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Abstract: Hyperchaotic systems have applications in multiple areas of science and engineering.
The study and development of these type of systems helps to solve diverse problems related to
encryption and decryption of information. In order to solve the chaos synchronization problem
for a hyperchaotic Lorenz-type system, we propose an observer based synchronization under a
master-slave configuration. The proposed methodology consists of designing a sliding-mode observer
(SMO) for the hyperchaotic system. In contrast, this type of methodology exhibits high-frequency
oscillations, commonly known as chattering. To solve this problem, a fuzzy-based SMO system was
designed. Numerical simulations illustrate the effectiveness of the synchronization between the
hyperchaotic system obtained and the proposed observer.
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1. Introduction

Chaotic systems are nonlinear aperiodic oscillators with high sensitivity to initial conditions.
Due to above, in recent years, the study of chaotic systems has increased because of their different
applications in various areas of engineering [1]. In 1963, Edward N. Lorenz developed the first
chaotic system of third order Ordinary Differential Equations (ODE). He realized that any variation
in the initial conditions affects the final conditions [2]. Later, in 1979, Otto Rössler proposed the
first hyperchaotic system. This system consists of a system of ordinary differential equations of four
dimensions [3]. Unlike chaotic systems, hyperchaotic systems have a more complex behavior, i.e., their
dynamics are expanded in more than one direction, giving rise to a more complex attractor [4].

Due to aforementioned, hyperchaotic systems have potential applications in different branches
of science and engineering, for example: mobile robotics [5], secure communications systems [6],
and encryption in biometric systems [7], among others. An interesting challenge for the scientific
community is the chaos synchronization of hyperchaotic systems. In this context, the dynamic behavior
of two systems must converge on the same unique chaotic behavior. These two systems can be coupled
unidirectionally, also so-called master-slave configuration, i.e., the autonomous system with hyperchaotic
dynamics is called master and the another system, which is forced to follow the hyperchaotic behavior
by coupled inputs, called slave [1].

Chaos synchronization problem can be solved using various approaches, such as linear state
error feedback control, observer-based synchronization [8,9], and adaptive synchronization [10],
among others. Within this framework, the main idea of observer based synchronization methods
is to implement an observer system as a slave. Sliding-mode observers (SMO) have been widely
used in several applications [11], including chaos synchronization for continuous and sampled
systems [12–16]. In contrast, one crucial problem of the SMO is the high-frequency oscillations,
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also called chattering, caused by the discontinuous implementation of the set-valued function, latency
from the measurement to the actuation and the sampling time delay [17]. Commonly, in order to
suppress the high-frequency chattering, a low-pass filter structure is added [18]. However, the system
exhibits a delayed response brought by the filter [19]. Another method of chattering suppression
is the approximation of discontinuous control by using the boundary layer control [20,21]. In this
method, the control is discontinuous outside boundary layer and continuous inside. This implies that
the performance is similar to sliding-mode control (SMC) when the dynamic system is outside the
boundary layer. Therefore, when the dynamic is inside the boundary layer the system can exhibit
overshoot response. In order to overcome the chattering problem, fuzzy-based sliding-mode control
(FSMC) has been proposed as an alternative to reduce chattering [22]. Significant researches has been
done in this field. For instance, in Reference [22,23], the set-valued function is replaced by a fuzzy
inference. In this alternative, the sliding-mode variable represents the input for fuzzy inference system;
as a result of that, chattering attenuation is achieved.

In this paper, we propose a observer based synchronization under a master-slave configuration.
Such scheme, lie in a fuzzy-based sliding-mode observer (FSMO) design for a hyperchaotic Lorenz-type
system reported in Reference [24]. Firstly, the proposed methodology consists in designing a SMO for
the hyperchaotic system by means of Lyapunov analysis. Finally, in order to avoid the high-frequency
oscillations caused by SMO, a fuzzy inference system is designed to replace the set-valued function.
In this case, the fuzzy inference system designed attenuate the high-frequency oscillations in the
estimated variables.

