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Abstract: The vibration characteristics of a nonuniform, flexible and free-flying slender rocket
experiencing constant thrust is investigated. The rocket is idealized as a classic nonuniform beam with
a constant one-dimensional follower force and with free-free boundary conditions. The equations of
motion are derived by applying the extended Hamilton’s principle for non-conservative systems.
Natural frequencies and associated mode shapes of the rocket are determined using the relatively
efficient and accurate Adomian modified decomposition method (AMDM) with the solutions obtained
by solving a set of algebraic equations with only three unknown parameters. The method can easily
be extended to obtain approximate solutions to vibration problems for any type of nonuniform beam.

Keywords: vibrations; slender rocket; Adomian modified decomposition method; natural frequency

1. Introduction

The development of rockets has led to larger values of thrust-to-weight and length-to-diameter
ratios as required for longer range flights. The drag force is proportional to the square of the rocket
diameter, and therefore the preference is to vary the length as opposed to the diameter for a given
range increase. In addition, to reduce the cost of the launching operation and initial handling and
transportation, efforts are always made to reduce the rocket structural weight. These different
requirements lead to a highly flexible structure, for which, dynamic response and vibrational
characteristics are of great importance [1]. In general, forces acting on such a structure can be
divided into conservative and non-conservative forces with the follower force (thrust) a typical example
of non-conservative forces. When a given structure is both under a constant follower force and whose
direction changes according to the deformation of the structure, it can undergo static divergence
whereby transverse natural frequencies merge into zero and flutter, where two natural frequencies
coincide resulting in the amplitude of vibration growing without bound [2].

The structural vibrations of launch vehicles have been the subject of research using various
methods of calculation. The slender freely flying rocket is usually simplified as a beam with free-free
boundary conditions with a follower force [3,4]. One of the first investigations of divergence and
flutter was by Beal [5] where a flexible missile under constant and pulsating thrust was considered.
The Galerkin method was used and it was shown that the divergence found was closely related to
the first two bending moments. Wu [6,7] was the first to use a finite element technique together with
the unconstrained variational approach to investigate the relation between the critical load and the
eigenvalues of the system. He concluded that the optimized size and location of the concentrated
mass would improve directional stability. The divergence and flutter of a spinning beam with a
concentrated mass and subjected to a pulsating thrust has been investigated by Yoon and Kim [8],
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where they modeled the beam as a Timoshenko formulation and solved by applying a finite element
method. More recently, slender rocket studies have included aerodynamic forces, gravitational forces,
and internal load effects [9–12]. However, research into this area is found to be limited, with very few
sustained investigations being undertaken. The present research sets a framework for future work
involving more complete geometry and material discontinuities, and the ability to solve nonlinear
equations, with ease, using Adomian polynomials [13].

The method of solution chosen here is the Adomian modified decomposition method [13]
which is a wide-ranging method of solution for problems involving algebraic [14], differential [15],
integro-differential [16], and partial differential equations [17]. Specific to this work, the Adomian
decomposition and Adomian modified decomposition method have been used by several groups [18–23]
for uniform and nonuniform beams, starting with either the Euler–Bernoulli or Timoshenko
formulations. Mao [18] applied the Adomian modified decomposition method (AMDM) to rotating
uniform beams and included a centrifugal stiffening term, Adair and Jaeger [19] applied the AMDM to
rotating nonuniform beams which also included a centrifugal stiffening term, whereas Hsu et al. [20]
applied the AMDM to Timoshenko beams. Lai et al. [21] and Lai et al. [22] employed both the
AMDM and Adomian decomposition methods as an innovative eigenvalue solver to determine the
free vibration of an Euler–Bernoulli beam under various supporting conditions. Yaman [23] used the
Adomian decomposition method to investigate the influence of the orientation effect on the natural
frequency of a cantilever beam carrying a tip mass, while Adair and Jaeger [24] investigated the
vibrations of a beam with both a transversely and axially eccentric tip mass present using the AMDM.

The objective of the present work is to investigate the effect of the following thrust on the vibrations
of a slender rocket. In order to meet this objective, the work idealizes the rocket as a nonuniform
beam and the thrust as a follower force with the governing equations developed using the extended
Hamilton’s principle. The AMDM is developed to calculate a solution for the dynamic analysis.

