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Abstract: We present a novel bi-objective approach to address the data-driven learning problem of
Bayesian networks. Both the log-likelihood and the complexity of each candidate Bayesian network
are considered as objectives to be optimized by our proposed algorithm named Nondominated
Sorting Genetic Algorithm for learning Bayesian networks (NS2BN) which is based on the well-known
NSGA-II algorithm. The core idea is to reduce the implicit selection bias-variance decomposition
while identifying a set of competitive models using both objectives. Numerical results suggest
that, in stark contrast to the single-objective approach, our bi-objective approach is useful to find
competitive Bayesian networks especially in the complexity. Furthermore, our approach presents the
end user with a set of solutions by showing different Bayesian network and their respective MDL
and classification accuracy results.

Keywords: Bayesian networks; Bias-Variance; NSGA-II

1. Introduction

Bayesian Network (BN) [1] is a preferred formalism to represent knowledge under uncertainty
using efficient reasoning. BN stands as a popular tool for prediction, diagnosis, decision-making, control,
and to attain a better understanding of phenomena amenable to modeling. Nevertheless, building a BN
comes with inherent difficulties, such as deciding on the specific graph structure, and corresponding
parameter values. Two traditional ways to build a BN structure are through (i) domain expertise and
(ii) a data-driven inductive approach. The induction of a BN from data is subsequently classified into two
types (i) methods searching for conditional-dependencies, also known as constraint-based methods and
(ii) search and scoring based methods [2–5]. This study is based on the latter case, where the learning
task is framed as a combinatorial optimization problem with two main components: (1) a metric to assess
the quality of each BN candidate, and (2) a search procedure to move intelligently through the space of
candidate networks.

In data-driven BN learning, it is common to implement metrics in the form of a penalized
log-likelihood (LL) function. LL is the log probability of the data given a network structure. While
adding an edge to a BN never decreases the likelihood -and hence irrelevant edges may be added–
adding extra edges leads to two main problems: the overfitting problem [6], where good performance
in the training data comes with poor performance on the testing data and the construction of a densely
connected network, which involves an increase in the running time and a poor description of the
phenomenon being modelled when the network is being used for data analysis [7]. In order to deal
with these problems, a penalty term is used to avoid complex networks. Such, complex networks
may have a low LL score value but overfit the model while a high penalty term may incur in models
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that, on the other hand, underfit. The balance between the goodness of fit (measured as LL) and the
complexity of a model is known as the bias-variance dilemma, decomposition or trade-off [8–11].

There are several decomposable penalized LL (DPLL) scoring functions for learning BN and are
represented by the Akaike’s information criteria (AIC) [12], the Bayesian Dirichlet with score equivalence
and uniforms priors (BDeu) [13], the factorized normalized maximum likelihood (fNML) [14], the Bayesian
information criterion (BIC), and the minimum description length (MDL) [15]. These metrics differ mainly
in their penalty function. Additionally, for the latest two cases, the MDL objective is to determine the
model that provides the shortest description of the data set and, although the principles of BIC are different
in the practice, some authors assure that MDL is simply the additive inverse of the BIC [5,16].

This work is based on crude MDL as the scoring metric, which is a popular metric used to learn
BN structures [17–21]. Grünwald [15] defines the crude MDL as the two-part version of MDL, where
“crude” means that the complexity of a model is calculated considering its parameters but not its
functional form. Some researches consider that crude MDL is able to recover a network with a good
bias-variance tradeoff; however, other works consider that this version of MDL is not complete and it
will not work as expected [4,10,15,22]. Some researchers point out that to the trade-off between accuracy,
measured in terms of the LL, and complexity should be featured as a multi-objective problem [23–27];
however, in the context of BN, the study of this approach has not been extensively studied. Motivated
by this, our work addresses the comparison of a single-objective versus a multi-objective approach for
learning BN from data. The single-objective Genetic algorithm (GA) uses crude MDL whereas NS2BN
is used to find an appropriate selection of networks with a trade-off between accuracy and complexity.

The remainder of this paper is structured as follows: Section 2 describes related work and motivates
the work conducted in this paper. In Section 3, the background is described. Section 4 describes our
approach in detail. Section 5 presents the experiments setup. Section 6 discusses the results. The concluding
section summarizes the findings and gives an account for future work.

