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Abstract: In this paper, we consider a bilevel optimization problem as a task of finding the optimum
of the upper-level problem subject to the solution set of the split feasibility problem of fixed point
problems and optimization problems. Based on proximal and gradient methods, we propose a
strongly convergent iterative algorithm with an inertia effect solving the bilevel optimization problem
under our consideration. Furthermore, we present a numerical example of our algorithm to illustrate
its applicability.
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1. Introduction

Let H be a real Hilbert space and consider the constrained minimization problem:

min h
s.t. x ∈ C

(1)

where C is a nonempty closed convex subset of H and h : H → R is a convex and continuously
differentiable function. The gradient–projection algorithm (GPA, for short) is usually applied to solve
the minimization problem (1) and has been studied extensively by many authors; see, for instance, [1–3]
and references therein. This algorithm generates a sequence {xn} through the recursion:

xn+1 = PC(xn − γ∇h(xn)), (2)

where ∇h is the gradient of h, x0 is the initial guess chosen arbitrarily from C, γ is a stepsize which
may be chosen in different ways, and PC is the metric projection from H onto C. By the optimality
condition on problem (1), it follows that

x̄ ∈ C solves (1) if and only if 〈∇h(x̄), y− x̄〉 ≥ 0, ∀y ∈ C.

If ∇h is Lipschitz continuous and strongly monotone, i.e., there exists Lh > 0 and σ > 0 such that for
all x, y ∈ H,

‖∇h(x)−∇h(y)‖ ≤ Lh‖x− y‖ and 〈∇h(x)−∇h(y), x− y〉 ≥ σ‖x− y‖2,
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then the operator Tγ = PC(I − γ∇h) is a contraction provided that 0 < γ < 2σ
L2

h
. Therefore,

for 0 < γ < 2σ
L2

h
, we can apply Banach’s contraction principle to get that the sequence {xn} defined by

(2) converges strongly to the unique fixed point of Tγ (or the unique solution of the minimization (1)).
Moreover, if you set C = H in (1), then we have an unconstrained optimization problem, and hence
the gradient algorithm

xn+1 = xn − γ∇h(xn)

generates a sequence {xn} strongly convergent to the global minimizer point of h.
Consider the other most well-known problem called unconstrained minimization problem:

min g
s.t. x ∈ H ,

(3)

where H is a real Hilbert space and g : H → R ∪ {+∞} is a proper, convex, lower semicontinuous
function. An analogous method for solving (3) with better properties is based on the notion of proximal
mapping introduced by Moreau [4], i.e., the proximal operator of the function g with scaling parameter
λ > 0 is a mapping proxλg : H → H given by

proxλg(x) = arg min
y∈H
{g(y) + 1

2λ
‖x− y‖2}.

Proximal operators are firmly nonexpansive and the optimality condition of (3) is

x̄ ∈ H solves (3) if and only if proxλg(x̄) = x̄.

Many properties of proximal operator can be found in [5] and the references therein. We know that
the so called proximal point algorithm, i.e., xn+1 = proxλg(xn), is the most popular method solving
optimization problem (3) (introduced by Martinet [6,7] and later by Rockafellar [8]).

The split inverse problem (SIP) [9] is formulated by linking problems installed in two different
places X and Y connected by a linear transformations, i.e., SIP is a problem of finding a point in space
X solving a problem IP1 installed in X and its image under linear transformation solves a problem IP2
installed in another space Y. The presence of step size choice dependent on operator norm is not quite
recommended in the iterative method of solving SIPs, as it is not always easy to estimate the norm of
an operator; see, for example, the Theorem of Hendrickx and Olshevsky in [10]. For example, in the
early study of the iterative method of solving the split feasibility problem [11–13], the determination of
the step-size depends on the operator norm (or at least estimate value of the operator norm) and this is
not as easy of a task. To overcome this difficulty, Lopez et al. [14] introduced a new way of selecting
the step sizes that the information of operator norm is not necessary for solving a split feasibility
problem (SFP):

find x̄ ∈ C such that Ax̄ ∈ Q

where C and Q are closed convex subsets of real Hilbert spaces H1 and H2, respectively. To be precise,
Lopez et al. [14] introduced an iterative algorithm that generates a sequence {xn} by

xn+1 = PC(I − γn A∗(I − PQ)A)xn. (4)

The parameter γn appeared in (4) by γn = ρn l(xn)
‖∇l(xn)‖2 , ∀n ≥ 1, where ρn ∈ (0, 4), l(xn) = 1

2‖(I −
PQ)Axn‖2 and ∇l(xn) = A∗(I − PQ)Axn.

A bilevel problem is a two-level hierarchical problem such that the solution of the lower level
problem determines the feasible space of the upper level problem. In general, Yimer et al. [15]
presented a bilevel problem as an archetypal model given by
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find x̄ ∈ S ⊂ X that solves problem P1 installed in a space X, (5)

where S is the solution set of the problem

find x∗ ∈ Y ⊂ X that solves problem P2 installed in a space X. (6)

According to [16], the bilevel problem (problem (5) and (6)) is a hierarchical game of two players as
decision makers who make their decisions according to a hierarchical order. The problem is also called
the leader’s and follower’s problem where the problem (5) is called the leader’s problem and (6) is
called the follower’s problem, meaning, the first player (which is called the leader) makes his selection
first and communicates it to the second player (the so-called follower). There are many studies for
several type bilevel problems, see, for example, [15,17–24]. The bilevel optimization problem is a bilevel
problem when the hierarchical structure involves the optimization problem. Bilevel optimization
problems have become an increasingly important class of optimization problems during the last
few years and decades due their to vast application of solving the real life problems. For example,
in toll-setting problem [25], in chemical engineering [26], in electricity markets [27], and in supply
chain problems [28].

Motivated by the above theoretical results and inspired by the applicability of the bilevel problem,
we consider the following bilevel optimization problem given by

min h
s.t. x ∈ ⋂N

i=1 FixUi,
A(x) ∈ ⋂M

j=1 arg min gj,
(7)

where A : H1 → H2 is a linear transformation, h : H1 → R is convex function, gj : H2 → R∪ {+∞} is
convex nonsmooth function, and arg min gj = {z̄ ∈ H2 : gj(z̄) ≤ gj(z), ∀z ∈ H2} for j ∈ {1, . . . , M},
Ui : H1 → H1 is demimetric mapping and FixUi = {x ∈ H1 : Ui(x) = x} for i ∈ {1, . . . , N}, and H1

and H2 are two real Hilbert spaces.
For a real Hilbert space H, the mapping U : H → H with FixU 6= ∅ is called ω-demimetric if

ω ∈ (−∞, 1) and

〈x− x̄, x−Ux〉 ≥ 1−ω

2
‖x−Ux‖2, ∀x ∈ H, ∀x̄ ∈ FixU. (8)

The demimetric mapping is introduced by Takahashi [29] in a smooth, strictly convex and reflexive
Banach space. For a real Hilbert space H, (8) is equivalent to the following:

‖Ux− x̄‖2 ≤ ‖x− x̄‖2 + ω‖x−Ux‖2, ∀x ∈ H, ∀x̄ ∈ FixU,

and FixU is a closed and convex subset of H [29]. The class of demimetric mappings contains the
classes of strict pseudocontractions, firmly quasi-nonexpansive mappings, and quasi-nonexpansive
mappings, see [29,30] and the references therein.

