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Abstract

:

We present a novel bi-objective approach to address the data-driven learning problem of Bayesian networks. Both the log-likelihood and the complexity of each candidate Bayesian network are considered as objectives to be optimized by our proposed algorithm named Nondominated Sorting Genetic Algorithm for learning Bayesian networks (NS2BN) which is based on the well-known NSGA-II algorithm. The core idea is to reduce the implicit selection bias-variance decomposition while identifying a set of competitive models using both objectives. Numerical results suggest that, in stark contrast to the single-objective approach, our bi-objective approach is useful to find competitive Bayesian networks especially in the complexity. Furthermore, our approach presents the end user with a set of solutions by showing different Bayesian network and their respective MDL and classification accuracy results.
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1. Introduction


Bayesian Network (BN) [1] is a preferred formalism to represent knowledge under uncertainty using efficient reasoning. BN stands as a popular tool for prediction, diagnosis, decision-making, control, and to attain a better understanding of phenomena amenable to modeling. Nevertheless, building a BN comes with inherent difficulties, such as deciding on the specific graph structure, and corresponding parameter values. Two traditional ways to build a BN structure are through (i) domain expertise and (ii) a data-driven inductive approach. The induction of a BN from data is subsequently classified into two types (i) methods searching for conditional-dependencies, also known as constraint-based methods and (ii) search and scoring based methods [2,3,4,5]. This study is based on the latter case, where the learning task is framed as a combinatorial optimization problem with two main components: (1) a metric to assess the quality of each BN candidate, and (2) a search procedure to move intelligently through the space of candidate networks.



In data-driven BN learning, it is common to implement metrics in the form of a penalized log-likelihood (LL) function. LL is the log probability of the data given a network structure. While adding an edge to a BN never decreases the likelihood -and hence irrelevant edges may be added– adding extra edges leads to two main problems: the overfitting problem [6], where good performance in the training data comes with poor performance on the testing data and the construction of a densely connected network, which involves an increase in the running time and a poor description of the phenomenon being modelled when the network is being used for data analysis [7]. In order to deal with these problems, a penalty term is used to avoid complex networks. Such, complex networks may have a low LL score value but overfit the model while a high penalty term may incur in models that, on the other hand, underfit. The balance between the goodness of fit (measured as LL) and the complexity of a model is known as the bias-variance dilemma, decomposition or trade-off [8,9,10,11].



There are several decomposable penalized LL (DPLL) scoring functions for learning BN and are represented by the Akaike’s information criteria (AIC) [12], the Bayesian Dirichlet with score equivalence and uniforms priors (BDeu) [13], the factorized normalized maximum likelihood (fNML) [14], the Bayesian information criterion (BIC), and the minimum description length (MDL) [15]. These metrics differ mainly in their penalty function. Additionally, for the latest two cases, the MDL objective is to determine the model that provides the shortest description of the data set and, although the principles of BIC are different in the practice, some authors assure that MDL is simply the additive inverse of the BIC [5,16].



This work is based on crude MDL as the scoring metric, which is a popular metric used to learn BN structures [17,18,19,20,21]. Grünwald [15] defines the crude MDL as the two-part version of MDL, where “crude” means that the complexity of a model is calculated considering its parameters but not its functional form. Some researches consider that crude MDL is able to recover a network with a good bias-variance tradeoff; however, other works consider that this version of MDL is not complete and it will not work as expected [4,10,15,22]. Some researchers point out that to the trade-off between accuracy, measured in terms of the LL, and complexity should be featured as a multi-objective problem [23,24,25,26,27]; however, in the context of BN, the study of this approach has not been extensively studied. Motivated by this, our work addresses the comparison of a single-objective versus a multi-objective approach for learning BN from data. The single-objective Genetic algorithm (GA) uses crude MDL whereas NS2BN is used to find an appropriate selection of networks with a trade-off between accuracy and complexity.