2. Related Work

There exist two main approaches to the use of crude MDL to learn BN: (i) crude MDL to find the true
model (that has given rise to the data), in our context it is the gold-standard network, and (ii) crude MDL
to find a model with a good trade-off between the accuracy and complexity. Regarding the first
approach, some of the most representative works are [4,28–31]. Regarding the second approach, some
researchers assure that crude MDL is capable of finding a BN with a trade-off between the LL and
the complexity, but not the gold-standard network [10,15,22,32,33]. As recent work in this approach,
Cruz-Ramírez et al. [34], performed an exhaustive experiment with four-node networks. Therefore, even
though these results show how crude MDL produces well-balanced models in terms of complexity and
log-likelihood, those experiments have a limited scope and they left for future work to explore the search
procedure, which is an important factor that affects the final selection of the model.

Previous studies have tackled the BN model selection problem using evolutionary algorithms.
In [35] a Genetic Algorithm (GA) with genotype representation was proposed. The algorithm uses MDL
as the fitness function and the results were based on evaluating several new recombination operators that
helped to evolve BNs in a Directed Acyclic Graph (DAG) search space. In [36], the performance of GAs
with two univariate Exploratory Data Analysis (EDA) based algorithms were compared. Three different
scoring functions were used and the results showed that EDAs are able to recuperate structure similar to
the gold-standard network. Wong’s works [37,38] are based on evolutionary programming to induce BN
in a two-phase constraint-based method that yields models that predict more accurately in comparison
with the previous work of Wong based on MDL as the fitness function. In [39], a novel algorithm
based on immune binary particle swarm optimization and MDL as the fitness function was proposed.
The experiments show advantages in the quality of the fitness function in a comparison between a
Particle Swarm Optimization algorithm (PSO) and a GA. In [40], a hybrid algorithm between the
maximal information coefficient and binary PSO was proposed. The experimental results show that
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without a given node ordering, this algorithm has better performance than the other five of the state of
the art algorithms.

Lastly, the work of Ross and Zuviria [41] uses a multi-objective genetic approach to learn dynamic
Bayesian networks from data with a trade-off between likelihood and complexity. This work is focused
on the modeling of biological phenomena that typically require low-connectivity networks. However,
to the best of our knowledge, this work is the only one with multi-objective criteria learning. Although,
it is in the context of dynamic BN.

In summary, crude MDL uses a weighted sum to combine the log-likelihood and the structural
complexity, thus, the learning problem of BN using MDL as a metric has been dealt mainly as a single-
objective problem. However, we proved that one objective tends to dominate the search procedure
and also add bias to the kind of result obtained [26].

3. Background

This section presents the main concepts that supports this investigation: the BN mathematical
representation, the minimum description length principle, and the multi-objective problem.

3.1. Bayesian Networks

A BN is a graphical model that represents a joint probability distribution over a set of random
variables {X1, . . . , Xn}. BNs are represented as a pair (G, Θ), where the directed acyclic graph (DAG)
is represented by G = (U, EG); U is the set of nodes or random variables, and EG is the set of arcs that
represent the probabilistic relationship among these variables. The parents of Xi are denoted PAi; Xi is
independent of its non-descendant variables given its parents. Thus, Θ is a set of parameters which
quantifies the network. The joint probability distribution can be recovered from local conditional
probability distributions as is shown in Equation (1).

P(X1, . . . , Xn) =
n

∏
i=1

P(Xi|PAi) (1)

Bayesian network structure learning is the problem of learning a network structure from dataset
(D), where the data set is a particular instantiation of all the variables {X1, . . . , Xn}. MDL is a
well-known score used to measure the goodness of a BN candidate [15]. The model learned under the
MDL principle is expected to exhibit a trade-off between model accuracy and complexity, thus avoiding
data overfitting. In this work, the Bayesian learning problem is treated as a multi-objective optimization
problem that consists of searching for potential solutions exhibiting a balanced trade-off between
accuracy and the complexity (defined formally in the next subsection).