The rest of this paper is organized as follows. Section 2 introduces the nonlinear mathematical
model of the hyperchaotic Lorenz-type system and provides the background material necessary
to understand the observer design. Section 3 introduces SMO and FSMO design to realize chaos
synchronization. Section 4 provides emulations numerical simulations in order to show the
effectiveness of the proposed approach. Finally, Section 5 presents the concluding remarks.

Notations. In this paper, the notation λmin{A} (λmax{A}) is the minimum (maximum) eigenvalue
of a matrix A ∈ Rn×n. We denote by |x| the 1-norm of vector x ∈ Rn, whereas ‖A‖ denotes the induced
norm of a matrix A.

2. Mathematical Model

Recently, Layek and Pati have introduced a four-dimensional mathematical model which describes
a hyperchaotic behavior in magnetoconvection of couple-stress fluid system by imposing a vertical
magnetic field is studied. This model is given by the following equations [24]:

ẋ1 = σ(x2 − cx1 − qx4), (1a)

ẋ2 = rx1 − x2 − x1x3, (1b)

ẋ3 = x1x2 − bx3, (1c)

ẋ4 = ζ(αx1 − x4), (1d)

where b, c, r, q, α, σ, and ζ are positive constants. System (1) exhibits various attractors (e.g., periodic
and quasi-periodic attractors, chaotic and hyperchaotic attractors) depending on the value of parameter
r. For example, system (1) exhibits a hyperchaotic behavior (see Figure 1) for the following
parameter values:

b = 8/3, c = 1 + (159/200)π2, r = 600, q = 1573, α = 4/(9π2), σ = 10, ζ = 0.1. (2)



Math. Comput. Appl. 2020, 25, 16 3 of 12

−60 −40 −20 0 20 40 60

−500

0

500

200

300

400

500

600

700

800

900

1000

x1(t)x2(t)

x
3
(t
)

(a)

−600

−400

−200

0

200

400

200

400

600

800

1000

−0.05

0

0.05

0.1

0.15

x2(t)x3(t)

x
4
(t
)

(b)

Figure 1. Chaotic attractor of system (1): (a) Phase space (x1, x2, x3). (b) Phase space (x2, x3, x4).

The following is henceforth assumed:

Assumption 1. The nonlinear terms in (1) are bounded, with a priori known upper bounds; that is, there exists
a positive constant F+

1 and F+
2 such that

||x1x3|| ≤ F+
1 , ||x1x2|| ≤ F+

2 . (3)

This assumption is made for technical reasons. Assumption 1 allows us to establish sufficient
conditions to guarantee convergence of estimations in the proposed observer design.

3. Observer Design

In this section, we design a sliding-mode observer considering y = [x2, x3]
T as the measurable

output of system (1). The proposed SMO has the following form:

˙̂x1 = σ(x̂2 − cx̂1 − qx̂4), (4a)
˙̂x2 = rx̂1 − x̂2 + L1 sgn(x2 − x̂2), (4b)
˙̂x3 = −bx̂3 + L2 sgn(x3 − x̂3), (4c)
˙̂x4 = ζ(αx̂1 − x̂4), (4d)

where x̂ denotes the estimate of x, L1 and L2 are the observer gains, and sgn(·) is the set-valued function
defined as follows:

sgn(a) :=

{
a/|a|, if a 6= 0

[−1, 1], if a = 0
, (5)

where a is a real value.
The observation error is defined as ei = xi − x̂i; i = 1, 2, 3, 4. Therefore, from system (1) and (4),

the observer error dynamics is described as follows:

ė1 = σ(e2 − ce1 − qe4), (6a)

ė2 = re1 − e2 − x1x3 − L1 sgn(e2), (6b)

ė3 = x1x2 − be3 − L2 sgn(e3), (6c)

ė4 = ζ(αe1 − e4). (6d)
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3.1. Stability Analysis

Consider the following Lyapunov function candidate for the error dynamics in system (6):

V(e) =
α

σ
e2

1 + e2
2 + e2

3 +
q
ζ

e2
4. (7)

The time derivative of V(e) along the trajectories of the observer error dynamics in
system (6) yields:

V̇(e) = −eTQe− 2
(

L1 sgn(e2)− x1x3
)
e2 − 2

(
L2 sgn(e3)− x1x2

)
e3 (8)

with

Q :=


2cα −(α + r) 0 0

−(α + r) 2 0 0
0 0 2b 0
0 0 0 2q

 .