The remainder of this paper is structured as follows: Section 2 describes related work and motivates the work conducted in this paper. In Section 3, the background is described. Section 4 describes our approach in detail. Section 5 presents the experiments setup. Section 6 discusses the results. The concluding section summarizes the findings and gives an account for future work.




2. Related Work


There exist two main approaches to the use of crude MDL to learn BN: (i) crude MDL to find the true model (that has given rise to the data), in our context it is the gold-standard network, and (ii) crude MDL to find a model with a good trade-off between the accuracy and complexity. Regarding the first approach, some of the most representative works are [4,28,29,30,31]. Regarding the second approach, some researchers assure that crude MDL is capable of finding a BN with a trade-off between the LL and the complexity, but not the gold-standard network [10,15,22,32,33]. As recent work in this approach, Cruz-Ramírez et al. [34], performed an exhaustive experiment with four-node networks. Therefore, even though these results show how crude MDL produces well-balanced models in terms of complexity and log-likelihood, those experiments have a limited scope and they left for future work to explore the search procedure, which is an important factor that affects the final selection of the model.



Previous studies have tackled the BN model selection problem using evolutionary algorithms. In [35] a Genetic Algorithm (GA) with genotype representation was proposed. The algorithm uses MDL as the fitness function and the results were based on evaluating several new recombination operators that helped to evolve BNs in a Directed Acyclic Graph (DAG) search space. In [36], the performance of GAs with two univariate Exploratory Data Analysis (EDA) based algorithms were compared. Three different scoring functions were used and the results showed that EDAs are able to recuperate structure similar to the gold-standard network. Wong’s works [37,38] are based on evolutionary programming to induce BN in a two-phase constraint-based method that yields models that predict more accurately in comparison with the previous work of Wong based on MDL as the fitness function. In [39], a novel algorithm based on immune binary particle swarm optimization and MDL as the fitness function was proposed. The experiments show advantages in the quality of the fitness function in a comparison between a Particle Swarm Optimization algorithm (PSO) and a GA. In [40], a hybrid algorithm between the maximal information coefficient and binary PSO was proposed. The experimental results show that without a given node ordering, this algorithm has better performance than the other five of the state of the art algorithms.



Lastly, the work of Ross and Zuviria [41] uses a multi-objective genetic approach to learn dynamic Bayesian networks from data with a trade-off between likelihood and complexity. This work is focused on the modeling of biological phenomena that typically require low-connectivity networks. However, to the best of our knowledge, this work is the only one with multi-objective criteria learning. Although, it is in the context of dynamic BN.



In summary, crude MDL uses a weighted sum to combine the log-likelihood and the structural complexity, thus, the learning problem of BN using MDL as a metric has been dealt mainly as a single-objective problem. However, we proved that one objective tends to dominate the search procedure and also add bias to the kind of result obtained [26].




3. Background


This section presents the main concepts that supports this investigation: the BN mathematical representation, the minimum description length principle, and the multi-objective problem.



3.1. Bayesian Networks


A BN is a graphical model that represents a joint probability distribution over a set of random variables   {  X 1  , … ,  X n  }  . BNs are represented as a pair   ( G , Θ )  , where the directed acyclic graph (DAG) is represented by   G = ( U ,  E G  )  ; U is the set of nodes or random variables, and   E G   is the set of arcs that represent the probabilistic relationship among these variables. The parents of   X i   are denoted   P  A i  ;  X i    is independent of its non-descendant variables given its parents. Thus,  Θ  is a set of parameters which quantifies the network. The joint probability distribution can be recovered from local conditional probability distributions as is shown in Equation (1).


