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Abstract: In this paper, we introduce a novel localized collocation solver for two-dimensional (2D)
phononic crystal analysis. In the proposed collocation solver, the displacement at each node is
expressed as a linear combination of T-complete functions in each stencil support and the sparse
linear system is obtained by satisfying the considered governing equation at interior nodes and
boundary conditions at boundary nodes. As compared with finite element method (FEM) results and
the analytical solutions, the efficiency and accuracy of the proposed localized collocation solver are
verified under a benchmark example. Then, the proposed method is applied to 2D phononic crystals
with various lattice forms and scatterer shapes, where the related band structures, transmission
spectra, and displacement amplitude distributions are calculated as compared with the FEM.

Keywords: collocation; T-complete function; phononic crystals; band structures; transmission spectra

1. Introduction

In recent decades, more and more attention has been paid to a new kind of artificial
periodic composite structures, which are well known as phononic crystals [1–6]. Due to
the periodicity of phononic crystals, a wave cannot propagate through the structures
within certain frequency band ranges, which is called the phononic bandgaps. Thanks to
this bandgap characteristic, one can control the direction and path of wave propagation
by designing a specific phononic crystal [7–10], and also can realize the shielding and
reflection of a specific wave [11–13]. Since different shapes and placements of scatterers
have a critical influence on wave propagation in phononic crystals, numerical simulation
plays an important role in the computational design of phononic crystals.

Up to now, various numerical methods have been proposed in the simulation of wave
propagation in phononic crystals, such as finite difference time domain (FDTD) [14–16],
plane wave expansion (PWE) [17–20], wavelet method [21], multiple scattering theory
(MST) [22,23], finite element method (FEM) [24–26], boundary element method
(BEM) [27,28], singular boundary method (SBM) [29], meshless methods [30], and gen-
eralized finite difference method (GFDM) [31,32], just to mention a few. Although the
aforementioned numerical methods have been successfully applied to phononic crystal
analysis, each of them has advantages and disadvantages. Hence, it is necessary to develop
a robust and effective numerical method to analyze wave propagation in phononic crystals.

It should be mentioned that localized collocation schemes, such as the localized radial
basis function collocation method (LRBFCM) [33–38], generalized finite difference method
(GFDM) [39–42], RBF-based finite difference method (RBF-FD) [43–46], and localized collo-
cation methods based on semi-analytical basis functions [47–51], etc., have been proposed
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for a numerical solution of PDEs. The common feature in these localized collocation
schemes is to inherit the simple discretization formulation from the FDM [52] and also
the meshless property [53–56] without generating the ill-conditioning resultant matrices.
Among these localized collocation schemes, localized semi-analytical collocation methods
introduced the semi-analytical basis functions to construct numerical differentiation formu-
lations to approximate the partial derivative of physical quantities at each discretization
node, which have better accuracy and efficiency as compared with the other localized
collocation methods. Here, we focus on a novel localized collocation scheme based on
T-complete functions, called the localized collocation Trefftz method (LCTM) and, so far,
the LCTM has been successfully applied to Laplace and biharmonic equations [57,58].

In this study, we make the first attempt to apply the novel localized collocation
Trefftz scheme to phononic crystal analysis, which includes a numerical solution of the
Helmholtz eigenvalue equation for band structures and a numerical solution of Helmholtz
equation for frequency responses and displacement amplitude distributions. This paper is
organized as follows: The mathematical formulation of the anti-plane transverse elastic
wave in the 2D phononic crystal is described in Section 2; the corresponding discretization
formulation based on the localized collocation Trefftz method (LCTM) is clearly introduced
in Section 3; in Section 4, as compared with the COMSOL simulation, the efficiency and
accuracy of the proposed LCTM are verified under a benchmark example, and then the
wave propagation behavior is investigated by calculation of band structures, transmission
spectra, and displacement amplitude distributions in phononic crystals with various lattice
forms and scatterer shapes; and in Section 5, our conclusions are summarized.

2. Mathematical Model of Shear Horizontal (SH) Wave Propagation by Phononic
Crystals

Under the assumptions of the linear elastic wave theory [3], the propagation of time-
harmonic SH waves in phononic crystals is under consideration. The corresponding
governing equation [32] can be represented as follows:

µj∆uj + ρjω2uj = 0, (1)

where ω stands for the angular frequency; µ and ρ denotes, respectively, the shear modulus
and mass density of the solid; and u is the anti-plane displacement along the z-axis.
The superscript j stands for the quantities related to the matrix (j = 0) or the scatterer
(j = 1). In this study, two types of the phononic crystals, infinite periodic structure and
semi-infinite periodic structure are investigated.

