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Abstract: This paper deals with a non-standard implicit finite difference scheme that is defined on a
quasi-uniform mesh for approximate solutions of the Magneto-Hydro Dynamics (MHD) boundary
layer flow of an incompressible fluid past a flat plate for a wide range of the magnetic parameter. The
proposed approach allows imposing the given boundary conditions at infinity exactly. We show how
to improve the obtained numerical results via a mesh refinement and a Richardson extrapolation.
The obtained numerical results are favourably compared with those available in the literature.
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1. Introduction

The simplest example of the application of the boundary layer theory is related to the
celebrated Blasius [1] problem. This problem describes the flow around a very thin flat
plate.

The first goal of this paper is to numerically solve, with great accuracy, the Magneto-
Hydro Dynamics (MHD) boundary layer equation that governs the flow of an incom-
pressible fluid past a flat plate by an implicit non-standard finite difference scheme that
is defined on a quasi-uniform mesh that allows imposing the given boundary conditions
exactly.

Numerical methods for problems, like the one considered in this paper, can be classi-
fied according to the numerical treatment of the boundary condition imposed at infinity.
The oldest and simplest treatment is to replace infinity with a suitable finite value, the
so-called truncated boundary. However, being the simplest approach, this has revealed,
within the decades, some drawbacks that suggest not to apply it, especially if we have
to face a given problem without any clue on its solution behaviour. Several other treat-
ments have been proposed in the literature to overcome the shortcomings of the truncated
boundary approach. In this research area, some treatments are worthy of consideration:
the formulation of so-called asymptotic boundary conditions by de Hoog and Weiss [2],
Lentini and Keller [3], and Markowich [4,5]; the reformulation of the given problem in a
bounded domain, as first studied by de Hoog and Weiss and more recently developed by
Kitzhofer et al. [6]; the free boundary formulation that was proposed by Fazio [7], where
the unknown free boundary can be identified with a truncated boundary; the treatment on
the original domain via pseudo-spectral collocation methods, see the book by Boyd [8] or
the review by Shen and Wang [9] for more details on this topic; and, finally, a non-standard
finite difference scheme on a quasi-uniform grid that is defined on the original domain
by Fazio and Jannelli [10]. The proposed non-standard finite difference scheme has been
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successively modified by Fazio and Jannelli [11] and used in [12,13]. Moreover, this method
has been applied to the numerical solution of the perpetual American put option problem
of financial markets, see Fazio [14].

The key advantage of the presented approach is that the given BVP is solved on a
semi-infinite interval by introducing a stencil that is constructed in such a way that the
boundary conditions at infinity are exactly assigned. In this way, the whole infinite domain
is taken into account in the mapping where the grid-points are located at the mid-point of
each sub-interval, and then the difficulty that is caused by numerical treatment of the last
infinite sub-interval is avoided.

Finally, via a mesh refinement, by using Richardson’s extrapolation, we improve the
accuracy of the obtained numerical results, showing that they are in excellent agreement
with the solutions found in the literature. This study concludes by comparing the current
numerical results with those that are given by the integral approximation method (ITM)
and the non-integral technique (NIT) used by Singh and Chandarki [15].

2. Model Problem

We consider a steady two-dimensional flow of a viscous fluid on a flat plate in the
presence of a given transverse magnetic field with small electric conductivity and a large
transverse magnetic field. When introducing appropriate similarity variables, the govern-
ing equations can be reduced to the following boundary value problem (BVP) [15]

d3u
dx3 + u

d2u
dx2 + β

(
1− du

dx

)
= 0 (1)

u(0) =
du
dx

(0) = 0 ,
du
dx

(∞) = 1 ,

where β is the magnetic parameter. Let us notice that, for β = 0, the BVP (1) reduces to the
celebrated Blasius problem [1]. For a general class of problems, including (1), Brighi [16]
obtained results on the existence, uniqueness, and boundedness of solutions.

3. The Finite Difference Scheme

Without a loss of generality, we consider the class of BVPs

du
dx

= f(x, u) , x ∈ [0, ∞) ,
(2)

g(u(0), u(∞)) = 0 ,

where u(x) is a d−dimensional vector with `u(x) for ` = 1, . . . , d as components, f :
[0, ∞)× IRd → IRd, and g : IRd × IRd → IRd. Here, and in the following, we use Lambert’s
notation for the vector components [17, pp. 1–5].

