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Abstract: We perturbed a family of exponential polynomial maps in order to show both analytically
and numerically their unpredictable orbit behavior. Due to the analytical form of the iteration
functions the family has numerically different behavior than its correspondent analytical one, which
is a topic of paramount importance in computer mathematics. We discover an unexpected oscillatory
parametrical behavior of the perturbed family.
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1. Introduction

An exponential polynomial function is defined as the sum of products of polynomials and
exponential functions [1,2]. Considering these functions as iteration functions, they give rise to
exponential discrete dynamical systems which were introduced in [3]. In this work, it was shown that
the study of analytical and numerical techniques for such systems are a difficult task. It is important
to remark that even theoretical results obtained from these systems often differ from the numerical
results obtained by simple evaluation techniques.

In this work, a perturbation to a family of exponential polynomial map is introduced in order
to analyze its structural stability. Such family of system models generally emerge from diverse areas
from Applied Mathematics such as population models, models for infectious diseases and also from
nonstandard discretizations of continuous models [4–9]. Also in Physics, they appear commonly
in quantum mechanics as asymptotic solutions to the standard time independent Schrödinger
equation [10–12]. Perturbation methods were the main tool to obtain quantitative information from
nonlinear models all this before the computational methods revolution. Nowadays, perturbation on
mathematical models is often included to add uncertainty and to analyze their response to different
factors. For example immigration/emigration in the case of population models or variation of inputs
on the level of downstream genes in the case of developmental Biology. In our case, we perturbed a
family of exponential polynomial dynamical systems with a constant parameter in order to show as
a first goal the differences from its asymptotic behavior when one treats numerically both systems:
perturbed and unperturbed. We will show that asymptotic numerical behavior of the perturbed system
does not correspond to its asymptotic theoretical behavior by showing different behavior and also
displaying oscillating features of the system. We can wonder why to complain and cause a needless
commotion about numerical calculations especially when the theory of dynamical systems is available.
The fact is that for most exponential polynomial dynamical systems is impossible to apply the basic
theory, even to calculate the equilibrium points explicitly.
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Since mathematical modeling is a fast growing area in a variety of areas in Biology and also in
new trends of applied mathematics, the new models considered in the literature are becoming more
quantitative. Thus, a second goal of this work is to show specialists on those areas the care that one
has to consider when analyzing a system using only computational methods. Therefore, we want
to emphasize that every computational strategy must be accompanied by a variety of mathematical
theories and numerical techniques.

This paper is organized as follows: In Section 2, we introduce the perturbed exponential
polynomial family of discrete dynamical systems of our interest and we also show how the perturbation
may be considered in Ecology. In Section 3, the analysis of this family is performed by dividing it into
two scenarios: the unperturbed case and the perturbed case. Only for the perturbed case we are able to
compute explicitly the equilibria and potential periodic points. A stability analysis is carried out in this
case. For the perturbed case, we show only an approximation of the equilibria, but we are able to show
their asymptotic stability. Next, in Section 4 we discuss numerically the asymptotic behavior of both
scenarios and show the reasons for the appearance of the oscillatory behavior. General conclusions of
this work are summarized in Section 5.

2. Exponential Family of Dynamical Systems

Consider the perturbed family of exponential polynomial discrete dynamical systems given by

xn+1 = f (α, xn) = xn + (2− xn)e−α(xn−1)2
+ ε, (1)

where the parameter α satisfies α > 0 and ε is a small positive parameter. We assume that xn ≥ 0;
since we may consider that xn has some meaning in the context of several applications, for example in
population dynamics. System (1) generalizes a very basic linear discrete dynamical system, known in
several applications as exponential growth models [13,14]. The new system incorporates a new term
that for small values of α can be considered as a small functional perturbation term, which biologically
models a period of abundance of resources for the population and for larger values of α such period
tends to disappear. The perturbation term will show that the system is not structural stable. Moreover,
the perturbation terms can model some biological important quantities as harvesting, immigration,
emigration, etc. [15]. Thus, system (1) can be considered as a functional perturbed discrete growth
model with an extra term that can be interpreted as a regulatory mechanism of harvesting or migration.

3. Analysis of the Exponential Polynomial Family

3.1. Unperturbed System

Let us start by analyzing the family of unperturbed systems by finding the equilibrium points
and classifying their stability, see [3]. The fixed points of (1) with ε = 0 satisfy the equation

(2− x)e−α(x−1)2
= 0. (2)

Therefore, the only fixed point of the unperturbed system is given by x = 2, for every value of α.
That is, (2, α) is a collection of fixed points that is constant for every value of α. Since 0 ≤ ∂ f

∂x (α, 2) =
1− e−α < 1, all fixed points are stable for all non negative values of α.