2. Structural Modeling

An assumption is made that the effect of the thrust acts only on the rocket body and does not
have an influence on the fins. The body of the rocket is assumed to be a nonuniform non-extensible
beam subjected to a constant follower thrust, as shown on Figure 1.

Math. Comput. Appl. 2020, 25, x FOR PEER REVIEW 2 of 14 

 

mass would improve directional stability. The divergence and flutter of a spinning beam with a 

concentrated mass and subjected to a pulsating thrust has been investigated by Yoon and Kim [8], 

where they modeled the beam as a Timoshenko formulation and solved by applying a finite element 

method. More recently, slender rocket studies have included aerodynamic forces, gravitational 

forces, and internal load effects [9–12]. However, research into this area is found to be limited, with 

very few sustained investigations being undertaken. The present research sets a framework for future 

work involving more complete geometry and material discontinuities, and the ability to solve 

nonlinear equations, with ease, using Adomian polynomials [13]. 

The method of solution chosen here is the Adomian modified decomposition method [13] which 

is a wide-ranging method of solution for problems involving algebraic [14], differential [15], integro-

differential [16], and partial differential equations [17]. Specific to this work, the Adomian 

decomposition and Adomian modified decomposition method have been used by several groups 

[18–23] for uniform and nonuniform beams, starting with either the Euler–Bernoulli or Timoshenko 

formulations. Mao [18] applied the Adomian modified decomposition method (AMDM) to rotating 

uniform beams and included a centrifugal stiffening term, Adair and Jaeger [19] applied the AMDM 

to rotating nonuniform beams which also included a centrifugal stiffening term, whereas Hsu et al. 

[20] applied the AMDM to Timoshenko beams. Lai et al. [21] and Lai et al. [22] employed both the 

AMDM and Adomian decomposition methods as an innovative eigenvalue solver to determine the 

free vibration of an Euler–Bernoulli beam under various supporting conditions. Yaman [23] used the 

Adomian decomposition method to investigate the influence of the orientation effect on the natural 

frequency of a cantilever beam carrying a tip mass, while Adair and Jaeger [24] investigated the 

vibrations of a beam with both a transversely and axially eccentric tip mass present using the AMDM. 

The objective of the present work is to investigate the effect of the following thrust on the 

vibrations of a slender rocket. In order to meet this objective, the work idealizes the rocket as a 

nonuniform beam and the thrust as a follower force with the governing equations developed using 

the extended Hamilton’s principle. The AMDM is developed to calculate a solution for the dynamic 

analysis.  

2. Structural Modeling 

An assumption is made that the effect of the thrust acts only on the rocket body and does not 

have an influence on the fins. The body of the rocket is assumed to be a nonuniform non-extensible 

beam subjected to a constant follower thrust, as shown on Figure 1. 

 

Figure 1. Simplified nonuniform rocket body subjected to constant thrust. 

When the deformation is small, 

𝑢(𝑥, 𝑡) = ∫ −
1

2
(

𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
)

2

d𝑥,

𝑥

0

 (1) 

where 𝑢(𝑥, 𝑡)  and 𝑤(𝑥, 𝑡)  are the longitudinal and transverse flexible displacements along the 

beam respectively. Hence, 

Figure 1. Simplified nonuniform rocket body subjected to constant thrust.

When the deformation is small,

u(x, t) =

x∫
0

−
1
2

(
∂w(x, t)
∂x

)2

dx, (1)
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where u(x, t) and w(x, t) are the longitudinal and transverse flexible displacements along the beam
respectively. Hence,

∂u(x, t)
∂x

= −
1
2

(
∂w(x, t)
∂x

)
. (2)

The kinetic energy and potential energy of the system are, respectively,

T =
1
2

l∫
0

ρA(x)
(
∂w(x, t)
∂t

)2

dx, (3)

U =
1
2

l∫
0

EI(x)
(
∂2w(x, t)
∂x2

)2

dx, (4)

where l is length of the rocket.
The follower thrust creates virtual work and work of inertia in the lateral direction as

δWP = P

 ∂w(x, t)
∂x

δw(x, t)

∣∣∣∣∣∣l
0
−

l∫
0

∂2w(x, t)
∂x2 δw(x, t)dx−

∂w(l, t)
∂x

δw(l, t)


= −P

 ∂w(x, t)
∂x

δw(x, t)

∣∣∣∣∣∣
x=0

+

l∫
0

∂2w(x, t)
∂x2 δw(x, t)dx

.