In order to solve the problem (2) on the original domain, we first discuss quasi-
uniform grids maps from a reference finite domain and then introduce, on the original
domain, a non-standard finite difference scheme that allows for us to impose the given
boundary conditions exactly. Let us consider the smooth strict monotone quasi-uniform
maps x = x(ξ), the so-called grid generating functions, see Boyd [8, pp. 325–326] or Canuto
et al. [18, p. 96],

x = −c · ln(1− ξ) , (3)

and
x = c

ξ

1− ξ
, (4)

where ξ ∈ [0, 1], x ∈ [0, ∞], and c > 0 is a control parameter. Accordingly, a family of
uniform grids ξn = n/N defined on interval [0, 1] generates one parameter family of quasi-
uniform grids xn = x(ξn) on the interval [0, ∞]. The two maps (3) and (4) are referred to as
logarithmic and algebraic maps, respectively. As far as the authors’ knowledge is concerned,
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van de Vooren and Dijkstra [19] were the first to use these kinds of maps. We notice that
more than half of the intervals are in the domain with a length approximately equal to c
and xN−1 = c ln N for (3), while xN−1 ≈ cN for (4). For both maps, the equivalent mesh
in x is nonuniform, with the most rapid variation occurring with c� x. The logarithmic
map (3) gives slightly better resolution near x = 0 than the algebraic map (4), while the
algebraic map gives much better resolution than the logarithmic map as x → ∞. In fact, it
is easily verified that

−c · ln(1− ξ) < c
ξ

1− ξ
,

for all ξ, but ξ = 0.
The problem under consideration can be discretized by introducing a uniform grid

ξn of N + 1 nodes in [0, 1] with ξ0 = 0 and ξn+1 = ξn + h with h = 1/N, so that xn is a
quasi-uniform grid in [0, ∞]. The last interval in (3) and (4), namely [xN−1, xN ], is infinite,
but the point xN−1/2 is finite, because the non integer nodes are defined by

xn+α = x
(

ξ =
n + α

N

)
,

with n ∈ {0, 1, . . . , N − 1} and 0 < α < 1. These maps allow for us to describe the infinite
domain by a finite number of intervals. The last node of such grid is placed on infinity, so
right boundary conditions are correctly taken into account.

We approximate the values of the scalar variable u(x) and its derivative at mid-points
of the grid xn+1/2, for n = 0, · · · , N− 1, while using non-standard difference discretizations

un+1/2 ≈ xn+3/4 − xn+1/2

xn+3/4 − xn+1/4
un +

xn+1/2 − xn+1/4

xn+3/4 − xn+1/4
un+1 ,

(5)
du
dx

∣∣∣∣
n+1/2

≈ un+1 − un

2(xn+3/4 − xn+1/4)
.

We emphasize that the key advantage of our non-standard finite difference formulation is
to overcome the difficulty of the numerical treatment of the boundary conditions at infinity.
In fact, the formulae (5) use the value uN = u(∞), but not xN = ∞ and, then, the boundary
conditions at infinity are taken into account in a natural way.

For the class of BVPs (2), a non-standard finite difference scheme on a quasi-uniform
grid can be defined using the approximations given by (5) above, and it can be written, as
follows

Un+1 −Un − an+1/2f(xn+1/2, bn+1/2Un+1 + cn+1/2Un) = 0 ,

for n = 0, 1, . . . , N − 1 (6)

g(U0, UN) = 0 ,

where

an+1/2 = 2(xn+3/4 − xn+1/4) ,

bn+1/2 =
xn+1/2 − xn+1/4

xn+3/4 − xn+1/4
, (7)

cn+1/2 =
xn+3/4 − xn+1/2

xn+3/4 − xn+1/4
,

for n = 0, 1, . . . , N − 1. The finite difference formulation (6) has an order of accuracy
O(N−2). It is evident that (6) is a nonlinear system of d (N + 1) equations in the d (N + 1)
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unknowns U = (U0, U1, . . . , UN)
T . For the solution of (6), we can apply the classical

Newton’s method along with the simple termination criterion

1
d(N + 1)

d

∑
`=1

N

∑
n=0
|∆`Un| ≤ TOL , (8)

where ∆`Un, for n = 0, 1, . . . , N and ` = 1, 2, . . . , d, is the difference between two successive
iterate components and TOL is a fixed tolerance.