For the perfectly phononic crystal with infinite periodic structure, as shown
in Figure 1, we can only consider the unit cell instead of the whole structure. Γ1–Γ4(Γ1–Γ6)
denote the boundaries of the square (hexagonal) unit cell and Γ0 represents the interface
between the matrix and the scatterer. All the quantities of the anti-plane transverse elastic
wave field on periodic boundaries Γ1–Γ4(Γ1–Γ6) should satisfy the Bloch theorem, namely,

u0(x + a) = eikau0(x)
T0(x + a) = eikaT0(x)

, (2)

where k = (kx1 , kx2) is the anti-plane Bloch wave vector; T = µi∂ui/∂n denotes the traction
vector; n represents the unit normal vector; i =

√
−1, a = m1a1 + m2a2, in which m1, m2 are

arbitrary integers; and a1 and a2 stand for the fundamental translation vectors of the lattice.
The following continuity conditions should be satisfied on the interface boundary: Γ0

u1(x) = u0(x), x ∈ Γ0
T1(x) = T0(x), x ∈ Γ0

(3)
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Figure 1. A perfectly phononic crystal with infinite periodic structure of (a) square lattice and (b)
triangular lattice with their unit cells and first Brillouin zones.

Therefore, the solution of the SH wave equation can be written as a superposition of
anti-plane Bloch waves. The dispersion relation of all anti-plane Bloch waves forms the
band structure which can be obtained by solving the following generalized eigenvalue
problem, possibly subjected with surface or interface boundary conditions (2) and (3):

AU =



u0(xΓ3) 0
u0(xΓ4) 0

∂u0(xΓ3)/∂n 0
∂u0(xΓ4)/∂n 0

u0(xΓ0) −u1(xΓ0)
∂u0(xΓ0)/∂n −∂u1(xΓ0)/∂n(

∆ + κ2
0
)
u0 0

0
(
∆ + κ2

1
)
u1


=



eikx1au0(xΓ1) 0
eikx2au0(xΓ2) 0

eikx1a∂u0(xΓ1)/∂n 0
eikx2a∂u0(xΓ2)/∂n 0

0 0
0 0
0 0
0 0


= λBU, (4)

AU =



u0(xΓ4)
u0(xΓ5)
u0(xΓ6)

0
0
0

∂u0(xΓ4)/∂n 0
∂u0(xΓ5)/∂n 0
∂u0(xΓ6)/∂n 0

u0(xΓ0) −u1(xΓ0)
∂u0(xΓ0)/∂n −∂u1(xΓ0)/∂n(

∆ + κ2
0
)
u0 0

0
(
∆ + κ2

1
)
u1


=



ei(
√

3
2 kx1a+ 1

2 kx2a)u0(xΓ1) 0
eikx2au0(xΓ2) 0

ei(−
√

3
2 kx1a+ 1

2 kx2a)u0(xΓ3) 0

ei(
√

3
2 kx1a+ 1

2 kx2a)∂u0(xΓ1)/∂n 0
eikx2a∂u0(xΓ2)/∂n

ei(−
√

3
2 kx1a+ 1

2 kx2a)∂u0(xΓ1)/∂n
0

0
0
0

0 0
0 0
0 0



= λBU, (5)

where κj = ω
√

ρj/µj. The band structure can be obtained by evaluating the dispersion

relations along the boundary of the irreducible Brillouin zone, in which λ = eikx1a, eikx2a = 1
from Γ− X; λ = eikx2a, eikx1a = −1 from X−M; λ = eikx1a = eikx2a from M− Γ in square

lattice and λ = eikx2a, eikx1a = 1 from Γ − X; λ = eikx2a = ei( 4π
3a −

1√
3

kx1)a from X −M;
and λ = eikx2a = ei

√
3kx1a from M − Γ in triangular lattice. Then, the corresponding



Math. Comput. Appl. 2021, 26, 2 4 of 21

eigen frequency, λ, can be obtained by solving the generalized eigenvalue equations with
sweeping the angular frequency, ω, along the boundary of the irreducible Brillouin zone.

