtained by applying an electric field with
intensity E = 0.25 in the negative z-axis direction. Until t = 8, the dynamics is not appreciably
different from that shown in Figure 1. At t = 9, the invasion front has reached the upper
xy boundary surface, central slice in the second column, but not yet the lower boundary
surface. The side boundary surface of the domain, instead, appears just lapped by the
invasion front, see the 3D iso-surface plot and the slices on the xy plane side. Increasing the
time step, the anisotropy grows induced by the applied electric field along the z direction,
while in the x- and y-axes direction, the tumor progression is unaffected by the electric field.

Figure 4 shows the concentration profile of cancer cells obtained along the vertical
line cutting the simulated domain from (x1 = 0, y1 = 0, z1 = −0.5) to (x2 = 0, y2 = 0, z2 = 0.5),
from now on referred to as the vertical cutline, i.e., along the line splitting each central
slice, shown in the second columns of Figures 1 and 3, into two symmetric domains with
respect the z-axis. In the absence of an applied electric field, Figure 4a, at each time step,
the concentration profile is symmetric with respect to z = 0. At t = 0, continuous blue
line, the cells are distributed according to the initial conditions imposed. During the time
evolution, the invasion front propagates symmetrically; at t = 9 (yellow line/cross) the
invasion front just licks both xy boundary surfaces, which are definitively touched at t = 9.5
(purple line/diamond). Switching the electric field on, see Figure 4b, the profiles for t > 0
show a growing asymmetry according to the time evolution. In fact, already at t = 8 (red
line/circle) the cancer cell profile appears to be asymmetric in both intensity and position
of concentration peaks, the latter being slightly shifted towards increasing z values, i.e.,
towards the upper xy boundary surface located at z = 0.5 as compared with the case with
E = 0. Such behavior is enhanced at the higher time steps, in particular, for t = 9, the cancer
cell concentration increases close to z = 0.5, proving that the invasion front has almost
reached the upper xy boundary surface, contrary to the lower one at z = −0.5. Finally,
for t = 9.5, the maximum of the invasion front is on the upper xy boundary surface at
z = 0.5, while it is not yet on the lower boundary surface.
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As the malignant activity of cancer cells is related to their negative net charge, as a
result of abnormal glucose metabolism [23,24], we hypothesize that the cancer cell charge
number can assume values slightly below, or slightly above, with respect to the ansatz
Zc = −5 representing a kind of ”mean” malignant activity, in other words, we assign,
to cancer cells, a charge number Zc = −3, or Zc = −7, depending on whether the malignant
activity is lower or higher than the average. In this respect, we have computed the
dynamical evolution of our system subjected to the same electric field imposing two
more charge numbers for cancer cells, i.e., Zc = −3 and Zc = −7. The behavior of the 3D
iso-surface cancer cell distribution, and of their 2D slices, are similar, from a qualitative
point of view, to the images shown in Figure 3, therefore, we do not show them; instead,
we show the cancer cell concentration profiles along the previously defined vertical cutline,
in Figure 5a,b, for Zc = −3 and Zc = −7, respectively. As it can be seen, during the time
evolution, the asymmetries already observed in Figure 4b are still present, weaker in
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Figure 5a, and more pronounced in Figure 5b. By increasing the charge number for cancer
cells, the tumor invasion front moves rigidly towards the upper confining surface along
the electric field direction, and the intensity of the asymmetries also grows accordingly.
In particular, comparing the profiles of Figures 4b and 5b, it can be seen that with Zc = −7
the invasion front reaches the upper xy boundary surface a little earlier with respect
to Zc = −5. Evidently, the simulation with Zc = −5, shown in Figure 4b, represents the
intermediate case between Zc = −3 and Zc = −7.
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To better inspect such asymmetries, in Figure 6 we show a one-to-one comparison
between the profiles obtained with, and without, the applied electric field. Ongoing,
from t = 8, Figure 6a, to t = 9.5, Figure 6c, in the absence of an electric field (continuous
blue line), the profiles are symmetrical with respect to z = 0. Applying the electric field,
for the Zc values −3 (red/circle), −5 (yellow/cross), and −7 (purple/diamond), the con-
centration profiles are gradually pushed towards higher z values, also showing an intensity
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asymmetry of the concentration peaks growing with time. In particular, from Figure 6,
it can be deduced that, at each time step, the distance between the maxima of the concen-
tration profiles is unchanged in both the E = 0 and E = 0.25 cases.

Since, along the nerve fibers infiltrating tumors, electrical stimuli are transmitted by
the neurons, in turn triggering the mutual interactions between nerves and tumors [16–22],
it could be hypothesized that the internal electric fields generated by the electrical stim-
uli flowing through the nerve fibers could also influence the locomotion of cancer cells.
Nevertheless, in a very recent experimental study in vivo carried out on mice inoculated
with mammary cancer cells [30], electrogram recordings within the tumors detected a
bioelectric activity consisting of pulsed waves propagating with amplitude in the microvolt
range. Such magnitudes are well below typical values for the membrane potential of cells,
and even more so with respect to the values that could arise from the external electric field
simulated here. In order to verify possible effects on the cancer cell locomotion induced
by the internal electric field generated by the electric pulses propagating along the nerve
fibers, we performed a simulation introducing in Equations (4) and (7) an electric field with
amplitude E = 7.5 × 10−3 Vm−1 along the negative z-axis direction, according to the data
reported in [30], which in nondimensional form scales as E = 1.25 × 10−4. Furthermore,
to enhance the effect of the electric field on cancer cells, we chose a charge number Zc = −7.
As expected, the numerical results, not shown, do not differ appreciably from those ob-
tained in the absence of an applied electric field shown in Figure 1, thus, evidencing that the
internal electric field possibly generated in peripheral tumors is irrelevant for electric-field
driven cancer cell locomotion.

Such findings indicate that tumor progression subjected to an applied electric field is
biased towards the field direction, more precisely, pushed by the electric field, negatively
charged cancer cells tend to accumulate along the field direction and close to the appro-
priate domain boundary; in addition, the invasion front is rigidly moved along the field
direction, but the invasion rate is nearly unchanged. Interestingly, the model proves to be
sensitive to variations of the charge number of cancer cells, which is directly linked to their
malignancy degree.
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4. Conclusions

The numerical evidence, arising from the proposed mathematical model for cancer
cell dynamics in the early stage of the avascular phase, suggests that a uniform electric field
applied along a prescribed direction of the modeled biological domain could influence
the tumor dynamics. The performed computations show that cancer cells grow during
the time evolution with a spatially symmetric invasion. When subjected to an external
uniform electric field, the invasion front is biased along the field direction, without an
increase in invasion speed, but two distinct effects are observed, i.e., cancer cells tend to
concentrate towards the field direction, and the invasion front translates along the same
direction. Inside the tumor there can be internal electric fields generated by the electrical
pulses flowing on the nerve fibers that infiltrate it, but our simulations indicate that they are
not suitable for inducing a displacement of cancer cells. At present, experimental studies
carried out on the same system, or computations simulating similar conditions are lacking,
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therefore, we cannot make any comparisons, while the present results must be validated
by means of appropriate experiments. Nevertheless, they allow us to hypothesize that an
external uniform electric field applied to a cancer cell progression could be capable of in-
ducing and driving their locomotion, opening up an important issue related to therapeutic
and surgical strategies effective for cancer cell targeting.
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