Assume that Ω is the set of solutions of lower level problems of the bilevel optimization
problem (7), that is,

Ω =
{

x ∈
N⋂

i=1

FixUi : A(x) ∈
M⋂

j=1

arg min gj

}
. (9)

Therefore, the bilevel optimization problem (7) is simply

min h
s.t. x ∈ Ω ,
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where Ω is given by (9). If H1 = H2 = H, A = I (identity operator), g = gj for all j ∈ {1, . . . , M},
the problem (7) is reduced to the bilevel optimization problem:

min h
s.t. x ∈ arg min g.

(10)

Bilevel problems like (10) have already been considered in the literature, for example, [23,31,32] for the
case H = Rp.

Note that, to the best of our knowledge, the bilevel optimization problem (7), with a finite
intersection of fixed point sets of the broadest class of nonlinear mappings and finite intersection of
minimize point sets of non-smooth functions as a lower level, has not been addressed before.

An inertial term is a two-step iterative method, and the next iterate is defined by making use of
the previous two iterates. It is firstly introduced by Polyak [33] as an acceleration process in solving a
smooth convex minimization problem. It is well known that combining algorithms with an inertial
term speeds up or accelerates the rate of convergence of the sequence generated by the algorithm.
In this paper, we introduce a proximal gradient inertial algorithm with a strong convergence result for
approximating a bilevel optimization problem (7), where our algorithm is designed to address a way of
selecting the step-sizes such that its implementation does not need any prior information about the
operator norm.

2. Preliminary

Let C be a nonempty closed convex subset of a real Hilbert space H. The metric projection on C is
a mapping PC : H → C defined by

PC(x) = arg min{‖y− x‖ : y ∈ C}, x ∈ H.

For x ∈ H and z ∈ C, then z = PC(x) if and only if 〈x− z, y− z〉 ≤ 0, ∀y ∈ C.

Let T : H → H. Then,

(a) T is L-Lipschitz if there exists L > 0 such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ H.

If L ∈ (0, 1), then we call T a contraction with constant L. If L = 1, then T is called a
nonexpansive mapping.

(b) T is strongly monotone if there exists σ > 0 such that

〈Tx− Ty, x− y〉 ≥ σ‖x− y‖2, ∀x, y ∈ H.

In this case, T is called σ-strongly monotone.
(c) T is firmly nonexpansive if

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ||(I − T)x− (I − T)y‖2, ∀x, y ∈ H,

which is equivalent to

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉, ∀x, y ∈ H.

If T is firmly nonexpansive, I − T is also firmly nonexpansive.
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Let H be a real Hilbert space. If G : H → 2H is maximal monotone set-valued mapping, then we define
the resolvent operator JG

λ associated with G and λ > 0 as follows:

JG
λ (x) = (I + λG)−1(x), x ∈ H.

It is well known that JG
λ is single-valued, nonexpansive, and 1-inverse strongly monotone (firmly

nonexpansive). Moreover, 0 ∈ G(x̄) if and only if x̄ is a fixed point of JG
λ for all λ > 0; see more

about maximal monotone and its associated resolvent operator and examples of maximal monotone
operators in [34].

The subdifferential of a convex function f : H → R ∪ {+∞} at x ∈ H, denoted by ∂ f (x),
is defined by

∂ f (x) = {ξ ∈ H : f (z) ≥ f (x) + 〈ξ, z− x〉, ∀z ∈ H}.

If ∂ f (x) 6= ∅, f is said to be subdifferentiable at x. If the function f is continuously differentiable,
then ∂ f (x) = {∇ f (x)}; this is the gradient of f . If f is a proper, lower semicontinuous function,
the subdifferential operator is a maximal monotone operator, and the proximal operator is the resolvent
of the subdifferential operator (see, for example, in [5]), i.e.,

proxλ f = J∂ f
λ = (I + λ∂ f )−1

Thus, this results in proximal operators being firmly nonexpansive, and a point x̄ minimizes f if and
only if proxλ f (x̄) = x̄.

Definition 1. Let H be a real Hilbert space. A mapping U : H → H is called demiclosed if, for a sequence
{xn} in H such that {xn} converges weakly to x̄ and lim

n→∞
‖xn −Uxn‖ = 0, Ux̄ = x̄ holds.

Lemma 1. For a real Hilbert space H, we have

(i) ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉, ∀x, y ∈ H;
(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H;
(iii) 〈x, y〉 = 1

2‖x‖2 + 1
2‖y‖2 − 1

2‖x− y‖2, ∀x, y ∈ H.

Lemma 2. [35] Let {cn} and {γn} be a sequences of nonnegative real numbers, {βn} be a sequences of real
numbers such that

cn+1 ≤ (1− αn)cn + βn + γn, n ≥ 1,

where 0 < αn < 1 and ∑ γn < ∞.

(i) If βn ≤ αn M for some M ≥ 0, then {cn} is a bounded sequence.
(ii) If ∑ αn = ∞ and lim sup

n→∞

βn
αn
≤ 0, then cn → 0 as n→ ∞.

Definition 2. Let {Γn} be a real sequence. Then, {Γn} decreases at infinity if there exists n0 ∈ N such that
Γn+1 ≤ Γn for n ≥ n0. In other words, the sequence {Γn} does not decrease at infinity, if there exists a
subsequence {Γnt}t≥1 of {Γn} such that Γnt < Γnt+1 for all t ≥ 1.

Lemma 3. [36] Let {Γn} be a sequence of real numbers that does not decrease at infinity. In addition, consider
the sequence of integers {ϕ(n)}n≥n0 defined by

ϕ(n) = max{k ∈ N : k ≤ n, Γk ≤ Γk+1}.