For a perfectly phononic crystal with semi-infinite periodic structure in the y-direction,
the periodic unit cell, as shown in Figure 2, can be considered, where Figure 2a,b rep-
resents two types of the SH wave propagation along ΓX− and ΓM− directions. Then,
the displacements and tractions on the boundaries Γ∗2 , Γ∗4 satisfy the following relationships:

u0
Γ∗4

= u0
Γ∗2

, T0
Γ∗4

= T0
Γ∗2

, (6)

and the left boundary Γ∗1 is excited by the following unit displacement:

u0
Γ∗1

= 1, (7)

and the right boundary Γ∗3 is imposed on the following absorbing boundary condition:

n · ∇u0 = −iκ0u0. (8)
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By considering the interface continuity conditions (3) and boundary conditions (6)–(8),
the following set of linear equations can be obtained:

A∗U =



u0
(

xΓ∗1

)
0

u0
(

xΓ∗4

)
− u0

(
xΓ∗2

)
0

∂u0
(

xΓ∗3

)
/∂n+iκ0u0

(
xΓ∗3

)
0

∂u0
(

xΓ∗4

)
/∂n− ∂u0

(
xΓ∗2

)
/∂n 0

u0
(

xΓ∗0

)
−u1

(
xΓ∗0

)
∂u0
(

xΓ∗0

)
/∂n −∂u1

(
xΓ∗0

)
/∂n(

∆ + κ2
0
)
u0 0

0
(
∆ + κ2

1
)
u1


=



1
0
0
0
0
0
0
0


= b, (9)

where wavenumber κ0 = ω
√

ρ0/µ0, κ1 = ω
√

ρ1/µ1. By solving Equation (9), the cor-
responding transmitted displacements on the right boundary u0(xΓ∗3

) can be obtained
for every given angular frequency ω. Then, the transmission spectra can be obtained by
computing the transmission coefficient T = 20× log

(
u0
(

xΓ∗3

)
/
(

2× 10−5 × u0
(

xΓ∗1

)))
for different angular frequency ω.

3. Localized Collocation Trefftz Method

In this section, the localized collocation Trefftz method (LCTM) is introduced to
discretize the aforementioned generalized eigenvalue Equations (4) or (5) and the set of
linear equations in Equation (9).

To construct the LCTM numerical differentiation formulation, each given i-th node xi
0

with m nearest nodes
(
xi

1, xi
2, . . . , xi

m
)

around xi
0 form a subdomain Ξi, whose center can be

chosen as x̃i = 1
m+1

m
∑

j=0
xi

j shown in Figure 3. Then, the approximated displacement u
(

xi
j

)
inside the stencil support Ξi can be represented by a linear combination of T-complete
functions φi

k with unknown coefficients αi
k

u
(

xi
j

)
=

m

∑
k=0

φi
kαi

k with its matrix form
¯
u = Φiαi, (10)

where the following T-complete functions are used to satisfy the governing Equation (1) in
advance:

φi
k =

{
J0
(
κ1ri

k
)
, J1
(
κ1ri

k
)

cos
(
θi

k
)
, J1
(
κ1ri

k
)

sin
(
θi

k
)
, . . . ,

Jm/2
(
κ1ri

k
)

cos
(
mθi

k/2
)
, Jm/2

(
κ1ri

k
)

sin
(
mθi

k/2
)} (11)

where
(
ri

k, θi
k
)

is constructed based on the polar coordinate system determined by the nodes
in a subdomain Ξi with the center x̃i as the origin and Ji is Bessel function of the first kind
of order i. Then, the vector of unknown coefficients αi can be expressed as follows:

αi =
(

Φi
)−1¯

u
i
. (12)
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Next, the approximate solution ui
0 and traction Ti

0 at xi
0 can be represented as follows:

ui
0 = Φi

0α
i = Φi

0

(
Φi
)−1

ui
0 = Wiui

0 =
m

∑
j=0

wi
ju

i
j, (13)

Ti
0 = µi ∂ui

0
∂n

= µi ∂Φi
0

∂n
αi = µi ∂Φi

0
∂n

(
Φi
)−1

ui = Wjui =
m

∑
j=0

wi
ju

i
j. (14)

It should be mentioned, because the used T-complete function satisfies the governing
equation in advance, the LCTM numerical differentiation formulation of ui

0 at xi
0 inside the

domain of matrix and scatterer can be rewritten as follows:

ui
0 −

m

∑
j=0

wi
ju

i
j = 0. (15)

For a given angular frequency ω, substituting Equations (13)–(15) into the generalized
eigenvalue Equations (4) or (5), the related system of linear algebra equations can be
obtained to calculate the band structure, and substituting Equations (13)–(15) into the set
of linear equations in Equation (9), the related system of linear algebra equations can be
obtained to calculate the transmission spectra and displacement amplitude distributions.