4. Numerical Results and Comparison

In this Section, we present the numerical results that were obtained by solving the
mathematical model (1) using the non-standard finite difference scheme (6) on the quasi-
uniform grid that was defined by the logarithmic map (3) with control parameter c = 2.
The control parameter c defines the grid points distribution in the original physical infinite
domain and it is chosen in such a way that [x0, xN−1] is not too large, being xN → ∞. The
chosen value c = 2 leads to obtaining a finer grid points distribution close to x = 0 and
then a better resolution where the solution has a transient behavior, with an increasing
spatial resolution going toward infinity.

Now, let us rewrite the model (1) as a first-order system, as follows

d1u
dx

= 2u,

d2u
dx

= 3u, x ∈ (0, ∞) (9)

d3u
dx

= −1u3u− β(1− 2u),

with

1u(0) = 2u(0) = 0 , 2u(∞) = 1 ,

or, in an equivalent form,

u = (1u, 2u, , 3u)T ,

f(x, u) =
(

2u, 3u,−1u3u− β(1− 2u)
)T

,

g(u(0), u(∞)) = (1u(0), 2u(0), 2u(∞)− 1)T ,

where u(x) is a three-dimensional vector with components `u(x) for ` = 1, 2, 3, and
f : [0, ∞)×Rd → Rd and g : Rd ×Rd → Rd, with d = 3.

For all tests, we consider the control parameter c = 2, a fixed tolerance TOL = 10−8,
and, as a first guess for Newton’s iteration, the following initial data

1u(x) = 0.5 x , 2u(x) = 1 , 3u(x) = exp(−x).

In Table 1, we report the numerical results that were obtained for the missing initial data
d2u
dx2 for increasing points number N and β = 1.2. Here, “iter ”stands for the number of the
Newton’s iterations. It is well known that Newton’s method could have a computational
cost that is quite high, depending on the initial iterate and the analytic form of the function
whose root is being sought. A suitable choice of the initial iterate can contribute to reducing
the computational cost. In this context, the chosen initial guess leads to obtain a low
iterations number: 6 or 7 iterations, depending on the values of the grid point number.
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Table 1. Numerical results that are related to
d2u
dx2 (0) for different values of N.

N iter
d2u
dx2 (0)

10 6 1.1790527
20 6 1.1776846
40 6 1.1773411
80 6 1.1772552
160 6 1.1772336
320 7 1.1772282
640 7 1.1772269

1280 7 1.1772261

In Figure 1, we show the numerical solution that was obtained for β = 1.2 and
N = 80. The recovered value of the second order derivative of the solution at the origin is
d2u
dx2 (0) = 1.177255155089504, obtained in 6 iterations.

0 2 4 6 8

0

0.5

1

1.5

2

Figure 1. Numerical solution for the problem (1) for β = 1.2 and N = 80.

Tables 2 and 3 list the obtained numerical results for different values of parameter
β, with β = 0, 0.2, · · · , 2 and N = 100. For the sake of brevity, we have chosen to only
report the values of the wall shear stress, which is the second derivative value at the origin.
Within the same table, we can compare our results with those that were reported by Singh
and Chandarki [15]. The last column, named Err Rel, reports the values of the relative
errors, as computed by

Rel Err =
|DTM− FD|
|FD| Rel Err =

|NIT − FD|
|FD|

where, DTM, NIT, and FD represent the numerical solutions obtained, for different values
of β, by the integral approximation method (ITM) and the non-integral technique (NIT)
used by Singh and Chandarki [15], and by the proposed numerical method, respectively.
In both cases, the value of the relative errors decrease as the values of β increase. Note
that the relative errors are all of same the order and, moreover, for β = 0, we obtain the
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smaller relative error. This is due to the fact that β affects the non-linearity of the model
under study. The problem with β = 0 corresponding to the Blasius problem and, in this

case, the computed missing initial condition
d2u
dx2 (0) = 0.4695839 can be compared with

the value 0.469599988361 that wascomputed by Fazio [7] by a free boundary formulation
of the Blasius problem.