3.2. Minimum Description Length

The crude definition of MDL [15] is of the form:

MDL = −logP(D|Θ) +
k
2

log n (2)

k =
m

∑
i=1

qi(ri − 1) (3)

where D is the dataset, Θ represents the parameters of the model, k is the dimension of the model,
and n is the sample size. The parameter Θ is the corresponding local probability distribution for each
node in the network. The dimension of the model (k) is given by Equation (3).

For the case of Equation (3), m is the number of variables, qi is the number of possible configurations
of PAi and ri is the number of values of the variable.



Math. Comput. Appl. 2020, 25, 37 4 of 15

The first term of Equation (2) measures the accuracy of the model using−logP(D|Θ) (represented
as f1 in the next section) and the second term measures the complexity using k

2 log n (represented as
f2 in the next section). The complexity of a BN is proportional to the number of arcs, as shown in
Equation (3).

Hence, metrics that incorporate these two terms are dealing with a multi-objective problem which
may represent that while the accuracy is better the complexity increases.

3.3. Multi-Objective Optimization Problem

According to Deb [42], a multi-objective optimization problem (MOOP) can be seen as a search
problem that aims to minimize or maximize two (or more) objectives that are usually in conflict.
Without loss of generality, a MOOP can be defined as: ~f (~x) = [ f1(~x), f2(~x), . . . , fl(~x)] where ~x =

[x1, . . . , xn] ∈ R is an n-variable decision vector, ~f is the set of objective functions to be minimized or
maximized, and l is the number of objectives (in our case, we have two objectives: the LL f1 and the
complexity f2).

According to this idea, the following definitions are provided: a solution x1 dominates a solution
x2 (denoted by x1 � x2) if the solution x1 is not worse than x2 in all objectives and it is better than x2

in at least one objective. In MOOPs there is not a single optimal solution; conversely, we can find a
set of solutions that have no other solution which dominates them when all objectives are currently
considered. Hence, the set of non-dominated solutions is called Pareto optimal set, and the evaluations
of each non-dominated solution in each objective function are known as the Pareto front.

Figure 1 shows a particular case of the Pareto front in the presence of two-objective functions.

Figure 1. The Pareto front of a set of solutions in a two-objective space.

Several techniques have been proposed to solve MOOP [43]. This work is based on an evolutionary
algorithm, which has shown advantages over classical techniques.

4. Nondominated Sorting Genetic Algorithm for Learning Bayesian Networks (NS2BN)

NSGA-II is a fast elitist multi-objective evolutionary algorithm proposed by Deb et al. [42].
In NSGA-II the individuals are ordered into non-dominated sets called fronts. In the first front are
those individuals that are not dominated by the solutions in the current population. Such solutions
are removed from the population and the process is repeated so as to select the set of non-dominated
solutions to get the second front, and so on. A rank based on the number of the front is assigned to
each individual. Additionally, the crowding distance is computed for each individual. The crowding
distance is used to know how close an individual is to its neighbors in the objective function space.
The selection of parents is performed by using binary tournament based on the rank and the crowding
distance. The selected parents generate offsprings through crossover and mutation operators.
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This work presents a multi-objective approach by using NSGA-II. The aim is to deal with the
BN learning structure problem as a multi-objective optimization problem. The likelihood and the
complexity of the model are considered as the objectives to be optimized. The pseudocode of the
proposed approach NS2BN is presented in the Algorithm 1.

Algorithm 1 NS2BN
1: G = 0 {Generation}
2: Generate a population P of random solutions ~xi, ∀i, i = 1, . . . , POP_SIZE
3: Repair cycles of each ~xi ∀i, i = 1, . . . , POP_SIZE
4: Evaluate the fitness functions using the first and the second term of the Equation (2) of each

~pi ∀i, i = 1, . . . , POP_SIZE
5: while G ≤ Gmax do

6: Create an offspring population Q using: binary tournament selection, one-point crossover and

bit inversion mutation.
7: Repair cycles
8: Evaluate the fitness functions using the first and the second term of the Equation (2) of each

~xi ∀i, i = 1, . . . , POP_SIZE
9: Combine parents and offspring populations R = P ∪Q