4. Numerical Results

In this section, the efficiency and accuracy of the proposed LCTM are first verified
under a benchmark example, and then the wave propagation behavior is numerically
investigated by the calculation of band structures, transmission spectra, and displacement
amplitude distributions in the phononic crystals with various lattice forms and scatterer
shapes. Unless otherwise specified, aurum (Au) and epoxy are used as the materials
of scatterers and matrix in phononic crystals, and the wave velocities and the densities
of aurum and epoxy are, respectively, given by c0 = 1239 m/s , ρ0 = 19, 500 kg/m3,
c1 = 1161 m/s, ρ1 = 1180 kg/m3 ; in the simulation of transmission spectra and displace-
ment amplitude distributions, the numbers of the unit cells are chosen as Na = 9, Nb = 4
and Nc = 7, the node number in each subdomain is m = 21.

4.1. Convergence and Numerical Efficiency Analysis

To verify the numerical efficiency and accuracy, first, the proposed LCTM is im-
plemented to solve a benchmark example about SH wave scattering problem of a rigid
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circular cavity in an infinite elastic domain. Consider the incident SH wave as the form of
φI = eikr cos θ0 , the analytical solutions of the scattered field us [59] for rigid boundary is as
follows:

us(r, θ) = − J′0(ka)
H′0(ka)

H0(kr) − 2
∞

∑
n=1

in J′n(ka)
H′n(ka)

Hn(kr) cos nθ, (16)

where the k is wave number, the prime denotes differentiation with respect to ka, a stands
for the radii of the circular scatterer, and the analytical solutions are numerically calculated
by using the first 100 terms in the series solution Expression (16).

In the proposed LCTM implementation, the computational domain, as shown in
Figure 4, needs to be truncated into finite domain with absorbing boundary Γ∞, and the
weakened Sommerfeld boundary condition is used as the following absorbing boundary
conditions (ABC) [59]:

∂u
∂r
− iku = 0, (r, θ) ∈ Γ∞. (17)
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According to the conclusion from the literature [59] coupled with the extensive numer-
ical investigation, the length of a reliable region RB is chosen as the half length of a whole
truncated region TB. In this example, the region (a circle with radius TB = 10a) bounded
by the absorbing boundary Γ∞ can be divided into a reliable region (a circle with radius
RB = 5a) and an error region. The numerical accuracy inside the reliable region is calculated
by the L2 relative error, which is defined as follow:

L2 =

√√√√ N

∑
i=1

ε2
i /

N

∑
i=1

u2
i , in which εi = |(u(xi)− u(xi))|, (18)

where N is the number of total discretization nodes and u(xi), u(xi) denotes the numerical
solution and analytical solution at xi.

Tables 1 and 2 list the numerical errors (L2 relative errors) in the reliable region ob-
tained by the proposed LCTM and the FEM (COMSOL) coupled with the absorbing bound-
ary conditions (17), where the symbol ”/” denotes that the L2 relative error is larger than
0.01 and ∆h stands for the average node spacing. It can be found from Tables 1 and 2
that both the proposed LCTM and the FEM provide acceptable results, and with an in-
creasing wavenumber k, more refined nodes are required to achieve acceptable results.
It should be mentioned, because of that the effect of the ABC (17), the numerical accuracy
cannot be further improved with an increasing number of nodes/elements in the proposed
LCTM/FEM. Therefore, more efficient additional techniques, i.e., the absorbing boundary
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conditions based on wave expansion functions (ABCWEF) and perfectly matched layer
(PML), can be introduced. In this paper, to improve the numerical accuracy, the ABCWEF
is employed in the proposed LCTM and the PML is employed in the FEM (COMSOL). One
can find more details about the PML in the literature [59]. Here the ABCWEF is briefly
introduced. By using the Hankel function, the numerical solution u