Then, {ϕ(n)}n≥n0 is a nondecreasing sequence verifying lim
n→∞

ϕ(n) = 0, and, for all n ≥ n0, the following two
estimates hold:

Γϕ(n) ≤ Γϕ(n)+1 and Γn ≤ Γϕ(n)+1.
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Let D be a closed, convex subset of a real Hilbert space H and g : D× D → R be a bifunction.
Then, we say that g satisfies condition CO on D if the following four assumptions are satisfied:

(a) g(u, u) = 0, for all u ∈ D;
(b) g is monotone on D, i.e., g(u, v) + g(v, u) ≤ 0, for all u, v ∈ D;
(c) for each u, v, w ∈ D, lim supα↓0 g(αw + (1− α)u, v) ≤ g(u, v);
(d) g(u, .) is convex and lower semicontinuous on D for each u ∈ D.

Lemma 4. [37] (Lemma 2.12) Let g satisfy condition CO on D. Then, for each r > 0 and u ∈ H2, define a
mapping (called resolvant of g), given by

Tg
r (u) = {w ∈ D : g(w, v) +

1
r
〈v− w, w− u〉 ≥ 0, ∀v ∈ D}. (11)

Then, the following holds:

(i) Tg
r is single-valued;

(ii) Tg
r is a firmly nonexpansive, i.e., for all u, v ∈ H,

‖Tg
r (u)− Tg

r (v)‖2 ≤ 〈Tg
r (u)− Tg

r (v), u− v〉;

(iii) Fix(Tg
r ) = SEP(g, D) = {x̄ ∈ D : g(x̄, y) ≥ 0, ∀y ∈ D}, where Fix(Tg

r ) is the fixed point set of Tg
r ;

(iv) SEP(g, D) is closed and convex.

3. Main Results

Our approach here is based on taking an existing algorithm on (1), (3), and the fixed point problem
of nonlinear mapping, and determining how it can be used in the setting of bilevel optimization
problem (7) considered in this paper. We present a self-adaptive proximal gradient algorithm with an
inertial effect for generating a sequence that converges to the unique solution of the bilevel optimization
problem (7) under the the following basic assumptions.

Assumption 1. Assume that A, h, gj (j ∈ {1, . . . , M}) and Ui (i ∈ {1, . . . , N}) in a bilevel optimization
problem (7) satisfies

A1. Each A is nonzero bounded linear operator;
A2. h is proper, convex, continuously differentiable, and the gradient ∇h is a σ-strongly monotone operator

and Lh-Lipschitz continuous;
A3. Each Ui is ωi-demimetric and demiclosed mapping for all i ∈ {1, . . . , N};
A4. Each gj is a proper, convex, lower semicontinuous function for all j ∈ {1, . . . , M}.

Assumption 2. Let θ ∈ [0, 1) and γ be a real number, and the real sequences {β(i)
n } (i ∈ {1, . . . , N}), {δ(j)

n }
(j ∈ {1, . . . , M}), {αn}, {ρn}, {εn} satisfy the following conditions:

(C1) γ ∈ (0, 2σ
L2

h
).

(C2) 0 < lim inf
n→∞

ζ
(i)
n ≤ lim sup

n→∞
ζ
(i)
n < 1, ∀i ∈ {1, . . . , N}, and

N
∑

i=1
ζ
(i)
n = 1.

(C3) 0 < lim inf
n→∞

δ
(j)
n ≤ lim sup

n→∞
δ
(j)
n < 1, ∀j ∈ {1, . . . , M}, and

M
∑

j=1
δ
(j)
n = 1.

(C4) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < β = min{1−ω1, . . . , 1−ωN}.

(C5) 0 < αn < 1, lim
n→∞

αn = 0 and
∞
∑

n=1
αn = ∞.

(C6) 0 < ρn < 4 and lim inf
n→∞

ρn(4− ρn) > 0.
(C7) εn > 0 and εn = o(αn).
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Assuming that the Assumption 1 is satisfied, the solution set Ω of the lower level problem of (7)
is nonempty, and, for each j ∈ {1, . . . , M}, define l(j) by

l(j)(x) =
1
2
‖(I − proxλgj

)A(x)‖2.

Note that, from Aubin [38], if gj is indicator function, then l(j) is convex, w-lsc and differentiable for
each j ∈ {1, . . . , M}, and ∇l(j) is given by

∇l(j)(x) = A∗(I − proxλgj
)A(x)

Next, we present and analyze the strong convergence of Algorithm 1 using l(j) and ∇l(j) by
assuming that l(j) is differentiable.

Algorithm 1: Self-adaptive proximal gradient algorithm with inertial effect.

Initialization: Let the real number γ and the real sequences {β(i)
n } (i ∈ {1, . . . , N}), {δ(j)

n }
(j ∈ {1, . . . , M}), {αn}, {βn}, {ρn} and {εn} satisfy the conditions in Assumption 2
(C1)–(C7).

Choose x0, x1 ∈ H arbitrarily and proceed with the following computations:

Step 1. Given the iterates xn−1 and xn (n ≥ 1), choose θn such that 0 ≤ θn ≤ θ̄n, where

θ̄n :=

{
min

{
θ, εn
‖xn−1−xn‖

}
, if xn−1 6= xn

θ, otherwise.

Step 2. Evaluate yn = xn + θn(xn − xn−1).
Step 3. Evaluate

sn =
N

∑
i=1

ζ
(i)
n ((1− βn)I − βnUi)yn.

Step 4. Find

zn = sn −
M

∑
j=1

δ
(j)
n τ

(j)
n ∇l(j)(sn),

where τ
(j)
n = ρn

l(j)(sn)

(η
(j)
n )2

for η
(j)
n = max{1, ‖∇l(j)(sn)‖}.

Step 5. Find xn+1 = αn(yn − γ∇h(yn)) + (1− αn)zn.
Step 6. Set n := n + 1 and go to Step 1.

Remark 1. From Condition (C7) and Step 1 of Algorithm 1, we have that

θn

αn
‖xn − xn−1‖ → 0, n→ ∞.

Since {αn} is bounded, we also have θn‖xn − xn−1‖ → 0, n→ ∞. Note that Step 1 of Algorithm 1 is easily
implemented in numerical computation since the value of ‖xn − xn−1‖ is a priori known before choosing θn.