(5)

Therefore,

W =

l∫
0

ρA(x) f


x∫

0

−
1
2

(
∂w(x, t)
∂x

)2

dx

dx, (6)

where f is longitudinal acceleration.
According to Hamilton’s principle for a non-conservative system,

δ

tb∫
ta

(T + W −U)dt +

tb∫
ta

δWPdt = 0. (7)

On putting Equations (3)–(6) into Equation (7) and assuming that for any time interval {ta, tb} that
the virtual displacement is equal to zero, the following is obtained:

∂2

∂x2

(
EI(x)

∂2w(x, t)
∂x2

)
+ ρA(x)

∂2w(x, t)
∂t2 +

∂
∂x


P− f

l∫
x

ρA(x)dx

∂w(x, t)
∂x

 = 0. (8)

According to Sugiyama and Oshima [25], when a rocket is in its positive phase, i.e., when it
is driven by the thrust of the rocket, the drag as compared with the thrust is negligible and can be
neglected. Therefore, in this work the acceleration can be considered as a function of thrust and mass
of the rocket. So,

P− f

l∫
x

ρA(x)dx = P−
P∫ l

0 ρA(x)dx

l∫
x

ρA(x)dx =
P∫ l

0 ρA(x)dx

x∫
0

ρA(x)dx = N(x), (9)
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giving
∂2

∂x2

(
EI(x)

∂2w(x, t)
∂x2

)
+ ρA(x)

∂2w(x, t)
∂t2 +

∂
∂x

(
N(x)

∂w(x, t)
∂x

)
= 0. (10)

It is assumed that the cross-sectional area and moment of inertia of the rocket body vary according to

A(x) = A0

(
1 + (α− 1)

x
l

)2
, (11)

I(x) = I0

(
1 + (α− 1)

x
l

)4
, (12)

where α = b1/b0 is the ratio of the rocket cross-sectional diameters just before the nose cone and at
the base. Here, A0 = πb0

2/4 and I0 = πb0
4/64 are the cross-sectional area and moment of inertia at

x = 0, respectively.

After setting β = 1− α, and setting M =
∫ l

0 ρA(x)dx, N(x) in Equation (10) can be written as

PρA0

M

x∫
0

(
1− 2β

x
l
+ β2

(x
l

)2
)
dx, (13)

which leads to

N(x) =
PρA0

3M

[
3x−

3β
l

x2 +
β2

l2
x3

]
. (14)

In addition, according to modal analysis for harmonic free vibration, w(x, t) can be separated in
space and time as

w(x, t) = ϕ(x)h(t), (15)

where ϕ(x) is the modal deflection and h(t) is the harmonic function of time. If ω denotes the circular
frequency of h(t), then ∂2w(x, t)/∂t2 = −ω2ϕ(x)h(t) and the eigenvalue of the problem of Equation (10)
reduces to the differential equation

d2

dx2

(1− βx
l

)4 d2ϕ(x)
dx2

+ PρA0l
3EI0M

d
dx

[[
3

x
l
− 3β

(x
l

)2
+ β2

(x
l

)3
]

dϕ(x)
dx

]
−
ρA0ω2

EI0

(
1− β

x
l

)2
ϕ(x) = 0. (16)

Without loss of generality, the following dimensionless quantities are introduced:

η =
x
l

, ϕ(η) =
ϕ(x)

l
, λ1 =

ρA0ω2l4

EI0
, λ2 =

PρA0

3EI0M
.

Equation (16) can now be written as

d2

dη2

(1− βη)4 d2ϕ(η)

dη2

+ λ2
d

dη

[[
3η− 3βη2 + β2η3

]dϕ(η)
dη

]
− λ1(1− βη)

2ϕ(η) = 0. (17)

Equation (17) is expanded as

d4ϕ(η)

dη4
−

8β
(1− βη)

d3ϕ(η)

dη3 +

 12β2

(1− βη)2 + λ2

(
3η− 3βη2 + β2η3

)
(1− βη)4

d2ϕ(η)

dη2 −
λ1

(1− βη)2ϕ(η) = 0. (18)
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3. Boundary Conditions