  P  (   X 1  , … ,  X n   )  =  ∏  i = 1  n  P  (  X i  | P  A i  )   



(1)







Bayesian network structure learning is the problem of learning a network structure from dataset   ( D )  , where the data set is a particular instantiation of all the variables   {  X 1  , … ,  X n  }  . MDL is a well-known score used to measure the goodness of a BN candidate [15]. The model learned under the MDL principle is expected to exhibit a trade-off between model accuracy and complexity, thus avoiding data overfitting. In this work, the Bayesian learning problem is treated as a multi-objective optimization problem that consists of searching for potential solutions exhibiting a balanced trade-off between accuracy and the complexity (defined formally in the next subsection).




3.2. Minimum Description Length


The crude definition of MDL [15] is of the form:


  M D L = − l o g P  ( D | Θ )  +  k 2   l o g  n  



(2)






  k =  ∑  i = 1  m    q i   (  r i  − 1 )   



(3)




where D is the dataset,  Θ  represents the parameters of the model, k is the dimension of the model, and n is the sample size. The parameter  Θ  is the corresponding local probability distribution for each node in the network. The dimension of the model (k) is given by Equation (3).



For the case of Equation (3), m is the number of variables,   q i   is the number of possible configurations of   P  A i    and   r i   is the number of values of the variable.



The first term of Equation (2) measures the accuracy of the model using   − l o g P ( D | Θ )   (represented as   f 1   in the next section) and the second term measures the complexity using    k 2   l o g  n   (represented as   f 2   in the next section). The complexity of a BN is proportional to the number of arcs, as shown in Equation (3).



Hence, metrics that incorporate these two terms are dealing with a multi-objective problem which may represent that while the accuracy is better the complexity increases.




3.3. Multi-Objective Optimization Problem


According to Deb [42], a multi-objective optimization problem (MOOP) can be seen as a search problem that aims to minimize or maximize two (or more) objectives that are usually in conflict. Without loss of generality, a MOOP can be defined as:    f →   (  x →  )  =  [  f 1   (  x →  )  ,  f 2   (  x →  )  , … ,  f l   (  x →  )  ]    where    x →  =  [  x 1  , … ,  x n  ]  ∈ R   is an n-variable decision vector,   f →   is the set of objective functions to be minimized or maximized, and l is the number of objectives (in our case, we have two objectives: the LL   f 1   and the complexity   f 2  ).



According to this idea, the following definitions are provided: a solution   x 1   dominates a solution   x 2   (denoted by    x 1  ⪯  x 2   ) if the solution   x 1   is not worse than   x 2   in all objectives and it is better than   x 2   in at least one objective. In MOOPs there is not a single optimal solution; conversely, we can find a set of solutions that have no other solution which dominates them when all objectives are currently considered. Hence, the set of non-dominated solutions is called Pareto optimal set, and the evaluations of each non-dominated solution in each objective function are known as the Pareto front.



Figure 1 shows a particular case of the Pareto front in the presence of two-objective functions.



Several techniques have been proposed to solve MOOP [43]. This work is based on an evolutionary algorithm, which has shown advantages over classical techniques.





4. Nondominated Sorting Genetic Algorithm for Learning Bayesian Networks (NS2BN)


NSGA-II is a fast elitist multi-objective evolutionary algorithm proposed by Deb et al. [42]. In NSGA-II the individuals are ordered into non-dominated sets called fronts. In the first front are those individuals that are not dominated by the solutions in the current population. Such solutions are removed from the population and the process is repeated so as to select the set of non-dominated solutions to get the second front, and so on. A rank based on the number of the front is assigned to each individual. Additionally, the crowding distance is computed for each individual. The crowding distance is used to know how close an individual is to its neighbors in the objective function space. The selection of parents is performed by using binary tournament based on the rank and the crowding distance. The selected parents generate offsprings through crossover and mutation operators.



This work presents a multi-objective approach by using NSGA-II. The aim is to deal with the BN learning structure problem as a multi-objective optimization problem. The likelihood and the complexity of the model are considered as the objectives to be optimized. The pseudocode of the proposed approach NS2BN is presented in the Algorithm 1.