(
xi

j

)
can be represented

by a linear combination of Hankel functions as:

u(Ri
j, ϑi

j) = γ0H0

(
kRi

j

)
+

nABC

∑
n=1

(
γ2n cos nϑi

j + γ2n−1 sin nϑi
j

)
Hn

(
kRi

j

)
, (19)

in which γ0, γ1, · · · , γ2nABC−1, γ2nABC are underdetermined coefficients and
(

Ri
j, ϑi

j

)
is con-

structed based on the polar coordinate system. To construct the ABCWEF formulation for
each given i-th node xi

0 on the absorbing boundary Γ∞, its m nearest nodes
(
xi

1, xi
2, . . . , xi

m
)

in the subdomain Ξi are used, whose center is the center of the computational domain.
By using the wave expansion formulation (19) at xi

0 on the absorbing boundary Γ∞ and
its m nearest nodes

(
xi

1, xi
2, . . . , xi

m
)

in the subdomain Ξi, the following system of linear
equations can be obtained:

¯
u

i
= Hiγi, (20)

and then the approximate displacement u
(
xi

0
)

can be written as follow:

u
(

xi
0

)
=
[

H0

(
kRi

0

)
, · · · , H2nABC

(
kRi

0

)
cos nABCϑi

j, H2nABC

(
kRi

0

)
sin nABCϑi

j

](
Hi
)−1¯

u
i
, (21)

substituting Equation (21) into Equation (13), the following formulation is obtained:([
H0

(
kRi

0

)
, · · · , H2nABC

(
kRi

0

)
cos nABCϑi

j, H2nABC

(
kRi

0

)
sin nABCϑi

j

](
Hi
)−1
−Wi

)
¯
u

i
= 0. (22)

Table 1. Numerical errors (L2) in the reliable region obtained by the proposed localized collocation
Trefftz method (LCTM) + absorbing boundary conditions (ABC) with respect to the increasing node
number and wavenumber.

Node Number
(Node Density) k = 1 k = 5 k = 10

998 (∆h = 0.57) 7.54 × 10−3 / /
2025 (∆h = 0.395) 6.73 × 10−3 / /
5032 (∆h = 0.25) 5.99 × 10−3 / /

10,840 (∆h = 0.17) 5.99 × 10−3 1.71 × 10−3 /
25,069 (∆h = 0.1117) 6.00 × 10−3 1.62 × 10−3 /
50,010 (∆h = 0.079) 5.97 × 10−3 1.62 × 10−3 1.93 × 10−3

80,108 (∆h = 0.0624) 5.95 × 10−3 1.62 × 10−3 1.30 × 10−3

119,863 (∆h = 0.051) 5.94 × 10−3 1.62 × 10−3 1.30 × 10−3

Table 2. Numerical errors (L2) in reliable region obtained by the FEM + ABC (COMSOL) with respect
to the increasing element number and wavenumber.

Element Number k = 1 k = 5 k = 10

1016 7.18 × 10−3 / /
2010 7.03 × 10−3 / /
5079 6.73 × 10−3 / /
9878 6.57 × 10−3 7.35 × 10−3 /

25,805 6.42 × 10−3 2.05 × 10−3 /
51,742 6.37 × 10−3 1.99 × 10−3 9.57 × 10−3

81,503 6.37 × 10−3 1.99 × 10−3 3.90 × 10−3

120,266 6.37 × 10−3 1.99 × 10−3 1.95 × 10−3
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Table 3 lists the numerical errors (L2 relative errors) in the reliable region obtained
by the proposed LCTM coupled with the absorbing boundary conditions based on wave
expansion functions (ABCWEF). It can be found that the proposed LCTM + ABCWEF
can converge rapidly to the analytical solution with an increase in the node number,
and it provides more accurate results than the results obtained by the LCTM + ABC. In
addition, it is easy to introduce the PML to the FEM in the COMSOL software. As listed in
Table 4, the FEM + PML provides more accurate results than the results obtained by
the FEM + ABC and converge rapidly to the analytical solution with an increase in the
element number. From Tables 3 and 4, as compared with the FEM + PML, the proposed
LCTM + ABCWEF can provide more accurate results with less computational resources.

Table 3. Numerical errors (L2) in the reliable region obtained by the proposed LCTM + absorbing
boundary conditions based on wave expansion functions (ABCWEF) with respect to the increasing
node number and wavenumber.