10: Sort using non-dominated criterio
11: Replacement
12: G = G + 1
13: end while

For the implementation of NS2BN, the following features are highlighted, (i) due to the nature of
the problem, the representation of individuals (BNs) is an adjacency matrix as can be seen in Figure 2,
(ii) due to this representation, a repair operator to avoid cycles inspired on [44] is used (see Figure 3).
This repair operator identifies cycles in three kinds of processes: self-cycles, by-cycles, and regular
cycles. In the first one, the repair strategy is to replace the value along the diagonal, when the value is
1 by 0. The second repair strategy fixes the bi-directional cycles that occurs when two nodes are seen to
influence each other then the repair operator removes one of the arcs at random to resolve it; finally the
regular cycles need to identify a path between nodes, the strategy is the same as the path-cyclic graphs,
where one of the offending arcs is removed randomly. And, (iii) the fitness functions are defined by
each term of Equation (2) and both are minimizations.

Regarding the total computational cost per iteration; to the cost of the base algorithm we add
the cost of the repair operator, therefore our NS2BN algorithm is O(MN2) +O(ND), where; M is the
number objectives, N is the population size and D is the dimensionality of the individuals [42].

Figure 2. Example of an adjacency matrix and its corresponding BN.

Figure 3. The self-cycle (left), the path-cycle (center) and the regular-cycle (right).
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5. Experimental Setup

This section presents the experimental setup used to compare the resultant BN models in terms
of the trade-off between LL and complexity. A set of twelve databases was used: (i) four synthetic
databases with 6-nodes, in which all the random variables are binary; do not produce any qualitative
impact on the results in comparison to non-binary variables [45]. Two of these databases were generated
using a random probability distribution and the next two were generated with distribution p = 0.1 that
according to [45] changing the parameters to be high or low tends to produce low-entropy distributions
which have more potential for data compression. Tetrad IV software [46] was used to generate synthetic
databases with a specific distribution. (ii) Three databases of a well-known benchmark [47] and (iii) five
databases from the UCI repository [48]. Table 1 shows a detailed description of each database.

Table 1. Databases used in the experiments.

No. Name Attributes Instances Arcs

1. A6 Nodes-random probability distribution 6 1000, 5000, 10000 8
2. B6 Nodes-random probability distribution 6 1000, 5000, 10000 8
3. C6 Nodes-low entropy probability distribution 6 1000, 5000, 10000 9
4. D6 Nodes-low entropy probability distribution 6 1000, 5000, 10000 7
5. Asia 8 1000, 5000, 10000 8
6. Car Diagnosis 18 1000, 5000, 10000 20
7. Child 20 1000, 3000 Unknown
8. German Credit 21 1000 Unknown
9. Hepatitis 20 80 Unknown

10. Glass 10 270 Unknown
11. Heart Disease. Cleveland 14 298 Unknown
12. Credit Approval 16 654 Unknown

A single objective Genetic Algorithm [49] (GABN) was adopted for comparison purposes. The individual
representation consists of the same adjacency matrix above discussed; the fitness function is the crude
MDL, as described in the previous Section 3.2. In this algorithm, binary tournament parent selection,
one-point crossover and bit inversion mutation are employed.

Ten independent runs were made by each algorithm per database, with 20,000 evaluations each.
The GABN finds a single network for each execution, the network with the best MDL is chosen as
the “genetic solution”, meanwhile, in NS2BN the result of a run is a set of solutions with a variety of
accuracy and structural complexity measurements. Based on the fact that all solutions in the Pareto
front are optima, a decision making process based on expert knowledge in the modeling field is
required to choose the most suitable solution.

To carry out a comparison between the multi-objective approach and the single-objective approach
the linear programming technique for multidimensional analysis of preference (LINMAP) was
used [50]. In the LINMAP decision approach criterion, from the accumulated Pareto front of ten
executions, the solution nearest to a reference point which is (0, 0) is chosen. To find this solution all the
solutions were normalized and the Euclidean distances were computed between the reference point
and each Pareto solution as is shown in Figure 4. The solution with the shortest Euclidean distance is
referred to as the chosen solution in this work.