	Algorithm 1: NS2BN



	  1:  G = 0 {Generation}



	  2:  Generate a population P of random solutions     x i  →  , ∀ i , i = 1 , … , P O P _ S I Z E  



	  3:  Repair cycles of each     x →  i   ∀ i , i = 1 , … , P O P _ S I Z E  



	  4:  Evaluate the fitness functions using the first and the second term of the Equation (2) of each     p →  i   ∀ i , i = 1 , … , P O P _ S I Z E  



	  5:  while   G ≤  G  m a x     do



	  6:   Create an offspring population Q using: binary tournament selection, one-point crossover and bit inversion mutation.



	  7:   Repair cycles



	  8:   Evaluate the fitness functions using the first and the second term of the Equation (2) of each     x →  i   ∀ i , i = 1 , … , P O P _ S I Z E  



	  9:   Combine parents and offspring populations   R = P ∪ Q  



	10:   Sort using non-dominated criterio



	11:   Replacement



	12:     G = G + 1  



	13:  end while








For the implementation of NS2BN, the following features are highlighted, (i) due to the nature of the problem, the representation of individuals (BNs) is an adjacency matrix as can be seen in Figure 2, (ii) due to this representation, a repair operator to avoid cycles inspired on [44] is used (see Figure 3). This repair operator identifies cycles in three kinds of processes: self-cycles, by-cycles, and regular cycles. In the first one, the repair strategy is to replace the value along the diagonal, when the value is 1 by 0. The second repair strategy fixes the bi-directional cycles that occurs when two nodes are seen to influence each other then the repair operator removes one of the arcs at random to resolve it; finally the regular cycles need to identify a path between nodes, the strategy is the same as the path-cyclic graphs, where one of the offending arcs is removed randomly. And, (iii) the fitness functions are defined by each term of Equation (2) and both are minimizations.



Regarding the total computational cost per iteration; to the cost of the base algorithm we add the cost of the repair operator, therefore our NS2BN algorithm is   O  ( M  N 2  )  + O  ( N D )   , where; M is the number objectives, N is the population size and D is the dimensionality of the individuals [42].




5. Experimental Setup


This section presents the experimental setup used to compare the resultant BN models in terms of the trade-off between LL and complexity. A set of twelve databases was used: (i) four synthetic databases with 6-nodes, in which all the random variables are binary; do not produce any qualitative impact on the results in comparison to non-binary variables [45]. Two of these databases were generated using a random probability distribution and the next two were generated with distribution   p = 0 . 1   that according to [45] changing the parameters to be high or low tends to produce low-entropy distributions which have more potential for data compression. Tetrad IV software [46] was used to generate synthetic databases with a specific distribution. (ii) Three databases of a well-known benchmark [47] and (iii) five databases from the UCI repository [48]. Table 1 shows a detailed description of each database.



A single objective Genetic Algorithm [49] (GABN) was adopted for comparison purposes. The individual representation consists of the same adjacency matrix above discussed; the fitness function is the crude MDL, as described in the previous Section 3.2. In this algorithm, binary tournament parent selection, one-point crossover and bit inversion mutation are employed.



Ten independent runs were made by each algorithm per database, with 20,000 evaluations each. The GABN finds a single network for each execution, the network with the best MDL is chosen as the “genetic solution”, meanwhile, in NS2BN the result of a run is a set of solutions with a variety of accuracy and structural complexity measurements. Based on the fact that all solutions in the Pareto front are optima, a decision making process based on expert knowledge in the modeling field is required to choose the most suitable solution.



To carry out a comparison between the multi-objective approach and the single-objective approach the linear programming technique for multidimensional analysis of preference (LINMAP) was used [50]. In the LINMAP decision approach criterion, from the accumulated Pareto front of ten executions, the solution nearest to a reference point which is (0, 0) is chosen. To find this solution all the solutions were normalized and the Euclidean distances were computed between the reference point and each Pareto solution as is shown in Figure 4. The solution with the shortest Euclidean distance is referred to as the chosen solution in this work.