Generally, the boundary conditions can be considered as

EI(x)
∂2w(x, t)
∂x2

∣∣∣∣∣∣
x=0

= EI(x)
∂3w(x, t)
∂x3

∣∣∣∣∣∣
x=l

= 0, (19)

∂
∂x

(
EI(x)

∂2w(x, t)
∂x2

)∣∣∣∣∣∣
x=0

=
∂
∂x

(
EI(x)

∂3w(x, t)
∂x3

)∣∣∣∣∣∣
x=l

= 0. (20)

With reference to Figure 2, the boundary conditions, which do not vary with time and considered
in dimensionless form, can be written as follows:

d2ϕ(η)
dη2

∣∣∣∣∣
η=0
−KRL

dϕ(η)
dη

∣∣∣∣
η=0

= 0,

d3ϕ(η)
dη3

∣∣∣∣∣
η=0
− 4β d2ϕ(η)

dη2

∣∣∣∣∣
η=0

+ KTLϕ(η)
∣∣∣
η=0 = 0,

(21)

d2ϕ(η)
dη2

∣∣∣∣∣
η=1

+ KRR
dϕ(η)

dη

∣∣∣∣
η=1

= 0,

d3ϕ(η)
dη3

∣∣∣∣∣
η=1
−

4β
1−β

d2ϕ(η)
dη2

∣∣∣∣∣
η=1
−KTRϕ(η)

∣∣∣
η=1 = 0,

(22)

where the coefficients are in nondimensionalized form with

KTL =
kTLl3

EI0
, KTR =

kTRl3

EI1
, KRL =

kRLl
EI0

, KRR =
kRRl
EI1

,

where I1 is the moment of inertia at x = l.
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4. Application of AMDM

According to the AMDM, ϕ(η) in Equation (18) can be expressed as an infinite series, i.e.,

ϕ(η) =
∞∑

m=0

Cmη
m, (23)

where the unknown coefficients Cm are determined recurrently. If a linear operator G ≡ d4/dη4 is used,
then the inverse operator of G is a four-fold integral operator defined as

G−1 =

η∫
0

η∫
0

η∫
0

η∫
0

(· · · )dηdηdηdη. (24)
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Equation (18) can now be written as

ϕ(η) = Φ(η) + G−1
 8β
(1− βη)

d3ϕ(η)

dη3 −

 12β2

(1− βη)2 + λ2

(
3η− 3βη2 + β2η3

)
(1− βη)4

d2ϕ(η)

dη2 +
λ1

(1− βη)2ϕ(η)

. (25)

By substituting the decomposition ϕ(η) =
∑
∞

m=0 Cmηm into Equation (25), the following is
obtained:

ϕ(η) = Φ(η) + G−1

 8β
(1− βη)

∞∑
m=0

(m + 1)(m + 2)(m + 3)Cm+3η
m

−

 12β2

(1− βη)2 + λ2

(
3η− 3βη2 + β2η3

)
(1− βη)4

 ∞∑
m=0

(m + 1)(m + 2)Cm+2η
m +

λ1

(1− βη)2

∞∑
m=0

Cmη
m

,

(26)

where Φ(η) =
∑3

m=0 Cmηm = ϕ(0) + ϕ′(0)η+ ϕ′′ (0)η2/2 + ϕ′′′ (0)/6 is the initial term.
The following are a list of power series:

(1− βη)−1 =
∞∑

j=0
(βη) j, β , 0,

(1− βη)−2 =
∞∑

j=0
( j + 1)(βη) j, β , 0,

(1− βη)−4 =
∞∑

j=0

( j+1)( j+2)( j+3)
6 (βη) j, β , 0.

(27)

Using these relationships, the following are obtained:

(1− βη)−1
∞∑

m=0

(m + 1)(m + 2)(m + 3)Cm+3η
m =

∞∑
m=0

ηm
m∑

j=0

βm− j( j + 1)( j + 2)( j + 3)C j+3. (28)

(1− βη)−2
∞∑

m=0

(m + 1)(m + 2)Cm+2η
m =

∞∑
m=0

ηm
m∑

j=0

βm− j(m− j + 1)( j + 1)( j + 2)C j+2. (29)

(1− βη)−4
∞∑

m=0

(m + 1)(m + 2)Cm+2η
m =

∞∑
m=0

m∑
j=0

βm− j (m− j + 1)(m− j + 2)(m− j + 3)
6

( j + 1)( j + 2)C j+2. (30)