The experimentation is presented in three parts: (1) the chosen solution obtained by NS2BN and
the single solution from the Genetic algorithm are compared in terms of their complexity, likelihood,
MDL and the classification accuracy using 10-fold-cross-validation (See Equation (5), where CV is
test error on kth fold), (2) for the case of the databases in Table 1 from 1 to 6, we measure how the
probability distribution of the gold-standard network is different from the genetic solution; for this
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computation the formulation of the Kullback Leibler distance (KLD) was used, see Equation (4). Finally,
(3) the analysis of the plots of the accumulated Pareto fronts are discussed.

DKL(p||q) =
N

∑
i=0

(xi)log2(
p(xi)

q(xi)
) (4)

where q(x) is the approximation and p(x) is the gold-standard network distribution that we are
interested in matching q(x). If the obtained value is equal to 0 means that the distributions perfectly
match, otherwise, it can take values between 0 and ∞.

CV =
1
K

K

∑
k=1

CVk (5)

The parameter setting employed by NS2BN and the GA were tuning empirically. The parameters
are as follows: POP_SIZE = 100, Gmax = 200, C = 0.9 and M = 0.3.

Figure 4. Points in the Pareto front represent the trade-off between both objectives. The Euclidean
distance was computed between each Pareto solution and the reference point (0, 0). The solution with
the shortest distance was considered as the chosen one to be compared with the GABN solution.

6. Results

Table 2 shows the results in terms of LL, complexity, and MDL for the chosen solution and the
genetic solution. Additionally, the results in terms of the 10-fold-cross-validation rate are presented in
the column named “CV”. A parametric t-test with 95%-confidence was applied between the chosen
solution and the genetic solution in terms of classification accuracy. Numbers in bold-face letters
indicate that the difference between accuracies is significant and this accuracy is the best.

According to such a test, in five databases there were significant differences in favor of the
NS2BN chosen solution. The rest of the results did not show significant differences, which means that
genetic solutions do not have advantages or disadvantages in terms of classification. Since the genetic
algorithm is searching the minimum value of MDL, the genetic solutions show a minor MDL in sixteen
databases. However, one of the objectives is clearly affected in those results.

Figure 5d–f show how the genetic solution tends to choose solutions with a smaller log-likelihood
but more complex, and a similar situation occurs in Figure 5g–i where the GABN chooses solutions
less complex but with a worse log-likelihood value.

It is important to notice the prominence of the search procedure and all the elements associated
with this. It may be necessary, in the case where the genetic algorithm tends to choose solutions with a
smaller LL but more complex, to find the balance in the configuration parameters to have a balance
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between exploration and exploitation. Other components that could be explored include genetic
diversity, reinitialization, or self-adaptation, which we will leave for future work.

Regarding the sample size, Grünwald [15] points that crude MDL does not work well when the
sample size is small or moderate and Hastie et al. [16] point out that a metric like crude MDL, in a
finite sample, tends to select less complex models. Our results agree with Grünwald and in contrast to
Hastie’s et al, our work shows a bias when the sample size is greater in the Genetic Solution, which is
used a weighted sum, since this solution tends to select a more complex model (see Figure 5b,c,e,f,
Figure 6f and Figure 7b,c).

The experiments generated by a low-entropy distribution show, as was pointed by Cruz-Ramírez et al. [34]
that the presence of noise rate affects the behavior of MLD, which tends to prefer the less complex
models, even a network with no arcs. However, the results of the experiments with low entropy
distribution show, regardless the sample size, solutions with better values in both terms in comparison
with the solution provided by NS2BN (see Figure 5g–l).

Finally, Table 3 shows the results of the KLD computation. According to such a test, there were
significant differences in ten databases in favor of the solution obtained by NS2BN, which means that
the chosen solution is closest to the gold-standard network concerning the underlying distribution.

Table 2. Comparison between the NS2BN and the GABN solutions. Values in parentheses represent
the standard deviation, for the case of -Log-Likelihood, complexity, and MDL the minimum value is in
boldface. For the case of the CV, we carry out the t-test and values in boldface mean the significant
best value found.