The experimentation is presented in three parts: (1) the chosen solution obtained by NS2BN and the single solution from the Genetic algorithm are compared in terms of their complexity, likelihood, MDL and the classification accuracy using 10-fold-cross-validation (See Equation (5), where CV is test error on kth fold), (2) for the case of the databases in Table 1 from 1 to 6, we measure how the probability distribution of the gold-standard network is different from the genetic solution; for this computation the formulation of the Kullback Leibler distance (KLD) was used, see Equation (4). Finally, (3) the analysis of the plots of the accumulated Pareto fronts are discussed.


   D  K L    ( p | | q )  =  ∑  i = 0  N   (  x i  )  l o  g 2   (   p (  x i  )   q (  x i  )   )   



(4)




where   q ( x )   is the approximation and   p ( x )   is the gold-standard network distribution that we are interested in matching   q ( x )  . If the obtained value is equal to 0 means that the distributions perfectly match, otherwise, it can take values between 0 and ∞.


  C V =  1 K   ∑  k = 1  K  C  V k   



(5)







The parameter setting employed by NS2BN and the GA were tuning empirically. The parameters are as follows:   P O P _ S I Z E   = 100,   G  m a x    = 200, C = 0.9 and M = 0.3.




6. Results


Table 2 shows the results in terms of LL, complexity, and MDL for the chosen solution and the genetic solution. Additionally, the results in terms of the 10-fold-cross-validation rate are presented in the column named “CV”. A parametric t-test with   95 %  -confidence was applied between the chosen solution and the genetic solution in terms of classification accuracy. Numbers in bold-face letters indicate that the difference between accuracies is significant and this accuracy is the best.



According to such a test, in five databases there were significant differences in favor of the NS2BN chosen solution. The rest of the results did not show significant differences, which means that genetic solutions do not have advantages or disadvantages in terms of classification. Since the genetic algorithm is searching the minimum value of MDL, the genetic solutions show a minor MDL in sixteen databases. However, one of the objectives is clearly affected in those results.



Figure 5d–f show how the genetic solution tends to choose solutions with a smaller log-likelihood but more complex, and a similar situation occurs in Figure 5g–i where the GABN chooses solutions less complex but with a worse log-likelihood value.



It is important to notice the prominence of the search procedure and all the elements associated with this. It may be necessary, in the case where the genetic algorithm tends to choose solutions with a smaller LL but more complex, to find the balance in the configuration parameters to have a balance between exploration and exploitation. Other components that could be explored include genetic diversity, reinitialization, or self-adaptation, which we will leave for future work.



Regarding the sample size, Grünwald [15] points that crude MDL does not work well when the sample size is small or moderate and Hastie et al. [16] point out that a metric like crude MDL, in a finite sample, tends to select less complex models. Our results agree with Grünwald and in contrast to Hastie’s et al, our work shows a bias when the sample size is greater in the Genetic Solution, which is used a weighted sum, since this solution tends to select a more complex model (see Figure 5b,c,e,f, Figure 6f and Figure 7b,c).



The experiments generated by a low-entropy distribution show, as was pointed by Cruz-Ramírez et al. [34] that the presence of noise rate affects the behavior of MLD, which tends to prefer the less complex models, even a network with no arcs. However, the results of the experiments with low entropy distribution show, regardless the sample size, solutions with better values in both terms in comparison with the solution provided by NS2BN (see Figure 5g–l).



Finally, Table 3 shows the results of the KLD computation. According to such a test, there were significant differences in ten databases in favor of the solution obtained by NS2BN, which means that the chosen solution is closest to the gold-standard network concerning the underlying distribution.