On integrating Equation (26) and incorporating Equations (28)–(30)

∞∑
m=0

Cmηm = ϕ(0) + ϕ′(0)η+ ϕ′′(0)
2 η2 +

ϕ′′′(0)
6 η3

+
∞∑

m=0

{
ηm+4

(m+1)(m+2)(m+3)(m+4)

m∑
j=0

8βm− j+1( j + 1)( j + 2)( j

+3)C j+3 − ( j + 1)( j + 2)[12βm− j+2(m− j
+1) + λ2

(
3η− 3βη2

+β2η3
)
βm− j (m− j+1)(m− j+2)(m− j+3)

6

]
C j+2 + λ1βm− j(m− j

+1)C j
}
.

(31)

The recurrence relation for the coefficients Ck can now be stated as

C0 = ϕ(0), C1 = ϕ′(0), C2 =
ϕ′′ (0)

2
, C3 =

ϕ′′′ (0)
6

, (32)
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and for m ≥ 4 as

Cm

= 1
m(m−1)(m−2)(m−3)

m−4∑
j=0

( j + 1)( j + 2)( j + 3)8βm− j−3C j+3 − ( j

+1)( j
+2)

[
βm− j−2(m− j

−3) + λ2
(
3η− 3βη2

+β2η3
)
βm− j−4 (m− j−3)(m− j−2)(m− j−1)

6

]
C j+2 + λ1βm− j−4(m

− j− 3)C j
}
.

(33)

The coefficients Cm can be found from the recurrent Equations (32) and (33) and the solution for
ϕ(η) subsequently calculated from Equation (26). The series solution is ϕ(η) =

∑
∞

m=0 Cmηm, although
all of the coefficients Cm cannot be determined, and thus the solutions must be approximated by the
truncated series

∑n−1
m=0 Cmηm. The successive approximations are ϕ[n](η) =

∑n−1
m=0 Cmηm, as n increases

and the boundary conditions are met.
Thus, ϕ[1](η) = C0, ϕ[2](η) = ϕ[1](η) + C1η, and ϕ[3](η) = ϕ[2] + C2η2 serve as approximate

solutions with increasing accuracy as n→∞ . The four coefficients Cm(m = 0, 1, 2, 3) in Equation (32)
depend on the boundary conditions of Equations (21) and (22). As in this case, the boundary conditions
are free-free, so KRR → 0, KTR → 0, KRL → 0, KTL → 0 , and so it is most convenient to choose the
two coefficients C0 and C1 as zero, and the other two coefficients C2 and C3 as arbitrary constants with
the coefficients Cm obtained using Equation (33). By substituting ϕ[n](η) =

∑n−1
m=0 Cmηm into the last

two boundary conditions of Equation (22) two algebraic equations involving C2 and C3 are obtained

n−3∑
m=0

(m + 1)(m + 2)Cm+2 = f [n]12 (λ1)C2 + f [n]13 (λ1)C3 = 0, (34)

n−4∑
m=0

(m + 1)(m + 2)(m + 3)Cm+3 = f [n]22 (λ1)C2 + f [n]23 (λ1)C3 = 0, (35)

and for non-trivial solutions of C2 and C3 the frequency equation can be written as

f [n]12 (λ1) f [n]23 (λ1) − f [n]22 (λ1) f [n]13 (λ1) = 0. (36)

The ith estimated eigenvalue λ[n]
1(i)

corresponding to n is obtained from Equation (36), i.e., the ith

estimated dimensionless natural frequency Ω[n]
n(i)

=

√
λ
[n]
1(i)

is also obtained and n is determined by the

following equation: ∣∣∣∣Ω[n]
n(i)
−Ω[n−1]

n(i)

∣∣∣∣ ≤ ε, (37)

where Ω[n−1]
n(i)

is the ith estimated dimensionless natural frequency corresponding to n− 1 and ε is a

preset sufficiently small value. If Equation (37) is satisfied, then Ω[n]
n(i)

is the ith dimensionless natural

frequency Ωn(i). By substituting Ω[n]
n(i)

into Equation (36), we obtain

C3 = −
f [n]r2

(
Ω[n]

n(i)

)
f [n]r3

(
Ω[n]

n(i)