Model
Trade-off

MDL CV
−Log Likelihood Complexity

A6-Nodes random probability distribution. 1000 cases

Chosen solution 4682.057654 84.70916642 4766.76682 71.25(±3.25)

Genetic solution 4697.44594 89.69205856 4787.137998 72.10(±2.86)

A6-Nodes random probability distribution. 5000 cases

Chosen solution 22964.2851 92.15784285 23056.44294 72.42(±1.55)

Genetic solution 22968.59399 104.4455552 23073.03954 71.88(±1.93)

A6-Nodes random probability distribution. 10000 cases

Chosen solution 46522.66474 79.72627428 46602.39101 70.37(±0.76)

Genetic solution 46181.77888 166.0964047 46347.87529 70.29(±0.81)

B6-Nodes random probability distribution. 1000 cases

Chosen solution 5149.786108 79.72627428 5229.512382 85.59(±3.32)

Genetic solution 5102.720574 104.640735 5207.361309 85.75(±3.34)

B6-Nodes random probability distribution. 5000 cases

Chosen solution 25909.78695 92.15784285 26001.94479 83.58(±1.45)

Genetic solution 25540.93739 190.4595419 25731.39693 84.23(±1.41)

B6-Nodes random probability distribution. 10000 cases

Chosen solution 51018.73479 126.2332676 51144.96806 84.62(±0.96)

Genetic solution 50830.79577 179.3841171 51010.17989 84.71(±0.98)

C6-Nodes low-entropy probability distribution. 1000 cases

Chosen solution 2685.283382 109.6236271 2794.907009 89.70(±0.54)

Genetic solution 2703.478277 29.89735285 2733.37563 89.60(±0.49)

C6-Nodes low-entropy probability distribution. 5000 cases

Chosen solution 13940.96186 153.5964047 14094.55826 90.22(±0.09)

Genetic solution 13963.84415 36.86313714 14000.70728 90.24(±0.08)

C6-Nodes low-entropy probability distribution. 10000 cases

Chosen solution 28137.70083 186.0279733 28323.7288 90.21(±0.03)

Genetic solution 28159.77242 39.86313714 28199.63556 90.21(±0.03)
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Table 2. Cont.

Model
Trade-off

MDL CV
−Log Likelihood Complexity

D6-Nodes low-entropy probability distribution. 1000 cases

Chosen solution 2705.676276 94.6749507 2800.351227 91.40(±0.49)

Genetic solution 2722.059767 34.880245 2756.940012 91.40(±0.49)

D6-Nodes low-entropy probability distribution. 5000 cases

Chosen solution 14063.96978 159.7402609 14223.71004 90.76(±0.08)

Genetic solution 14080.43878 36.86313714 14117.30192 90.76(±0.08)

D6-Nodes low-entropy probability distribution. 10000 cases

Chosen solution 27735.47963 205.9595419 27941.43917 90.27(±0.05)

Genetic solution 27761.63739 39.86313714 27801.50053 90.27(±0.05)

Asia. 1000 cases

Chosen solution 3200.726031 79.72627428 3280.452306 94.30(±1.87)

Genetic solution 3211.984813 89.69205856 3301.676872 94.30(±1.87)

Asia. 5000 cases

Chosen solution 16188.02485 110.5894114 16298.61427 94.10(±0.81)

Genetic solution 16167.19634 122.8771238 16290.07347 94.10(±0.81)

Asia. 10000 cases

Chosen solution 32444.35458 86.37013047 32530.72471 94.12(±0.52)

Genetic solution 31738.67533 159.4525486 31898.12788 94.12(±0.52)

Car diagnosis. 1000 cases

Chosen solution 9130.727267 363.7511264 9494.478394 71.10(±0.30)

Genetic solution 8903.130665 438.4945085 9341.625174 69.33(±1.52)

Car diagnosis. 5000 cases

Chosen solution 44811.82111 411.6383647 45223.45948 75.10(±1.64)

Genetic solution 43066.63622 663.5364685 43730.17269 76.12(±1.86)

Car diagnosis. 10000 cases

Chosen solution 91244.39425 597.9470571 91842.34131 76.76(±1.34)

Genetic solution 88106.54485 1275.620388 89382.16524 72.44(±1.46)