7. Conclusions and Future Work


In this paper, a novel evolutionary bi-objective optimization approach for model selection of BN was presented. The accuracy and the complexity, which are related to bias and variance respectively, were adopted as the objectives to be optimized so as to obtain models with an acceptable generalization performance. A set of trade-off solutions was obtained per database. A solution nearest to the origin was chosen as a competitive solution with a suitable trade-off between the objectives. This chosen solution was compared with a single-objective solution. The chosen solution achieved competitive results, especially in complexity. It is important to note, that one of the main advantages of this approach is the set of trade-off solutions and that the selection of a model can be a high-level decision and must be performed by a domain expert of the modeling phenomenon. Additional advantages are that the proposed method can be applied to a databases from different domains and can be extended to other models such as artificial neural networks. As future work, different methods can be used to control (adapt or self-adapt) the algorithms parameters. Also, alternatives to reduce the computational cost of the algorithm can be included.
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Figure 1. The Pareto front of a set of solutions in a two-objective space. 
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Figure 2. Example of an adjacency matrix and its corresponding BN. 
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Figure 3. The self-cycle (left), the path-cycle (center) and the regular-cycle (right). 
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Figure 4. Points in the Pareto front represent the trade-off between both objectives. The Euclidean distance was computed between each Pareto solution and the reference point (  0 , 0  ). The solution with the shortest distance was considered as the chosen one to be compared with the GABN solution. 
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Figure 5. Accumulated Pareto front of the twelve first databases with 6-nodes, random probability distribution (RPD) and low-entropy probability distribution (LED). Gray stars—the accumulated front obtained by ten runs of NS2BN. Blue triangle—the golden-standard network. Pink square—the GABN solution and then green circle—the chosen solution from the NS2BN Pareto front. 
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Figure 6. Accumulated Pareto front of the well-known benchmark databases with the different number of cases. Gray stars—the accumulated front obtained by ten runs of NS2BN. Blue triangle—the golden-standard network. Pink square—the GABN solution and the green circle—the chosen solution from the NS2BN Pareto front. 
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Figure 7. Accumulated Pareto front of the UCI repository databases. Gray stars—the accumulated front obtained by ten runs of NS2BN. Pink square—the GABN solution and green circle—the chosen solution from the NS2BN Pareto front. 
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Table 1. Databases used in the experiments.






Table 1. Databases used in the experiments.





	No.
	Name
	Attributes
	Instances
	Arcs





	1.
	A6 Nodes-random probability distribution
	6
	1000, 5000, 10000
	8



	2.
	B6 Nodes-random probability distribution
	6
	1000, 5000, 10000
	8



	3.
	C6 Nodes-low entropy probability distribution
	6
	1000, 5000, 10000
	9



	4.
	D6 Nodes-low entropy probability distribution
	6
	1000, 5000, 10000
	7



	5.
	Asia
	8
	1000, 5000, 10000
	8



	6.
	Car Diagnosis
	18
	1000, 5000, 10000
	20



	7.
	Child
	20
	1000, 3000
	Unknown



	8.
	German Credit
	21
	1000
	Unknown



	9.
	Hepatitis
	20
	80
	Unknown



	10.
	Glass
	10
	270
	Unknown



	11.
	Heart Disease. Cleveland
	14
	298
	Unknown



	12.
	Credit Approval
	16
	654
	Unknown
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Table 2. Comparison between the NS2BN and the GABN solutions. Values in parentheses represent the standard deviation, for the case of -Log-Likelihood, complexity, and MDL the minimum value is in boldface. For the case of the CV, we carry out the t-test and values in boldface mean the significant best value found.






Table 2. Comparison between the NS2BN and the GABN solutions. Values in parentheses represent the standard deviation, for the case of -Log-Likelihood, complexity, and MDL the minimum value is in boldface. For the case of the CV, we carry out the t-test and values in boldface mean the significant best value found.