From Equation (8), we can conclude that the matrix Q is positive definite if 4cα > (r + α)2 is
fulfilled. Now, under the Assumption 1, Equation (8) is reduced to

V̇(e) ≤ −λmin{Q}‖e‖2 − 2(L1 − F+
1 )|e2| − 2(L2 − F+

2 )|e3|. (9)

Selecting the observer gains L1 and L2 such that

L1 > F+
1 (10a)

L2 > F+
2 , (10b)

and defining η1 := 2(L1 − F+
1 ) and η2 := 2(L2 − F+

2 ), Equation (9) can be rewritten as

V̇(e) ≤ −λmin{Q}‖e‖2 − η1|e2| − η2|e3| < 0. (11)

Therefore, we can conclude that Equation (11) is a negative definite function; thus, the estimation
errors converge to zero.

3.2. Fuzzy-Based Sliding-Mode Observer

The main problem of the SMO, as in system (6), is that the discontinuous implementation of sgn
function in a real hardware exhibits chattering. Under this scenario, fuzzy inference system represents
an alternative in order to avoid the chattering at the output of the observer, also as in system (6) [23,25].
In this case, a fuzzy inference system is designed to replace the set-valued function sgn(·) so that the
output y is relaxed.

Let us consider the FSMO:

ė1 = σ(e2 − ce1 −Qe4), (12a)

ė2 = re1 − e2 − x1x3 − L1ψ(e2), (12b)

ė3 = x1x2 − be3 − L2ψ(e3), (12c)

ė4 = ζ(αe1 − e4). (12d)

Here, ψ(·) ∈ [−1, 1] ⊆ R is the fuzzy inference system, which is represented by the following
if-then rule:

Ri : If ei is Mi then ψi is Ui, (13)
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where the observation error ei is the fuzzy variable at the input, and Ui is the fired crisp value of the
output ψi regarding the value of ei. The whole universe of discourse for both ei and ψi is represented
by five fuzzy sets: NB (Negative bigger), NS (Negative small), ZR (Zero), PS (Positive small), and PB
(Positive bigger):

1. The states NB and PB represent the situation where error ei is too far from the origin in negative
side and positive side, respectively.

2. The states NS and PS represent the situation where error ei is in the negative side and positive
side, respectively.

3. The state ZR represents the situation when error ei is around the origin.

The fuzzy system is represented in Figure 2, where triangular membership functions for the input
variable ei are defined as follows:

Mi :=


ei−Φi−1
Φi−Φi−1

if Φi−1 ≤ ei < Φi
ei−Φi+1
Φi−Φi+1

if Φi ≤ ei < Φi+1

0 elsewhere.

(14)

The whole universe of discourse of ei is partitioned in five triangular membership functions. Here,
ei ∈ {−Φ2,−Φ1, Φ0, Φ1, Φ2} where Φ−i = Φi and M0(0) = 0. The membership functions for the
fuzzy sets of the output ψ ∈ {−U2,−U1, U0, U1, U2} are singleton-type functions where Ui = −U−i
and U0 = 0.

Figure 2. Membership functions for the input ei and the output ψi.

Meanwhile, the fuzzy system satisfies the following properties [22,26]:

(i) ψ(ei) is continuous and bounded.
(ii) ψ(0) = 0.
(iii) ψ(ei) = −ψ(−ei).
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The right-hand side of ψ is represented as follows:

ψ = ∑
i

{
Mi
Mr

}
Ui. (15)

Here,

Mr := Mi + Mi+1

=
ei −Φi+1

Φi −Φi+1
+

ei −Φi
Φi+1 −Φi

= 1

because only two rules are fired at the same time. The fuzzy inference system (15) is calculated as
follows [22,26]:

ψ(ei) =
Mi
Mr

Ui +
Mi+1

Mr
Ui+1 (16)

for Φi ≤ ei < Φi+1; thus,

ψ = MiUi + Mi+1Ui+1

=
∆U
∆Φ

ei +
1

∆Φ
(Φi+1Ui −ΦiUi+1)

, (17)

where ∆U := Ui+1 −Ui, and ∆Φ := Φi+1 −Φi. Therefore, it is concluded that the control output ψ is
proportional to the input signal ei as follows:

ψ ∝ ei.