Node Number
(Node Density) k = 1 k = 5 k = 10

998 (∆h = 0.57) 8.59 × 10−3 / /
2025 (∆h = 0.395) 1.26 × 10−3 / /
5032 (∆h = 0.25) 1.75 × 10−4 / /

10,840 (∆h = 0.17) 1.02 × 10−4 3.18 × 10−4 /
25,069 (∆h = 0.1117) 9.74 × 10−5 4.00 × 10−5 /
50,010 (∆h = 0.079) 5.26 × 10−5 1.85 × 10−5 4.88 × 10−5

80,108 (∆h = 0.0624) 2.89 × 10−5 1.34 × 10−5 1.23 × 10−5

119,863 (∆h = 0.051) 2.81 × 10−5 6.42 × 10−6 5.78 × 10−6

Table 4. Numerical errors (L2) obtained by the FEM + PML (COMSOL) with respect to the increasing
element number and wavenumber.

Element Number k = 1 k = 5 k = 10

1016 1.99 × 10−3 / /
2010 7.03 × 10−4 / /
5079 2.50 × 10−4 / /
9878 1.25 × 10−4 7.78 × 10−3 /

25,805 3.36 × 10−5 1.20 × 10−3 /
51,742 2.50 × 10−5 3.31 × 10−3 8.39 × 10−3

81,503 2.35 × 10−5 1.34 × 10−4 3.63 × 10−3

120,266 2.32 × 10−5 6.38 × 10−5 1.68 × 10−3

In Table 5, the condition numbers of Φi (Cf) and A∗ (Ca) in the proposed LCTM + ABC
are given, and the CPU times of LCTM and FEM (COMSOL) without matrix generated are
shown. Due to the highly ill-conditioning matrix Φi, the Moore–Penrose inverse technique
is implemented to calculate

(
Φi)−1. We can observe that the condition numbers of the

resultant matrix A∗ is relatively small. Additionally, it should be mentioned that the CPU
times are in the same magnitude between the proposed LCTM and COMSOL, and the code
of the proposed LCTM may be further improved to save the CPU time.
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Table 5. Condition number Cf and Ca and time cost of LCTM and FEM for each node number.

Element Number Ca Cf CPU Time of LCTM CPU Time of FEM

998 (∆h = 0.57) 6.26 × 105 5.64 × 1050 1 s 1 s
2025 (∆h = 0.395) 7.81 × 105 9.14 × 1052 1 s 1 s
5032 (∆h = 0.25) 6.84 × 106 1.06 × 1055 2 s 2 s

10,840 (∆h = 0.17) 1.19 × 107 1.05 × 1060 5 s 2 s
25,069 (∆h = 0.1117) 8.99 × 106 3.81 × 1063 13 s 4 s
50,010 (∆h = 0.079) 6.04 × 107 4.08 × 1064 22 s 9 s

80,108 (∆h = 0.0624) 3.02 × 108 6.38 × 1066 42 s 11 s
119,863 (∆h = 0.051) 9.28 × 108 2.79 × 1068 68 s 16 s

4.2. Phononic Crystals with Square Lattice

Next, we investigate the wave propagation behavior in the phononic crystals with
square lattice and consider both the infinite periodic structure and semi-infinite periodic
structure in the y-direction. For the infinite periodic structure, the related band struc-
ture is calculated. For the semi-infinite periodic structure in the y-direction, the related
transmission spectra and displacement amplitude distributions are computed. All the
numerical results obtained by the proposed LCTM + ABC are compared with the COMSOL
simulation with the FEM + ABC and FEM + PML.

4.2.1. Circular Scatterer Case

In the first example, the unit cell structure of aurum/epoxy phononic crystal consists
of a square lattice and a circular scatterer. The filling fraction of the circular scatterer is 0.4.
Figure 5 shows the corresponding node distribution in the proposed LCTM. In the present
numerical implementation, the discretization node number is N = 209 with node spacing
∆h = 1/15. The calculated band structures obtained by using the proposed LCTM and the
FEM (COMSOL, 288 elements) are in good agreement, which is shown in Figure 6.
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Figure 6. Band structure of the anti-plane transverse wave for aurum/epoxy phononic crystal
calculated by the LCTM and the FEM (288 elements).