	
Model

	
Trade-off

	
MDL

	
CV




	
−Log Likelihood

	
Complexity






	
A6-Nodes random probability distribution. 1000 cases




	
Chosen solution

	
4682.057654

	
84.70916642

	
4766.76682

	
71.25(±3.25)




	
Genetic solution

	
4697.44594

	
89.69205856

	
4787.137998

	
72.10(±2.86)




	
A6-Nodes random probability distribution. 5000 cases




	
Chosen solution

	
22964.2851

	
92.15784285

	
23056.44294

	
72.42(±1.55)




	
Genetic solution

	
22968.59399

	
104.4455552

	
23073.03954

	
71.88(±1.93)




	
A6-Nodes random probability distribution. 10000 cases




	
Chosen solution

	
46522.66474

	
79.72627428

	
46602.39101

	
70.37(±0.76)




	
Genetic solution

	
46181.77888

	
166.0964047

	
46347.87529

	
70.29(±0.81)




	
B6-Nodes random probability distribution. 1000 cases




	
Chosen solution

	
5149.786108

	
79.72627428

	
5229.512382

	
85.59(±3.32)




	
Genetic solution

	
5102.720574

	
104.640735

	
5207.361309

	
85.75(±3.34)




	
B6-Nodes random probability distribution. 5000 cases




	
Chosen solution

	
25909.78695

	
92.15784285

	
26001.94479

	
83.58(±1.45)




	
Genetic solution

	
25540.93739

	
190.4595419

	
25731.39693

	
84.23(±1.41)




	
B6-Nodes random probability distribution. 10000 cases




	
Chosen solution

	
51018.73479

	
126.2332676

	
51144.96806

	
84.62(±0.96)




	
Genetic solution

	
50830.79577

	
179.3841171

	
51010.17989

	
84.71(±0.98)




	
C6-Nodes low-entropy probability distribution. 1000 cases




	
Chosen solution

	
2685.283382

	
109.6236271

	
2794.907009

	
89.70(±0.54)




	
Genetic solution

	
2703.478277

	
29.89735285

	
2733.37563

	
89.60(±0.49)




	
C6-Nodes low-entropy probability distribution. 5000 cases




	
Chosen solution

	
13940.96186

	
153.5964047

	
14094.55826

	
90.22(±0.09)




	
Genetic solution

	
13963.84415

	
36.86313714

	
14000.70728

	
90.24(±0.08)




	
C6-Nodes low-entropy probability distribution. 10000 cases




	
Chosen solution

	
28137.70083

	
186.0279733

	
28323.7288

	
90.21(±0.03)




	
Genetic solution

	
28159.77242

	
39.86313714

	
28199.63556

	
90.21(±0.03)




	
D6-Nodes low-entropy probability distribution. 1000 cases




	
Chosen solution

	
2705.676276

	
94.6749507

	
2800.351227

	
91.40(±0.49)




	
Genetic solution

	
2722.059767

	
34.880245

	
2756.940012

	
91.40(±0.49)




	
D6-Nodes low-entropy probability distribution. 5000 cases




	
Chosen solution

	
14063.96978

	
159.7402609

	
14223.71004

	
90.76(±0.08)




	
Genetic solution

	
14080.43878

	
36.86313714

	
14117.30192

	
90.76(±0.08)




	
D6-Nodes low-entropy probability distribution. 10000 cases




	
Chosen solution

	
27735.47963

	
205.9595419

	
27941.43917

	
90.27(±0.05)




	
Genetic solution

	
27761.63739

	
39.86313714

	
27801.50053

	
90.27(±0.05)




	
Asia. 1000 cases




	
Chosen solution

	
3200.726031

	
79.72627428

	
3280.452306

	
94.30(±1.87)




	
Genetic solution

	
3211.984813

	
89.69205856

	
3301.676872

	
94.30(±1.87)




	
Asia. 5000 cases




	
Chosen solution

	
16188.02485

	
110.5894114

	
16298.61427

	
94.10(±0.81)