Note that: Let Vγ = I − γ∇h, where γ ∈ (0, 2σ
L2

h
). Then, we have

‖Vγ(x)−Vγ(y)‖2 ≤ ‖x− y‖2 + γ2‖∇h(x)−∇h(y)‖2

−2γ〈∇h(x)−∇h(y), x− y〉
≤ ‖x− y‖2 + γ2L2

h‖x− y‖2 − 2γσ‖x− y‖2

= µ2‖x− y‖2, ∀x, y ∈ H1, (12)
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where for µ =
√

1− γ(2σ− γL2
h). Therefore, for γ ∈ (0, 2σ

L2
h
), the mapping Vγ is a contraction mapping

with constant µ. Consequently, the mapping PΩVγ is also a contraction mapping with constant µ, i.e.,
‖PΩVγ(x)− PΩVγ(y)‖ ≤ ‖Vγ(x)−Vγ(y)‖ ≤ µ‖x− y‖, ∀x, y ∈ H1. Hence, by the Banach contraction
principle, there exists a unique element x̄ ∈ H1 such that x̄ = PΩVγ(x̄). Clearly, x̄ ∈ Ω and we have

x̄ = PΩVγ(x̄)⇔ 〈∇h(x̄), y− x̄〉 ≥ 0, ∀y ∈ Ω.

Lemma 5. For the sequences {sn}, {yn} and {zn} generated by Algorithm 1 and for x̄ ∈ Ω, we have

(i) ‖zn − x̄‖2≤ ‖yn − x̄‖2 −
N
∑

i=1
ζ
(i)
n βn(1−ωi − βn)‖(I −Ui)yn‖2

−ρn(4− ρn)
M
∑

j=1
δ
(j)
n

(l(j)(sn))2

(η
(j)
n )2

.

(ii) ‖zn − x̄‖ ≤ ‖sn − x̄‖ ≤ ‖yn − x̄‖.

Proof. Let x̄ ∈ Ω. Now, since I − proxλgj
are firmly nonexpansive, and since A(x̄) is the minimizer of

each gj, we have for all x ∈ H1

〈∇l(j)(x), x− x̄〉 = 〈A∗(I − proxλgj
)A(x), x− x̄〉

= 〈(I − proxλgj
)A(x), A(x)− Ak(x̄)〉

≥ ‖(I − proxλgj
)A(x)‖2 = 2l(j)(x). (13)

By the definition of zn, we get

‖sn − x̄‖2=
∥∥∥ N

∑
i=1

ζ
(i)
n ((1− βn)I − βnUi)yn − x̄

∥∥∥2

≤
N
∑

i=1
ζ
(i)
n ‖((1− βn)I − βnUi)yn − x̄‖2

=
N
∑

i=1
ζ
(i)
n

(
‖yn − x̄‖2 + β2

n‖(I −Ui)yn‖2

−2βn〈yn − x̄, (I −Ui)yn〉
)

=
N
∑

i=1
ζ
(i)
n

(
‖yn − x̄‖2 + β2

n‖(I −Ui)yn‖2

−βn(1−ωi)‖(I −Ui)yn‖2
)

= ‖yn − x̄‖2 −
N
∑

i=1
ζ
(i)
n βn(1−ωi − βn)‖(I −Ui)yn‖2.

(14)



Math. Comput. Appl. 2020, 25, 66 9 of 20

Using the definition of yn, Lemma 1 (ii), and (13), we have

‖zn − x̄‖2 =
∥∥sn −

M

∑
j=1

δ
(j)
n τ

(j)
n ∇l(j)(sn)− x̄

∥∥2

≤
M

∑
j=1

δ
(j)
n
∥∥sn − τ

(j)
n ∇l(j)(sn)− x̄

∥∥2

≤
M

∑
j=1

δ
(j)
n

(∥∥sn − x̄‖2 + ‖τ(j)
n ∇l(j)(sn)‖2 − 2τ

(j)
n 〈∇l(j)(sn), sn − x̄〉

)
≤

M

∑
j=1

δ
(j)
n

(∥∥sn − x̄‖2 + (τ
(j)
n ‖∇l(j)(sn)‖)2 − 4τ

(j)
n l(j)(sn)

)
≤

M

∑
j=1

δ
(j)
n

(∥∥sn − x̄‖2 + (τ
(j)
n η

(j)
n )2 − 4τ

(j)
n l(j)(sn)

)
=

M

∑
j=1

δ
(j)
n

{∥∥sn − x̄‖2 +
(

ρn
l(j)(sn)

(η
(j)
n )2

η
(j)
n

)2
− 4ρn

l(j)(sn)

(η
(j)
n )2

l(j)(sn)
}

= ‖sn − x̄‖2 − ρn(4− ρn)
M

∑
j=1

δ
(j)
n

(l(j)(sn))2

(η
(j)
n )2

. (15)

The result (i) follows from (14) and (15), and, in view of (C2)–(C6), the result (ii) follows from (14)
and (15).

Theorem 1. The sequence {xn} generated by Algorithm 1 converges strongly to the solution of problem (7).

Proof. Claim 1: The sequences {xn}, {yn} and {zn} are bounded.
Let x̄ ∈ Ω. Now, from the definition of yn, we get

‖yn − x̄‖ = ‖xn + θn(xn − xn−1)− x̄‖ ≤ ‖xn − x̄‖+ θn‖xn − xn−1‖. (16)

Using (16) and the definition of xn+1, we get

‖xn+1 − x̄‖ = ‖(1− αn)(zn − x̄) + αn(Vγ(yn)−Vγ(x̄)) + αn(Vγ(x̄)− x̄)‖
= (1− αn)‖zn − x̄‖+ αn‖Vγ(yn)−Vγ(x̄)‖+ αn‖Vγ(x̄)− x̄‖
= (1− αn)‖zn − x̄‖+ αnµ‖yn − x̄‖+ αn‖Vγ(x̄)− x̄‖
≤ (1− αn(1− µ))‖yn − x̄‖+ αn‖Vγ(x̄)− x̄‖
≤ (1− αn(1− µ))‖xn − x̄‖+ (1− αn(1− µ))θn‖xn − xn−1‖

+αn‖Vγ(x̄)− x̄‖
≤ (1− αn(1− µ))‖xn − x̄‖ (17)

+αn(1− µ)
{ (1− αn(1− µ))

1− µ

θn

αn
‖xn − xn−1‖+

‖Vγ(x̄)− x̄‖
1− µ

}
.

Observe that, by (C6) and Remark 1, we see that

lim
n→∞

(1− αn(1− µ))

1− µ

θn

αn
‖xn − xn−1‖ = 0.

Let L̂ = 2 max
{
‖Vγ(x̄)−x̄‖

1−µ , supn≥1
(1−αn(1−µ))

1−µ
θn
αn
‖xn − xn−1‖

}
.