)C2, r = 1, 2, (38)
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and all of the other coefficients Cm can be obtained from Equations (32) and (33). In addition, the ith
mode shape ϕ[n]

i corresponding to the ith eigenvalue Ω[n]
n(i)

is obtained by

ϕ
[n]
i (η) =

n−1∑
m=0

C[i]
mη

m, (39)

where C[i]
m is Cm(η) in which λ1 is substitutes by λ1(i) and ϕ[n]

i is the ith eigenfunction corresponding to
the ith eigenvalue λ1(i). By normalizing Equation (39), the ith normalized eigenfunction is defined as

ϕ
[n]
i (η) =

ϕ
[n]
i (η)√∫ 1

0

[
ϕ
[n]
i

]2
dη

, (40)

where ϕ[n]
i (η) is the ith mode shape function of the beam corresponding to the ith natural frequency

ω
[n]
i =

√
λ
[n]
1(i)

√
EI0
ρA0l4 = Ω[n]

n(i)

√
EI0
ρA0l4 .

5. Numerical Results

The convergence plots for the first three dimensionless natural frequencies, with the truncation
factor, β set at 0.25 and thrust set at zero, are shown in Figure 3. By solving Equation (36) for n and
taking the real root for λ1(1) = Ω2

n(1), it can be shown that for n = 42∣∣∣∣Ω[42]
n(1)
−Ω[41]

n(1)
≤ ε = 0.00001

∣∣∣∣, (41)

with
Ωn(1) ≈ Ω[42]

n(1)
= 15.1278. (42)
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For this particular case, it was found that convergence occurred for Ωn(1) after 42 iterations,
for Ωn(2) after 52 iterations, and for Ωn(3) after 60 iterations. It is considered that the convergence is
quite rapid for each of the natural frequencies.

The development method of solution was in part validated with published results. In Table 1,
a comparison is made with the results of Krynicki and Mazurkiewicz [26] for a solid cylindrical
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beam with free-free boundary conditions and with the thrust set at zero. It can be found that there is
reasonable agreement between the two sets of results, although, generally, the current method gives
slightly higher solutions for all three natural frequencies.

Table 1. Frequency parameters of a uniform beam with circular cross-section with free-free
boundary conditions.

Uniform Cylinder, β=0.0

Ωn(1) Ωn(2) Ωn(3)

Current 22.3745 61.6912 121.0452
Ref. [26] 22.3733 61.6728 120.9030

Calculations were also made and compared with published data for a “complete” cone,
which means the cone was not truncated but sharp when η = 1. The boundary conditions were again
free-free and the thrust was set to zero. As can be seen from Table 2, there was fairly good agreement
with those reported by Naguleswaran [27], although, again, the current method gave higher results for
each of the natural frequencies.

Table 2. Frequency parameters of a “complete” rocket as compared with the frequency parameters of a
free-free complete cone.

‘Complete’ Rocket, β=1.0

Ωn(1) Ωn(2) Ωn(3) Ωn(4)

Current 17.4195 35.0436 57.4867 84.8549
Ref. [27] 17.4164 35.0270 57.3796 84.6028

By substituting Ω[42]
n(1)

as given by Equation (42) into Equations (33) and (39) (with λ2 = 0) and
normalizing using Equation (40), a polynomial can be obtained to describe the first mode shape
function. The same procedure was employed for other natural frequencies and mode shapes. The mode
shapes related to the first four natural frequencies are shown on Figure 4.
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The variation of the natural frequencies with the truncation factor, again without thrust, is given
in Table 3. It can be seen that the values are in reasonable agreement with those reported by
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Naguleswaran [27]. Additionally, it is notable that the first natural frequency does not vary
monotonically with β, whereas the second and third natural frequencies do.

Table 3. First three dimensionless natural frequencies of a free-free truncated cone for different
truncation factors, β with free-free boundary conditions.