In a typical analysis of a discrete system one will seek for periodic points of period three in order
to show that there are periodic points of all orders. In our case we will show that the family does not
have periodicity at all. Thus, let us search for periodic points of period two. Such points satisfy:

(2− x)e−α(x−1)2
= (2− x)

(
e−α(x−1)2 − 1

)
e−α(x+(2−x)e−α(x−1)2 ),
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that is (assuming x 6= 2),

e−α(x−1)2
=

(
e−α(x−1)2 − 1

)
e−α(x+(2−x)e−α(x−1))2

. (3)

Setting z = e−α(x−1)2
, and β = e−α(x+(2−x)e−α(x−1))2

, we note that 0 < z ≤ 1 and 0 < β < 1.
Substituting these values on (3) we get the equation z(1− β) = −β, which does not have real solutions.
Therefore, there are no periodic points of period two implying that there are not periodic points of any
period by Sarkovskii’s theorem [16]. From the previous analysis, the local asymptotic behavior of the
unperturbed system reduces to two cases: its orbits converge to the fixed point or diverge. Now let
us find out the behavior of the system numerically. We make use of bifurcation diagrams which are
graphical representation of the long-term behavior of the solution as a function of a system’s parameter.
In our case, such diagrams display properties of the asymptotic solution of a dynamical system as
a function of α, allowing one to recognize immediately where qualitative changes in the asymptotic
solution occur. Let us observe the bifurcation diagrams for the unperturbed system given in Figure 1a
for different initial conditions. Here the first 3000 iterations are discarded for each value of α. It is
important to remark that all calculations were made with a personal computer with an Intel R©CoreTM

i7-9700 CPU @ 3.00 GHz × 8.
Notice from Figure 1a that the fixed point x = 2 seems numerically to be stable only for values of

α in (0, 5.56). Let us observe that after the value α = 5.56 the branch of fixed points decreases down to
the value of the initial condition. We also obtain the same qualitative behavior when we vary the initial
conditions. This behavior was expected since for large values of α the system behaves as xn+1 = xn

since the basin of attraction of the fixed point disappears for larger values of α. Thus, foreshadowing
the behavior of the perturbed system.

(a) (b)
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Figure 1. (a) Bifurcation diagram for the unperturbed system (b) Regions of stability and instability for
the perturbed system.

In a typical analysis of a discrete system one will seek for periodic points of period three in order to
show that there are periodic points of all orders. In our case we will show that the family does not have
periodicity at all. Thus, let us search for periodic points of period two. Such points satisfy:

(2 − x)e−α(x−1)2
= (2 − x)

(
e−α(x−1)2 − 1

)
e−α(x+(2−x)e−α(x−1)2),

that is (assuming x 6= 2),

e−α(x−1)2
=

(
e−α(x−1)2 − 1

)
e−α(x+(2−x)e−α(x−1))2

. (3)

Setting z = e−α(x−1)2
, and β = e−α(x+(2−x)e−α(x−1))2

, we note that 0 < z ≤ 1 and 0 < β < 1.59
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Figure 1. (a) Bifurcation diagram for the unperturbed system (b) Regions of stability and instability for
the perturbed system.

3.2. Perturbed System

Let us analyze the perturbed system. Its fixed points satisfy:

F(x, ε) ≡ (2− x)e−α(x−1)2
+ ε = 0. (4)

Using perturbation analysis, we find that the solution of such equation, xε, is given by
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xε = 2 + eαε + 2αe2αε2 + O(ε3).

Since
F′(xε, ε) = −e−α + 4αε + (3 + 2α) αeαε2 + O(ε3),

we conclude that such equilibrium point is stable when

0 < e−α − 4αε− (3 + 2α) αeαε2 + O(ε3) < 2.

Here is the first change produced by the perturbation: The equilibrium point loses stability,
meaning that now the region of stability is bounded (before was the whole non negative axis). Notice
that for very small values of ε the region of stability decreases, see Figure 1b.

Let us examine the existence of periodic points of period two. Such potential points must satisfy

(2− x)e−a(x−1)2
+ ε =

(
(2− x)(e−a(x−1)2 − 1) + ε

)
e−α(x+(2−x)e−α(x−1)2+ε−1)2 − ε.

The unique solution of this equation is given by the fixed point. Therefore there are not periodic
points of period two. Which implies that there are not periodic points of any period. Let us find in the
next section how the perturbed system behaves numerically.

4. Asymptotic Numerical Behavior

We know by the analysis done previously how the perturbed system must behave asymptotically.
Now let us verify those facts numerically. For small values of α (α ∈ (0, 2.08)) system orbits converge
to the fixed point. So far we have agreement among numerical approximations and theory. Notice
that for bigger values of α (α > 2.08) the sequence {xn}∞