Then, (17) becomes
‖xn+1 − x̄‖ ≤ (1− αn(1− µ))‖xn − x̄‖+ αn(1− µ)L̂.
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Thus, by Lemma 2, the sequence {xn} is bounded. As a consequence, {yn}, {zn} {Vγ(yn)} and {sn}
are also bounded.
Claim 2: The sequence {xn} converges strongly to x̄ ∈ Ω, where x̄ = PΩVγ(x̄).
Now,

‖yn − x̄‖2 = ‖xn + θn(xn − xn−1)− x̄‖2

= ‖xn − x̄‖2 + θ2
n‖xn − xn−1‖2 + 2θn〈xn − x̄, xn − xn−1〉. (18)

From Lemma 1 (iii), we have

〈xn − x̄, xn − xn−1〉 =
1
2
‖xn − x̄‖2 − 1

2
‖xn−1 − x̄‖2 +

1
2
‖xn − xn−1‖2. (19)

From (18) and (19) and since 0 ≤ θn < 1, we get

‖yn − x̄‖2 = ‖xn − x̄‖2 + θ2
n‖xn − xn−1‖

+θn(‖xn − x̄‖2 − ‖xn−1 − x̄‖2 + ‖xn − xn−1‖2)

≤ ‖xn − x̄‖2 + 2θn‖xn − xn−1‖2 (20)

+θn(‖xn − x̄‖2 − ‖xn−1 − x̄‖2).

Using the definition of xn+1 and Lemma 1 (ii), we have

‖xn+1 − x̄‖2 = ‖αnVγ(yn) + (1− αn)zn − x̄‖2

= ‖αn(Vγ(yn)− x̄) + (1− αn)(zn − x̄)‖2

≤ (1− αn)
2‖zn − x̄‖2 + 2αn〈Vγ(yn)− x̄, xn+1 − x̄〉

≤ ‖zn − x̄‖2 + 2αn〈Vγ(yn)− x̄, xn+1 − x̄〉. (21)

Lemma 5 (i) together with (20) and (21) give

‖xn+1 − x̄‖2≤ ‖zn − x̄‖2 + 2αn〈Vγ(yn)− x̄, xn+1 − x̄〉
≤ ‖yn − x̄‖2 + 2αn〈Vγ(yn)− x̄, xn+1 − x̄〉

−
N
∑

i=1
ζ
(i)
n βn(1−ωi − βn)‖(I −Ui)yn‖2

−ρn(4− ρn)
M
∑

j=1
δ
(j)
n

(l(j)(sn))2

(η
(j)
n )2

≤ ‖xn − x̄‖2 + 2θn‖xn − xn−1‖2

+θn(‖xn − x̄‖2 − ‖xn−1 − x̄‖2)

+2αn〈Vγ(yn)− x̄, xn+1 − x̄〉

−
N
∑

i=1
ζ
(i)
n βn(1−ωi − βn)‖(I −Ui)yn‖2

−ρn(4− ρn)
M
∑

j=1
δ
(j)
n

(l(j)(sn))2

(η
(j)
n )2

.

(22)

Since the sequence {xn} and {Vγ(yn)} are bounded, there exists M1 such that 2〈Vγ(yn)− x̄, xn+1 −
x̄〉 ≤ M1 for all n ≥ 1. Thus, from (22), we obtain

‖xn+1 − x̄‖2≤ ‖xn − x̄‖2 + 2θn‖xn − xn−1‖2

+θn(‖xn − x̄‖2 − ‖xn−1 − x̄‖2) + αn M1

−
N
∑

i=1
ζ
(i)
n βn(1−ωi − βn)‖(I −Ui)yn‖2

−ρn(4− ρn)
M
∑

j=1
δ
(j)
n

(l(j)(sn))2

(η
(j)
n )2

.

(23)
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Let us distinguish the following two cases related to the behavior of the sequence {Γn} where Γn =

‖xn − x̄‖2.
Case 1. Suppose the sequence {Γn} decreases at infinity. Thus, there exists n0 ∈ N such that Γn+1 ≤ Γn

for n ≥ n0. Then, {Γn} converges and Γn − Γn+1 → 0 as n→ 0.
From (23), we have

N
∑

i=1
ζ
(i)
n βn(1−ωi − βn)‖(I −Ui)yn‖2 ≤ (Γn − Γn+1) + αn M1

+θn(Γn − Γn−1) + 2θn‖xn − xn−1‖2,
(24)

and

ρn(4− ρn)
M
∑

j=1
δ
(j)
n

(l(j)(sn))2

(η
(j)
n )2

≤ (Γn − Γn+1) + αn M1

+θn(Γn − Γn−1) + 2θn‖xn − xn−1‖2.
(25)

Since Γn − Γn+1 → 0 (Γn−1 − Γn → 0) and using (C5), (C6), and Remark 1 (noting αn → 0, θn‖xn −
xn−1‖ → 0, {xn} is bounded and lim inf

n→∞
ρn(4− ρn) > 0); we have, from (24) and (25),

M

∑
j=1

δ
(j)
n

(l(j)(sn))2

(η
(j)
n )2

→ 0 and
N

∑
i=1

ζ
(i)
n βn(1−ωi − βn)‖(I −Ui)yn‖2 → 0. (26)

In view of (26) and conditions (C2)–(C6), we have

(l(j)(sn))2

(η
(j)
n )2

→ 0 and ‖(I −Ui)yn‖ → 0, n→ ∞, (27)

for all j ∈ {1, . . . , M} and for all i ∈ {1, . . . , N}.
Using (26), we have

‖sn − zn‖2 ≤ 16
M

∑
j=1

δ
(j)
n

(l(j)(sn))2

(η
(j)
n )2

→ 0, n→ ∞. (28)

Similarly, from (26), we have

‖yn − sn‖2 ≤ β2
N

∑
i=1

ζ
(i)
n ‖(I −Ui)yn‖2 → 0, n→ ∞. (29)

Using the definition of yn and Remark 1, we have

‖xn − yn‖ = ‖xn − xn − θn(xn − xn−1)‖ = θn‖xn − xn−1‖ → 0, n→ ∞. (30)

Moreover, using the definiton of xn+1 and boundedness of {Vγ(yn)} and {zn} together with condition
(C5), we have

‖xn+1 − zn‖ = αn‖Vγ(yn)− zn‖ → 0, n→ ∞. (31)

Therefore, from (28)–(31), we have

‖xn+1 − xn‖ ≤ ‖xn+1 − zn‖+ ‖zn − sn‖+ ‖sn − yn‖+ ‖xn − yn‖ → 0, n→ ∞. (32)