Table 2. Numerical results, related to
d2u
dx2 (0), and comparison with results by [15].

β DTM [15] FD (this study) Err Rel

0.0 0.46910 0.4695839 0.0010
0.2 0.66343 0.6389912 0.0382
0.4 0.80009 0.7749739 0.0324
0.6 0.91659 0.8917536 0.0279
0.8 1.01988 0.9956343 0.0244
1.0 1.11362 1.0900815 0.0216
1.2 1.20006 1.1772448 0.0194
1.4 1.28068 1.2585668 0.0176
1.6 1.35652 1.3350710 0.0161
1.8 1.42834 1.4075142 0.0148
2.0 1.49671 1.4764751 0.0137

Table 3. Numerical results, related to
d2u
dx2 (0), and comparison with results by [15].

β NIT [15] FD (this study) Err Rel

0.0 0.46920 0.4695839 0.0008
0.2 0.64819 0.6389912 0.0174
0.4 0.78749 0.7749739 0.0162
0.6 0.90562 0.8917536 0.0156
0.8 1.01002 0.9956343 0.0145
1.0 1.10460 1.0900815 0.0133
1.2 1.19170 1.1772448 0.0123
1.4 1.27285 1.2585668 0.0113
1.6 1.34913 1.3350710 0.0105
1.8 1.42132 1.4075142 0.0098
2.0 1.49002 1.4764751 0.0092

We apply Richardson’s extrapolation, using several refinements of the computational
domain, in order to improve the accuracy of the computed solution. On the computational
domain of the problem, we build a quasi-uniform grid with a mesh-points number equal to
N0 and proceed with subsequent grid refinements by constructing meshes with grid-point
numbers Ng for g = 1, 2, · · · , where Ng+1 = rNg with refinement factor r = 2. On each
grid, the numerical solution Ug, g = 0, 1, · · · , G is computed using the non-standard finite
difference method. We adopt a continuation strategy in order to reduce the calculations;
in fact, we use the final solution Ug that was obtained on the grid g as an initial guess for
calculating the solution Ug+1 on the grid g+ 1, where the new grid values are approximated
by linear interpolations. We define the level of the Richardson’s extrapolation by the index
k and the two numerical solutions related to the grids g and g + 1 at the extrapolated
level k by Ug,k and Ug+1,k. We use the following formula to calculate a more accurate
approximation

Ug+1,k+1 = Ug+1,k +
Ug+1,k −Ug,k

2pk − 1
k = 0, 1, · · · , G− 1 . (10)

In Table 4, we report the extrapolated values with N = 100, 200, 400 grid points for
β = 1. The last extrapolated value is 3U2,2 = 1.090064908 and it can be considered as our
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benchmark value for
d2u
dx2 (0). We can conclude that the reported extrapolated value is

correct up to 9 decimal places.

Table 4. Extrapolated values at origin x = 0 for
d2u
dx2 (0) with β = 1.

Ng
3Ug,0

3Ug,1
3Ug,2

100 1.090081494 - -
200 1.090069055 1.090064908 -
400 1.090065945 1.090064908 1.090064908

5. Concluding Remarks

In this paper, the mathematical model, which describes the MHD boundary layer
flow of an incompressible fluid past a flat plate, is solved by the non-standard implicit
finite difference method on a quasi-uniform grid for the different magnetic parameters β.
We solved the given BVP on a semi-infinite interval by introducing a stencil that is built
in such a way that the boundary conditions at infinity are exactly assigned. Moreover,
we improved the accuracy of the numerical results by Richardson’s extrapolation, which
allowed for us to find a more accurate solution.

The values of the second-order derivative of the solution at the origin, for different
values of parameter β, are reported in the Tables 2 and 3. The results are compared with
those by Singh and Chandarki [15] in order to verify the accuracy of the proposed method.
Moreover, in the case of the Blasius problem, we compare the missing initial condition
with the one that was computed by Fazio [7] by a free boundary formulation of the Blasius
problem. The computed values are found to be really accurate.
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