n=1 is increasing. Let us consider the variation
of the parameter α with those large values for the perturbed system. For this, we set different
small values of ε with different values of the initial condition and discarding the first 3000 iterations
keeping the following one hundred iterations. When that finite number of iterations is displayed
on the bifurcation diagram, oscillations appear. The resulting bifurcation diagrams show a behavior
consisting in a wide collection of oscillatory functions for which the number of waves or bumps
seems to depend on the initial condition. Such number of bumps and their amplitudes increases
when the value of the initial condition decreases, see Figure 2. It is important to remark that this
behavior is not aperiodic or chaotic. What is most important, the system behaves as xn + ε for larger
values of α. Thus, the oscillatory behavior is preserved. This ghost bump phenomenon is analogous
to the Gibbs phenomenon of a Fourier series [17,18]. Let us explain briefly this analogy. Gibbs
phenomenon is an overshoot of an eigenfunction series approximation occurring at discontinuities of a
piecewise continuously differentiable periodic function. Whereas the perturbed system approximates
an unknown function with also unknown smoothness properties. Both, the Gibbs phenomenon and
the ghost bump phenomenon, reflect the difficulty inherent in approximating numerically a function.
The first by a truncated series of a combination of sine and cosine functions and the second by a
truncated exponential polynomial which we will discuss next. It is important to remark that numerical
simulation methods require stabilization methods when modeling oscillation phenomena. Since
numerical overshoot is observed when the error tolerances are too loose and disappear for standard
tolerances. Tighter tolerances lead to more accurate results, but increase the computational load. Gibbs
phenomenon can can be reduced with a sigma approximation, see [19]. For our case we still do not
know if it is possible to stabilize our numerical procedure.
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Figure 2. Bifurcation diagram of system 1 with initial conditions (a) 0.7, (b) 0.5, (c) 0.1. Horizontal axis is
α and vertical axis is xn, n = 3001 − 3100.
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Figure 2. Bifurcation diagram of system (1) with initial conditions (a) 0.7, (b) 0.5, (c) 0.1. Horizontal
axis is α and vertical axis is xn, n = 3001–3100.

Let us show the reasons for the appearance of the oscillatory behavior. The perturbed system can
be written as:

xn = x0 + εn + (2− x0)e−α(x0−1)2
+

n−1

∑
j=1

(2− xj)e
−α(xj−1)2

.

Each term in the sum contributes to generate a new bump in the graph of the function xn = xn(α).
Thus, For fixed n, the graph of the function xn(α) will have n − 1 bumps and then it will decay
exponentially, with α as rate of decay, to the value x0 + nε. Notice that the terms in the sum drop off
quickly enough so the new iteration will inherit the previous bumps.

Regarding the variation of the initial condition, let us notice that the graph of xn(α) for fixed n
and fixed initial condition is compressed from the right, as compared with the graph for the same
n but with a smaller initial condition. Therefore, the initial condition indicates how frequently the
function oscillates, playing a similar role as the angular frequency for harmonic oscillators [20].

It is important to remark that the behavior shown for system (1), is shared by many discrete
exponential polynomial systems. Thus, an open question rises if such families act with accordance to a
set of universal properties which are independent of the specific exponential polynomial considered.
We should like briefly to illustrate this fact by way of the following example. Let us only modify the
coefficients on the perturbed system in order to get a similar asymptotic behavior as system (1). Let us
replace the term (x− 1)2 by the term (x− c)2 in the system (where c is a constant). This modification
makes the amplitude of the oscillations changed considerably. Moreover, the oscillation only appears
when the constant c is less than 2 and for larger values of the parameter, see Figure 3a. Finally, if we
replace now the term 2− x by the term d− x in the perturbed system (where d is a constant) the fixed
point now becomes x f (ε) = d− eα(d−1)ε +O(ε2), which is stable for d / 5/2 + 1/2(

√
1/a− 41/2).

This new system also presents oscillations for most values of d, see Figure 3b. Therefore, we conclude
that the exponential polynomial is the main cause of oscillations.
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5. Conclusions

The study and analysis of exponential polynomial discrete dynamical systems is a new trend
in Applied Computational Mathematics. One of the fundamental properties of a system is its
structural stability, which means that the qualitative behavior of its trajectories is unaffected by
small perturbations. In this work we have shown that a family of these system does not posses such
a property even for constant perturbations. Our methodology used for this research was to show
numerically and analytically the loss of stability of the unique fixed point for the perturbed system.
We have discovered and established that polynomial discrete systems are complicated to analyze
and most of the times even the equilibria are impossible to be provided with explicit closed-forms.
This fact makes hard to implement standard analysis techniques. In essence we relied on computational
methods to analyse the family of interest. We have shown that these systems exhibit transient behavior
that remained for large number of iterations which does not correspond to their asymptotic behavior.
A characteristic that may led to wrong results if one is using only numerical calculations due to the
impossibility of carry out an analytical process. In the end, the determinative fact that the iteration
function is a combination of products of exponential functions and polynomials no matter what the
degree are on the given polynomials, a given exponential function will eventually decay faster than
the polynomials.

One of the unpleasant features when considering only a finite number of iterations is the appearance
of numerical oscillations. We showed the main reasons for the appearance of such oscillatory behavior. So
far we are not able to verified if the computer numerical truncation is another factor.
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In summary, our analysis of the perturbed exponential family is just a starting point to develop a
more general theory for general polynomial discrete dynamical systems. We have discovered that are
new open research venues such as potential stabilization methods which is a future research project.
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