For each j ∈ {1, . . . , M},∇l(j)(.) are Lipschitz continuous with constant ‖A‖2. Therefore, the sequence
{(η(j)

n )2}∞
n=1 is bounded sequence for each j ∈ {1, . . . , M}, and hence, using (27), we have

lim
n→∞

l(j)(sn) = 0 for all j ∈ {1, . . . , M}.
Let p be a weak cluster point of {xn}; there exists a subsequence {xnl} of {xn} such that xnl ⇀ p as
l → ∞. Since ‖xn − yn‖ → 0 as n→ ∞ (from (30)), we have ynl ⇀ p as l → ∞. Hence, using ynl ⇀ p,
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(27) and demiclosedness of Ui, we have p ∈ FixUi for all i ∈ {1, . . . , N}.
Moreover, since ‖xn − sn‖ → 0 as n → ∞ (from (29) and (30)), we have snl ⇀ p as l → ∞. Hence,
the weak lower-semicontinuity of l(j)(.) implies that

0 ≤ l(j)(p) ≤ lim inf
l→∞

l(j)(snl ) = lim
n→∞

l(j)(sn) = 0

for all j ∈ {1, . . . , M}. That is, l(j)(p) = 1
2‖(I − proxλgj

)A(p)‖2 = 0 for all j ∈ {1, . . . , M}. Thus,

A(p) ∈ Ω.
We now show that lim sup

n→∞
〈(I −Vγ)x̄, x̄− xn〉 ≤ 0. Indeed, since x̄ = PΩVγ(x̄) and, from above, p is a

weak cluster point of {xn}, i.e., xnl ⇀ p, and p ∈ Ω, we obtain that

lim sup
n→∞

〈(I −Vγ)x̄, x̄− xn〉 = lim
l→∞
〈(I −Vγ)x̄, x̄− xnl 〉

= 〈(I −Vγ)x̄, x̄− p〉 ≤ 0. (33)

Since ‖xn+1 − xn‖ → 0 from (32), from (33), we obtain

lim sup
n→∞

〈(I −Vγ)x̄, x̄− xn+1〉 ≤ 0. (34)

Now, using Lemma 5 (ii), we get

‖xn+1 − x̄‖2 = 〈αnVγ(yn) + (1− αn)zn − x̄, xn+1 − x̄〉
= αn〈Vγ(yn)−Vγ(x̄), xn+1 − x̄〉+ (1− αn)〈zn − x̄, xn+1 − x̄〉

+αn〈Vγ(x̄)− x̄, xn+1 − x̄〉
≤ µαn‖yn − x̄‖‖xn+1 − x̄‖+ (1− αn)‖zn − x̄‖‖xn+1 − x̄‖

+αn〈V(x̄)− x̄, xn+1 − x̄〉
≤ (1− αn(1− µ))‖yn − x̄‖‖xn+1 − x̄‖+ αn〈Vγ(x̄)− x̄, xn+1 − x̄〉

≤ (1− αn(1− µ))
(‖yn − x̄‖2

2
+
‖xn+1 − x̄‖2

2

)
+αn〈Vγ(x̄)− x̄, xn+1 − x̄〉. (35)

Therefore, from (35), we have

‖xn+1 − x̄‖2 ≤ 1− αn(1− µ)

1 + αn(1− µ)
‖yn − x̄‖2 +

2αn

1 + αn(1− µ)
〈Vγ(x̄)− x̄, xn+1 − x̄〉

=
(

1− 2αn(1− µ)

1 + αn(1− µ)

)
‖yn − x̄‖2 +

2αn

1 + αn(1− µ)
〈Vγ(x̄)− x̄, xn+1 − x̄〉. (36)

Combining (36) and

‖yn − x̄‖ = ‖xn + θn(xn − xn−1)− x̄‖ ≤ ‖xn − x̄‖+ θn‖xn − xn−1‖,



Math. Comput. Appl. 2020, 25, 66 13 of 20

it holds that

‖xn+1 − x̄‖2 ≤
(

1− 2αn(1− µ)

1 + αn(1− µ)

)(
‖xn − x̄‖+ θn‖xn − xn−1‖

)2

+
2αn

1 + αn(1− µ)
〈Vγ(x̄)− x̄, xn+1 − x̄〉

=
(

1− 2αn(1− µ)

1 + αn(1− µ)

)(
‖xn − x̄‖2 + θ2

n‖xn − xn−1‖2

+2θn‖xn − x̄‖‖xn − xn−1‖
)
+

2αn

1 + αn(1− µ)
〈Vγ(x̄)− x̄, xn+1 − x̄〉

≤
(

1− 2αn(1− µ)

1 + αn(1− µ)

)
‖xn − x̄‖2 + θ2

n‖xn − xn−1‖2

+2θn‖xn − x̄‖‖xn − xn−1‖+
2αn

1 + αn(1− µ)
〈Vγ(x̄)− x̄, xn+1 − x̄〉. (37)

Since {xn} is bounded, there exists M2 > 0 such that ‖xn − x̄‖ ≤ M2 for all n ≥ 1. Thus, in view of
(37), we have

Γn+1 ≤
(

1− 2αn(1− µ)

1 + αn(1− µ)

)
Γn + θn‖xn − xn−1‖(θn‖xn − xn−1‖+ 2M2)

+
2αn

1 + αn(1− µ)
〈Vγ(x̄)− x̄, xn+1 − x̄〉

=
(
1− an

)
Γn + anϑn, (38)

where an = 2αn(1−µ)
1+αn(1−µ)

and

ϑn = 1+αn(1−µ)
2(1−µ)

( θn
αn
‖xn − xn−1‖

){
θn‖xn − xn−1‖+ 2M2

}
+ 1

1−µ 〈Vγ(x̄)− x̄, xn+1 − x̄〉.

From (C5), Remark 1 and (34), we have
∞
∑

n=1
an = ∞ and lim sup

n→∞
ϑn ≤ 0. Thus, using Lemma 2 and (38),

we get Γn → 0 as n→ ∞. Hence, xn → x̄ as n→ ∞.
Case 2. Assume that {Γn} does not decrease at infinity. Let ϕ : N→ N be a mapping for all n ≥ n0 (for
some n0 large enough) defined by

ϕ(n) = max{k ∈ N : k ≤ n, Γk ≤ Γk+1}.