Then, the phononic crystal with semi-infinite periodic structure in the y-direction
is investigated. The related node distribution is shown in Figure 7. Figure 8 presents
the transmission spectra of anti-plane transverse elastic wave along with ΓX- direction.
The band structures of the corresponding infinite periodic structure calculated by the
proposed LCTM are also displayed in this figure. From Figure 8, it can be observed that
the proposed LCTM with ∆h = 1/13 (N = 2729) can perform equally well with the FEM
(COMSOL, 6507 elements), which reveals that the developed LCTM can also effectively
calculate the SH wave transmission spectra of the phononic crystal. In addition, under
the same materials and fill fraction, both the infinite periodic structure and semi-infinite
periodic structure in the y-direction may hinder the SH wave propagation in the same
angular frequency regions, namely, the bandgap of infinite periodic structure corresponds
to the very low transmission coefficient of semi-infinite periodic structure. Therefore, in the
design of phononic crystals, the use a nine-column finite period structure is recommended
instead of an ideal infinite period structure to block the SH wave propagation at specific
angular frequencies.

In order to validate and intuitively understand the band gap characteristics of phononic
crystals, the displacement amplitude distributions computed by the proposed LCTM and
FEM (ABC), FEM (PML) are presented at two specific normalized frequencies ( ωa

2πc0
= 0.5, 1).

All the numerical results obtained by the proposed LCTM and FEM (ABC), FEM (PML)
are in good agreement, which reveals that the LCTM and FEM with the ABC are enough
to obtain an acceptable solution for transmission spectra and displacement amplitude
distributions. It is easy to observe from Figure 9 that the SH wave is blocked at the nor-
malized frequency ( ωa

2πc0
= 0.5) in the bandgap region, and it cannot hinder the SH wave

propagation at the normalized frequency ( ωa
2πc0

= 1) in the pass band region.
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To investigate the effect of the number of columns (scatterers) on the wave shielding,
7-column, 9-column and 11-column finite periodic structures are considered, as shown in
Figure 10. Figure 11 shows the result of the transmission spectra of 7-column, 9-column,
and 11-column finite periodic structures. As shown in Figure 11, with an increasing column
number, the transmission coefficient tends to the one with infinite periodic structures. Since
the transmission coefficients are almost the same between 9-column and 11-column finite
periodic structures, nine-column finite periodic structures are employed in the following
numerical investigations.
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4.2.2. Cross-Shaped Scatterer Case

Here, the unit cell structure of aurum/epoxy phononic crystal consists of a square
lattice and a cross-shaped scatterer and the measurements of the cross are 0.75 by 0.25.
The filling fraction of the cross-shaped scatterer is 0.3125. Figures 12 and 13 show the
corresponding node distributions in the proposed LCTM. In the present numerical im-
plementation, the discretization node number is N = 238 with node spacing ∆h = 1/13
for band structure calculation, and the discretization node number is N = 3950 with the
same node spacing ∆h = 1/15 for the calculation of transmission spectra and displacement
amplitude distributions. The calculated band structures and transmission spectra obtained
by using the proposed LCTM and the FEM (COMSOL, 264 elements for band structures,
6284 elements for transmission spectra) are in good agreement, which is shown in Figure 14.
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Figure 12. Nodes distribution for the unit cell of phononic crystal with cross-shaped scatterer.
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Figure 14. Transmission spectra aurum/epoxy phononic crystal with cross-shaped scatterer, along with the Γ− X direction
and the band structures calculated by the proposed LCTM and FEM (ABC), FEM (PML).

As shown in Figure 14, it can be found that when the angular frequency is within
the range of band gaps, the transmission coefficient is very low, namely, the low trans-
mission coefficient region corresponds well to the calculated band gaps. Figure 15 shows
the displacement amplitude distributions computed by the proposed LCTM and FEM +
ABC/PML (COMSOL) presented at two specific normalized frequencies ( ωa

2πc0
= 0.5, 0.8).

It is easy to observe from Figure 15 that the SH wave is blocked at the normalized frequency
( ωa

2πc0
= 0.5) in the bandgap region, and it cannot hinder the SH wave propagation at the

normalized frequency ( ωa
2πc0

= 0.8) in the pass band region.

4.3. Phononic Crystals with Triangular Lattice

In this subsection, another popular type of lattice, the triangular lattice, is investigated
under the phononic crystals with both the infinite periodic structure and semi-infinite
periodic structure in the y-direction. All the numerical results obtained by the proposed
LCTM are compared with the solutions obtained by the FEM (ABC) and FEM (PML).