German Credit

Chosen solution 775.3134767 358.7682342 1134.081711 70.00(±0.00)

Genetic solution 795.3572652 308.9393128 1104.296578 70.00(±0.00)

Hepatitis

Chosen solution 843.1819384 88.50699333 931.6889318 83.75(±5.76)

Genetic solution 843.1298695 101.1508495 944.280719 83.75(±5.76)

Glass

Chosen solution 1809.775474 7335.03997 9144.815443 76.58(±7.29)

Genetic solution 2174.033877 170.3122737 2344.346151 35.51(±2.08)

Heart Disease. Cleveland

Chosen solution 3743.020428 250.5367332 3993.557162 56.89(±5.06)

Genetic solution 3752.086989 151.9649037 3904.051893 53.89(±0.85)

Credit Approval

Chosen solution 8037.915455 233.7734795 8271.688934 72.90(±5.29)

Genetic solution 8052.242078 201.0451924 8253.287271 60.49(±5.03)
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Figure 5. Accumulated Pareto front of the twelve first databases with 6-nodes, random probability
distribution (RPD) and low-entropy probability distribution (LED). Gray stars—the accumulated front
obtained by ten runs of NS2BN. Blue triangle—the golden-standard network. Pink square—the GABN
solution and then green circle—the chosen solution from the NS2BN Pareto front.
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Figure 6. Accumulated Pareto front of the well-known benchmark databases with the different number
of cases. Gray stars—the accumulated front obtained by ten runs of NS2BN. Blue triangle—the golden-
standard network. Pink square—the GABN solution and the green circle—the chosen solution from
the NS2BN Pareto front.
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Figure 7. Accumulated Pareto front of the UCI repository databases. Gray stars—the accumulated
front obtained by ten runs of NS2BN. Pink square—the GABN solution and green circle—the chosen
solution from the NS2BN Pareto front.
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Table 3. Kullback–Leibler divergence computed between the gold-standard network with the GABN
solution and the gold-standard network with the chosen solution of the NS2BN Pareto front. Values in
boldface mean the best value found.

Golden-Network GABN NS2BN

A RPD. 1000 cases 0.006256036 0.000412874
A RPD. 5000 cases 0.000735484 0.000166667
A RPD. 10000 cases 0.000622825 0.010558429
B RPD. 1000 cases 0.5008542 0.512832286
B RPD. 5000 cases 0.50817743 0.527715617
B RPD. 10000 cases 0.501635069 0.506660672
C LED. 1000 cases 0.006859061 0.000558415
C LED. 5000 cases 0.001254388 8.84927E-06
C LED. 10000 cases 0.000630321 0.000231126
D LED. 1000 cases 0.005505678 0.001674059
D LED. 5000 cases 0.001196043 0.0007695
D LED. 10000 cases 0.000561088 0.000529102
Asia 1000 cases 0.184669176 0.183903387
Asia 5000 cases 0.279944777 0.277977466
Asia 10000 cases 0.272191288 0.262362486
Car diagnosis 1000 cases 0.161505741 0.278079726
Car diagnosis 5000 cases 0.160725004 0.192815203
Car diagnosis 10000 cases 0.200548739 0.223971025

7. Conclusions and Future Work

In this paper, a novel evolutionary bi-objective optimization approach for model selection of BN
was presented. The accuracy and the complexity, which are related to bias and variance respectively,
were adopted as the objectives to be optimized so as to obtain models with an acceptable generalization
performance. A set of trade-off solutions was obtained per database. A solution nearest to the origin
was chosen as a competitive solution with a suitable trade-off between the objectives. This chosen
solution was compared with a single-objective solution. The chosen solution achieved competitive
results, especially in complexity. It is important to note, that one of the main advantages of this
approach is the set of trade-off solutions and that the selection of a model can be a high-level decision
and must be performed by a domain expert of the modeling phenomenon. Additional advantages are
that the proposed method can be applied to a databases from different domains and can be extended
to other models such as artificial neural networks. As future work, different methods can be used to
control (adapt or self-adapt) the algorithms parameters. Also, alternatives to reduce the computational
cost of the algorithm can be included.
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