By Lemma 3, {ϕ(n)}∞
n=n0

is a nondecreasing sequence, ϕ(n)→ ∞ as n→ ∞ and

Γϕ(n) ≤ Γϕ(n)+1 and Γn ≤ Γϕ(n)+1, ∀n ≥ n0. (39)
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In view of ‖xϕ(n) − x̄‖2 − ‖xϕ(n)+1 − x̄‖2 = Γϕ(n) − Γϕ(n)+1 ≤ 0 for all n ≥ n0 and (23), we have for all
n ≥ n0

ρϕ(n)(4− ρϕ(n))
M

∑
j=1

δ
(j)
ϕ(n)

(l(j)(sϕ(n)))
2

(η
(j)
ϕ(n))

2

≤ (Γϕ(n) − Γϕ(n)+1) + αϕ(n)M1 + θϕ(n)(Γϕ(n) − Γϕ(n)−1)

+2θϕ(n)‖xϕ(n) − xϕ(n)−1‖2

≤ αϕ(n)M1 + θϕ(n)(Γϕ(n) − Γϕ(n)−1) + 2θϕ(n)‖xϕ(n) − xϕ(n)−1‖2

≤ αϕ(n)M1 + θϕ(n)‖xϕ(n) − xϕ(n)−1‖
(√

Γϕ(n) +
√

Γϕ(n)−1

)
+2θϕ(n)‖xϕ(n) − xϕ(n)−1‖2. (40)

Similarly, from (23), we have for all n ≥ n0

N

∑
i=1

ζ
(i)
ϕ(n)βϕ(n)(1−ωi − βϕ(n))‖(I −Ui)yϕ(n)‖2

≤ αϕ(n)M1 + θϕ(n)‖xϕ(n) − xϕ(n)−1‖
(√

Γϕ(n) +
√

Γϕ(n)−1

)
+2θϕ(n)‖xϕ(n) − xϕ(n)−1‖2. (41)

Thus, for (40) and (41) together with (C3)–(C6) and Remark 1, we have for each j ∈ {1 . . . , M} and
i ∈ {1 . . . , N},

(l(j)(sϕ(n)))
2

(η
(j)
ϕ(n))

2
→ 0, and ‖(I −Ui)yϕ(n)‖ → 0, n→ ∞. (42)

Using a similar procedure as above in Case 1, we have

lim
n→∞

‖xϕ(n) − sϕ(n)‖ = lim
n→∞

‖xϕ(n) − yϕ(n)‖ = lim
n→∞

‖xϕ(n)+1 − xϕ(n)‖ = 0.

By the similar argument as above in Case 1, since {xϕ(n)} is bounded, there exists a subsequence of
{xϕ(n)} which converges weakly to p ∈ Ω and this gives lim sup

n→∞
〈(I −Vγ)x̄, x̄− xϕ(n)+1〉 ≤ 0. Thus,

from (38), we have
Γϕ(n)+1≤

(
1− aϕ(n)

)
Γϕ(n) + aϕ(n)ϑϕ(n), (43)

where aϕ(n) =
2αϕ(n)(1−µ)

1+αϕ(n)(1−µ)
and

ϑϕ(n) =
1+αϕ(n)(1−µ)

2(1−µ)

( θϕ(n)
αϕ(n)
‖xϕ(n)−xϕ(n)−1‖

){
θϕ(n)‖xϕ(n) − xϕ(n)−1‖

+2M2
}
+ 1

1−µ 〈V(x̄)− x̄, xϕ(n)+1 − x̄〉.

Using Γϕ(n) − Γϕ(n)+1 ≤ 0 for all n ≥ n0 and ϑϕ(n) > 0, the last inequality gives

0 ≤ −aϕ(n)Γϕ(n) + aϕ(n)ϑϕ(n).

Since aϕ(n) > 0, we obtain ‖xϕ(n) − x̄‖2 = Γϕ(n) ≤ ϑϕ(n). Moreover, since lim sup
n→∞

ϑϕ(n) ≤ 0, we have

lim
n→∞

‖xϕ(n) − x̄‖ = 0. Thus, lim
n→∞

‖xϕ(n) − x̄‖ = 0 together with lim
n→∞

‖xϕ(n)+1 − xϕ(n)‖ = 0, gives

lim
n→∞

Γϕ(n)+1 = 0. Therefore, from (39), we obtain lim
n→∞

Γn = 0, that is, xn → x̄ as n→ ∞.

For l(x) = 1
2‖(I − proxλgj

)(x)‖2 and ∇l(x) = (I − proxλgj
)(x), we have the following results

solving the bilevel problem (10):



Math. Comput. Appl. 2020, 25, 66 15 of 20

Corollary 1. If γ ∈ (0, 2σ
L2

h
), the sequence {xn} generated by


yn = xn + θn(xn − xn−1),
τn = ρn

l(yn)
(ηn)2 , ηn = max{1, ‖∇l(yn)‖},

zn = yn − τn∇l(yn),
xn+1 = αn(yn − γ∇h(yn)) + (1− αn)zn,

converges strongly to the solution the bilevel problem (10) if {αn}, {ρn} and {θn} are real sequences such that

(C1) 0 < αn < 1, lim
n→∞

αn = 0 and
∞
∑

n=1
αn = ∞.

(C2) 0 < ρn < 4 and lim inf
n→∞

ρn(4− ρn) > 0.

(C3) lim
n→∞

θn
αn
‖xn − xn−1‖ = 0 where θn ∈ [0, θ) for θ ∈ [0, 1).

4. Applications

4.1. Application to the Bilevel Variational Inequality Problem

Let H1 and H2 be two real Hilbert spaces. Assume that F : H1 → H1 is Lh-Lipschitz continuous
and σ-strongly monotone on H1, A : H1 → H2 is a bounded linear operator, gj : H2 → R ∪ {+∞}
is a proper, convex, lower semicontinuous function for all j ∈ {1, . . . , M}, and Ui : H1 → H1

is ωi-demimetric and demiclosed mapping for all i ∈ {1, . . . , N}. Then, replacing ∇h by F in
Algorithm 1, we obtain strong convergence for an approximation of a solution of the bilevel variational
inequality problem

find x̄ ∈ Ω such that 〈F(x̄), x− x̄〉 ≥ 0, ∀x ∈ Ω ,

where Ω is the solution set of

find x ∈
N⋂

i=1

FixUi such that A(x) ∈
M⋂

j=1

arg min gj.

4.2. Application to a Bilevel Optimization Problem with a Feasibility Set Constraint, Inclusion Constraint,
and Equilibrium Constraint

Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a linear transformation and h : H1 → R
be proper, convex, continuously differentiable, and the gradient ∇h is σ-strongly monotone operator
and Lh-Lipschitz continuous.

Now, consider the bilevel optimization problem with a feasibility set constraint

min h

s.t. A(x) ∈
M⋂

i=1
Qj,

(44)

where each Qj is a closed convex subset of H2 for j ∈ {1, . . . , M}. Replacing Ui = I for all i ∈
{1, . . . , N} and proxλgj

by projection mapping PQj in Algorithm 1, we obtain strong convergence for
an approximation of the solution of the bilevel problem (44).