Truncated Cone

β Ωn(1) Ωn(2) Ωn(3)

0.05
Current 15.9551 33.1259 56.5495
Ref. [27] 15.9543 33.1251 56.5484

0.15
Current 14.9399 34.8542 63.8621
Ref. [27] 14.9381 34.8535 63.8434

0.25
Current 15.1278 37.8976 71.5367
Ref. [27] 15.1266 37.8972 71.5171

0.35
Current 15.7681 41.1205 78.8673
Ref. [27] 15.7674 41.1193 78.8259

0.45
Current 16.6135 44.3543 86.0330
Ref. [27] 16.6130 44.3537 85.8162

0.55
Current 17.5662 47.5667 90.2381
Ref. [27] 17.5653 47.5650 -

0.65
Current 18.5803 50.6751 93.7655
Ref. [27] 18.5794 - -

As may be intuitively obvious, the increase in thrust force will reduce the natural frequencies.
The calculations made for the first three modes for increasing nondimensional thrust values and
for different truncation factors, β, are shown in Table 4. As can be seen, the increases in thrust
have a considerable effect on the reduction of all three natural frequencies for each of the β values.
For example, for the first natural frequency when β = 0.05, there is a large reduction in natural
frequency of approximately 63%.

Table 4. Effect of thrust magnitude on the natural frequency of the first three modes.

Truncated Cone

β Ωn(1) Ωn(2) Ωn(3)

0.05

λ2 = 0 15.9551 33.1259 56.5495
λ2 = 1 11.9663 22.7243 35.3434
λ2 = 2 7.6451 14.2773 22.9732
λ2 = 3 5.9561 10.2790 16.7838

0.25

λ2 = 0 15.1278 37.8976 71.5367
λ2 = 1 11.0306 25.7700 44.7104
λ2 = 2 6.9336 16.3336 29.0618
λ2 = 3 5.9881 11.7861 21.2321

0.65

λ2 = 0 18.5803 50.6751 93.7655
λ2 = 1 13.1610 34.9608 60.9476
λ2 = 2 8.1289 22.2970 39.3815
λ2 = 3 6.5804 16.2160 28.1300

To find the effect of the increase in thrust on mode shape, calculations were made with increasing
nondimensional thrust values, λ2 for the fundamental mode shape. The increase in thrust is seen
in Figure 5 to reduce the magnitude of the mode shape in the vicinity of the aft of the rocket, i.e.,
close to the application of the thrust, whilst close to the rocket nose the magnitude of the mode shape
increases. This phenomenon, according to Pourtakdoust and Assadian [1] motivates inertial measuring
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units (IMU) induced vibrations on considering the forward location of the IMU. In Pourtakdoust
and Assadian [28] it was found that the IMU location in the aft of the vehicle could lead to dynamic
instability. Increasing thrust caused a backward shift in the extremum point of the fundamental mode
shape curve which allowed for a larger margin of safety for the IMU induced vibration.
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Finally, to show the ease of changing boundary conditions, and for further validation, a comparative
study with calculations obtained by a finite-element method (FEM) for various boundary conditions
was undertaken. The analytical results were compared with the results obtained using the commercial
FEM software ANSYS [29] and previously reported by Avcar [30].

In this study, the beam had a constant square cross-section and homogeneous material
properties. The analytical calculations were converted to dimensional quantities for the purpose
of comparison, with E = 70 × 109 N/m2, ρ = 2700 kg/m3, l = 3 m, and A = 0.03 m2.
The boundary conditions used were, clamped-clamped and clamped-free, respectively. For the
clamped-clamped case, the nondimensional coefficients for translation and rotation, as found in
Equations (21) and (22), become KRL →∞, KRR →∞, KTL →∞, KTR →∞ . For the clamped-free
case, KRL →∞, KRR → 0, KTL →∞, KTR → 0. The comparison between the current method and the
finite-element method is shown in Figure 6, where fn and n are the natural frequency and mode
number, respectively.
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As can be seen, the two methods of calculation give close results, although the AMDM calculations
tend to be consistently slightly higher. The maximum discrepancy found between the two calculation
methods was 0.132%.

6. Conclusions

The proposed method has been effective in obtaining the closed-form of the free vibration of a
slender rocket with free-free boundary conditions. The ith natural frequency and mode shape function
can be derived using this method, with the results of this relatively simple approach obtaining results
similar to more complex methods. Two specific advantages of using the AMDM approach are the fast
convergence rates noted and the high accuracy of the calculations. A practical advantage of using
AMDM is that boundary conditions can be easily changed for different scenarios.

Author Contributions: Methodology, Supervision and Writing—original draft, D.A.; Investigation and
Writing—review and editing, A.N. and M.J.; Software, A.N. All authors have read and agreed to the published
version of the manuscript.
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