4.3.1. Circular Scatterer Case

In this case, the unit cell structure of aurum/epoxy phononic crystal consists of a
hexagon matrix and a circular scatterer. The filling fraction of the circular scatterer is 0.4.
Figure 16 shows the corresponding node distributions for the infinite periodic structure
and semi-infinite periodic structure in the y-direction in the proposed LCTM. In the present
numerical implementation, the discretization node number is N = 199 with node spacing
∆h = 1/13 for band structure calculation, and the discretization node number is N = 2808
with the same node spacing ∆h = 1/15 for the calculation of transmission spectra and
displacement amplitude distributions. The calculated band structures and transmission
spectra obtained by using the proposed LCTM and the FEM (COMSOL, 284 elements for
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band structures, 4071 elements for transmission spectra) are in good agreement, which can
be found in Figure 17. The following similar conclusion can be drawn from Figure 17, that
is, the low transmission coefficient region in the transmission spectra corresponds well
with the calculated band gaps. Figure 18 shows the displacement amplitude distributions
at two specific normalized frequencies ( ωa

2πc0
= 0.5, 0.9) computed by the proposed LCTM

and FEM + ABC/PML (COMSOL) to validate and intuitively understand the band gap
characteristics of phononic crystals.
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4.3.2. Square Scatterer Case

In this case, the unit cell structure of aurum/epoxy phononic crystal consists of a
hexagon matrix and a square scatterer. The filling fraction of the square scatterer is 0.25.
Figure 19 shows the corresponding node distributions for the infinite periodic structure
and semi-infinite periodic structure in the y-direction in the proposed LCTM. In the present
numerical implementation, the discretization node number is N = 212 with node spac-
ing ∆h = 1/13 for band structure calculation, and the discretization node number is
N = 2978 with the node spacing ∆h = 1/15 for the calculation of transmission spectra and
displacement amplitude distributions. The calculated band structures and transmission
spectra obtained by using the proposed LCTM and the FEM (COMSOL, 248 elements for
band structures, 3357 elements for transmission spectra) are in good agreement, which is
shown in Figure 20. The following similar conclusion can be drawn from Figure 20, that is,
the low transmission coefficient region in the transmission spectra corresponds well with
the calculated band gaps. Figure 21 shows the displacement amplitude distributions at
two specific normalized frequencies ( ωa

2πc0
= 0.6, 1.48) computed by the proposed LCTM

and FEM + ABC/PML (COMSOL) to validate and intuitively understand the band gap
characteristics of phononic crystals.
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Finally, computational times of the proposed LCTM and the FEM in the solution of
the cases in Sections 4.2 and 4.3 are listed in Table 6. It can be observed from Table 6 that all
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the numerical calculations are less than 4 min, and the code of the proposed LCTM may be
further improved to save CPU time.

Table 6. CPU times by using the proposed LCTM + ABC and FEM + ABC in Sections 4.2 and 4.3.

Cases Transmission
by LCTM

Transmission
by COMSOL

Band Structure
by LCTM

Band Structure
by COMSOL

4.2.1 133 s 32 s 68 s 58 s
4.2.2 197 s 29 s 120 s 47 s
4.3.1 146 s 18 s 58 s 56 s
4.3.2 134 s 16 s 95 s 62 s

5. Conclusions

In this paper, a novel localized collocation scheme based on T-complete functions
is applied, for the first time, to calculate the band structures, transmission spectra, and
displacement amplitude distribution for anti-plane transverse elastic waves in 2D solid
phononic crystals. As compared with analytical solutions and COMSOL simulation, the
proposed localized collocation Trefftz method (LCTM) can provide similar accurate results
with less computational times for calculating the transmission spectra and displacement am-
plitude distribution of the simple/complicated-shaped scatterers in the square/triangular
lattice. This is because the semi-analytical T-complete functions are employed in the
proposed LCTM.

Under the present numerical investigations, it can be summarized that the computed
wave transmission spectra for a phononic crystal with semi-infinite periodic structure are
basically consistent with the corresponding band structures for a phononic crystal with
infinite periodic structure. Additionally, in the design of phononic crystals, it is sufficient
to use a nine-column finite period structure instead of an ideal infinite period structure to
block the SH wave propagation at specific angular frequencies.

Overall, it is concluded that the proposed LCTM could be considered to be a competi-
tive alternative for the calculation of band structures, transmission spectra, and displace-
ment amplitude distribution in phononic crystals, after further extensive numerical and
theoretical study. It is also possible, in principle, to extend the proposed LCTM to the cal-
culation of band structures, transmission spectra, and displacement amplitude distribution
in three-dimensional (3D) phononic crystals, which is under intense study and which we
plan to report in a subsequent paper.
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