Consider the bilevel optimization problem with inclusion constraint

min h

s.t. 0 ∈
M⋂

i=1
Gj(A(x)),

(45)

where Gj : H2 → 2H2 is maximal monotone mapping for j ∈ {1, . . . , M}. Setting Ui = I for all
i ∈ {1, . . . , N} and, replacing the proximal mapping gj in Algorithm 1 by the resolvent operators
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J
Gj
λ = (I + λGj)

−1 (for λ > 0), and following the method of proof in theorems, we obtain a strong
convergence result for approximation of the solution of the bilevel problem (45).

Consider the bilevel optimization problem with equilibrium constraint

min h

s.t. A(x) ∈
M⋂

i=1
SEP(gj, H2),

(46)

where gj : H2 × H2 → R is a bifunction and each gj satisfies condition CO on H2. We have strong
convergence results solving (46) by setting Ui = I for all i ∈ {1, . . . , N} and replacing the proximal
mappings by the resolvent operators T

gj
r in Algorithm 1 (see (11) and properties of it in Lemma 4

(i)–(iv)).

5. Numerical Example

Taking the bilevel optimization problem (7) for H1 = Rp, H2 = Rq, the linear transformations
A : Rp → Rq are given by A(x) = Gq×p, where Gq×p is q × p matrix, and for x ∈ H1 = Rp,
z ∈ H2 = Rq, we have

h(x) = 1
2 xT Dx + 1

2‖x‖2
p,

Ui(x) = εix, i ∈ {1 . . . , N},

g1(z) = 1
2 zT Bz, g2(z) = ‖z‖q, g3(z) =

q
∑

t=1
Φ(zt),

where D and B are invertible symmetric positive semidefinite p× p and q× q matrix, respectively,
εi ≤ 1 ∀i ∈ {1, . . . , N}, z = (z1, . . . , zq) ∈ Rq, ‖.‖p is the Euclidean norm in Rp, ‖.‖q is the Euclidean
norm in Rq, and Φ(zt) = max{|zt| − 1, 0} for t = 1, 2, . . . , q.

Here, h(x) = f (x) + 1
2‖x‖2

p where f (x) = 1
2 xT Dx and hence the gradient ∇ f is ‖D‖-Lipschitz.

Thus, the gradient ∇h is 1-strongly monotone and (‖D‖+ 1)-Lipschitz. We choose γ = 1
(‖D‖+1)2 .

Now, for λ = 1, the proximal g1, g2 and g3 is given by

proxλg1
(z) = (I + B)−1(z), i ∈ Φ,

proxλg2
(z) =

{ (
1− 1

‖z‖q

)
z, ‖z‖q ≥ 1

0, otherwise.

and proxλg3
(z) = (proxλΦ(z1), . . . , proxλΦ(zq)), where

proxλΦ(zt) =


zt, if |zt| < 1
sign(zt), if 1 ≤ |zt| ≤ 2
sign(zt − 1), if |zt| > 2.

We consider for p = q, εi =
1

i+1 for i ∈ {1, . . . , N} and Gq×p = Ip×p, where Ip×p is identity p× p

matrix. The parameters are chosen are β
(i)
n = i

1+...+N for i ∈ {1, . . . , N}, δ
(j)
n = j

6 for j ∈ {1, 2, 3},
αn = 1

n+1 , εn = 1
(n+1)2 , ρn = 1 and θn = θ̄n.

For the purpose of testing our algorithm, we took the following data:

• D and B are randomly generated invertible symmetric positive semidefinite p × p matrices,
respectively.

• x0 and x1 are randomly generated starting points.

• The stopping criteria ‖xn+1−xn‖
‖x2−x1‖

< TOL.
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Tables 1 and 2 and Figure 1 illustrate the numerical results of our algorithms for this example under
the parameters and data given above and for θ = 0.5. The number of iterations (Iter(n)), CPU time in
seconds (CPU(s)), and the error err(n) = ‖xn− x̄‖, where x̄ is the solution set of the bilevel optimization
problem (x̄ = 0 here in this example), are reported in Table 1.

Table 1. Performance of Algorithm 1 for different N and different dimensions p = q with TOL = 10−3.

Iter(n) CPU(s) err(n)

N = 3
p = 3 11 0.0600 0.3995
p = 8 16 0.0854 0.4194
p = 16 24 0.0801 0.3935

N = 6
p = 40 82 0.08920 0.5332
p = 80 131 0.16109 0.8043
p = 150 250 0.21723 0.9099

N = 10
p = 50 99 0.1295 0.6543
p = 100 137 0.1463 0.7004
p = 200 263 0.2969 0.7841

Table 2. Performance of Algorithm 1 for N = 8 and different p = q with TOL = 10−4.

p = 5 p = 15

Iter(n) CPU(s) err(n) CPU(s) err(n)

1 114.1709 372.5614
2 112.5227 367.2210
3 110.6359 361.0786
4 108.5059 354.1380
5 106.1671 346.5137
...

...
...

100 0.0428 3.2360
101 0.0416 3.0748
181 0.0385 2.8765
182 0.3702 0.0375 2.6385
...

...
207 0.0756
208 0.5311 0.0746

(a) (b)

Figure 1. Algorithm 1 for different N and different dimensions p = q.

We now compare our algorithm for different θn, i.e., for non-inertial accelerated case (θn = 0)
and for inertial accelerated case (θn 6= 0). For the non-inertial accelerated case, we just simply take
θ = 0, and, for the inertial accelerated case, we take a very small θ with θ ∈ (0, 1) so that θn = θ̄n = θ.
Numerical comparisons of our proposed algorithm with inertial version (θn 6= 0) and its non-inertial
version (θn = 0) are presented in Table 3.
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Table 3. Performance of Algorithm 1 for for different dimensions θn, N = 3 with TOL = 10−3.

P = 4 P = 20

Iter(n) CPU(s) err(n) Iter(n) CPU(s) err(n)

θ = 0.1 12 0.0811 0.3295 19 0.1005 0.4401
θ = 0.01 11 0.0844 0.3112 17 0.0968 0.3224
θ = 0 16 0.0960 0.5255 24 0.1203 0.4362

Remark 2. Tables 1 and 2 show that the CPU time and number of iterations of the algorithm increase linearly
with the size or complexity of the problem (with the size of dimension p and q, number of mappings R and N,
and number of functions M). From Table 3, we can see that our algorithm has a better performance for the
stepsize choice θn 6= 0. This implies that the inertial version of our algorithm has a better convergence analysis.

6. Conclusions

In this paper, we have proposed the problem of minimizing a convex function over the solution
set of the split feasiblity problem of fixed point problems of demimetric mappings and constrained
minimization problems of nonsmooth convex functions. We have showed that this problem can be
solved by proximal and gradient methods where the gradient method is used for an upper level
problem and the proximal method is used for a lower level problem. Most of the standard bilevel
problems are particular cases of our framework.
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