	
Genetic solution

	
16167.19634

	
122.8771238

	
16290.07347

	
94.10(±0.81)




	
Asia. 10000 cases




	
Chosen solution

	
32444.35458

	
86.37013047

	
32530.72471

	
94.12(±0.52)




	
Genetic solution

	
31738.67533

	
159.4525486

	
31898.12788

	
94.12(±0.52)




	
Car diagnosis. 1000 cases




	
Chosen solution

	
9130.727267

	
363.7511264

	
9494.478394

	
71.10(±0.30)




	
Genetic solution

	
8903.130665

	
438.4945085

	
9341.625174

	
69.33(±1.52)




	
Car diagnosis. 5000 cases




	
Chosen solution

	
44811.82111

	
411.6383647

	
45223.45948

	
75.10(±1.64)




	
Genetic solution

	
43066.63622

	
663.5364685

	
43730.17269

	
76.12(±1.86)




	
Car diagnosis. 10000 cases




	
Chosen solution

	
91244.39425

	
597.9470571

	
91842.34131

	
76.76(±1.34)




	
Genetic solution

	
88106.54485

	
1275.620388

	
89382.16524

	
72.44(±1.46)




	
German Credit




	
Chosen solution

	
775.3134767

	
358.7682342

	
1134.081711

	
70.00(±0.00)




	
Genetic solution

	
795.3572652

	
308.9393128

	
1104.296578

	
70.00(±0.00)




	
Hepatitis




	
Chosen solution

	
843.1819384

	
88.50699333

	
931.6889318

	
83.75(±5.76)




	
Genetic solution

	
843.1298695

	
101.1508495

	
944.280719

	
83.75(±5.76)




	
Glass




	
Chosen solution

	
1809.775474

	
7335.03997

	
9144.815443

	
76.58(±7.29)




	
Genetic solution

	
2174.033877

	
170.3122737

	
2344.346151

	
35.51(±2.08)




	
Heart Disease. Cleveland




	
Chosen solution

	
3743.020428

	
250.5367332

	
3993.557162

	
56.89(±5.06)




	
Genetic solution

	
3752.086989

	
151.9649037

	
3904.051893

	
53.89(±0.85)




	
Credit Approval




	
Chosen solution

	
8037.915455

	
233.7734795

	
8271.688934

	
72.90(±5.29)




	
Genetic solution

	
8052.242078

	
201.0451924

	
8253.287271

	
60.49(±5.03)
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Table 3. Kullback–Leibler divergence computed between the gold-standard network with the GABN solution and the gold-standard network with the chosen solution of the NS2BN Pareto front. Values in boldface mean the best value found.
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	Golden-Network
	GABN
	NS2BN





	A RPD. 1000 cases
	0.006256036
	0.000412874



	A RPD. 5000 cases
	0.000735484
	0.000166667



	A RPD. 10000 cases
	0.000622825
	0.010558429



	B RPD. 1000 cases
	0.5008542
	0.512832286



	B RPD. 5000 cases
	0.50817743
	0.527715617



	B RPD. 10000 cases
	0.501635069
	0.506660672



	C LED. 1000 cases
	0.006859061
	0.000558415



	C LED. 5000 cases
	0.001254388
	8.84927E-06



	C LED. 10000 cases
	0.000630321
	0.000231126



	D LED. 1000 cases
	0.005505678
	0.001674059



	D LED. 5000 cases
	0.001196043
	0.0007695



	D LED. 10000 cases
	0.000561088
	0.000529102



	Asia 1000 cases
	0.184669176
	0.183903387



	Asia 5000 cases
	0.279944777
	0.277977466



	Asia 10000 cases
	0.272191288
	0.262362486



	Car diagnosis 1000 cases
	0.161505741
	0.278079726



	Car diagnosis 5000 cases
	0.160725004
	0.192815203



	Car diagnosis 10000 cases
	0.200548739
	0.223971025











© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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