4. Results

In this section, numerical simulations obtained by the system formed by system (1), as well
as the proposed observers of system (4) and (12), respectively, under a master-slave configuration
are presented. For numerical simulation, the implicit Euler method with step size h = 1× 10−3 is
used to solve the systems (1), (4) and (12) [27]. The parameter values considered of system (1) are
the same introduced in system (2). The initial conditions for hyperchaotic system (1) are selected as
x1(0) = 20, x2(0) = 100, x3(0) = 600, x4(0) = 0 and for both observers are x̂1(0) = 50, x̂2(0) =

200, x̂3(0) = 400, x̂4(0) = 0.5.
Two cases are studied: first, the convergence of estimated variables given by SMO is tested.

Later on, the convergence of estimated variables given by FSMO is considered. The both cases
aforementioned were tested considering F+

1 = 40,000 and F+
1 = 20,000, thereby the observer gains were

selected as L1 = 5× 104 and L2 = 3× 104. In Figure 3, the convergence of estimations given by SMO
is illustrated.
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Figure 3. Actual (solid line) and estimated (doted line) values: (a) Dynamic of state x1 and its
estimated x̂1. (b) Dynamic of state x2 and its estimated x̂2. (c) Dynamic of state x3 and its estimated x̂3.
(d) Dynamic of state x4 and its estimated x̂4.

For FSMO, the final partition of universe of discourse are e2, e3 ∈ {−200,−20, 0, 20, 200} and
ψ2, ψ3 ∈ {−1,−0.7, 0, 0.7, 1}. The trial-error approach is used to tune the fuzzy system to obtain
the best performance of FSMO. The convergence of the estimation provided by FSMO is depicted
in Figure 4.
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Figure 4. Actual (solid line) and estimated (doted line) values: (a) Dynamic of state x1 and its
estimated x̂1. (b) Dynamic of state x2 and its estimated x̂2. (c) Dynamic of state x3 and its estimated x̂3.
(d) Dynamic of state x4 and its estimated x̂4.

To evaluate the performance of both observers, the Mean Absolute Error (MAE) and Integral
Absolute Error (IAE) are applied to the SMO and FSMO results. As can be seen in Table 1, the
performance of FSMO is more accurate than that of SMO due to the presence of chattering phenomenon.
The above can be verified in Figure 5, where the estimation errors of SMO and FSMO are illustrated.

Table 1. Error criteria for sliding-mode observer (SMO) and fuzzy sliding-mode observer (FSMO).
MAE = Mean Absolute Error; IAE = Integral Absolute Error.

Error
MAE IAE

SMO FSMO SMO FSMO

e1 2.0727 1.2836 2.0726×105 1.2835×105

e2 25.923 3.2871 2.5923×106 3.2866×105

e3 15.2191 1.6070 1.5218×106 1.606×105

e4 0.0057 0.0053 571.45 532.32
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Figure 5. Time evolution of synchronization: (a) Error signals e1(t). (b) Error signals e2(t). (c) Error
signals e3(t). (d) Error signals e4(t).

Since system (1) exhibits various attractors depending on the value of parameter r, the convergence
of both observers is verified (see Figure 6) when the system (1) presents a periodic behavior. For the
aforementioned, the following parameter values were considered:

b = 8/3, c = 1 + (159/200)π2, r = 602.3, q = 1573, α = 4/(9π2), σ = 10, ζ = 0.1. (18)
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Figure 6. Phase portrait (x1, x3): (a) SMO. (b) FSMO.

On basis of the results obtained in Figure 3, we can observe that the estimation variables
exhibit chattering under SMO. Those high-frequency oscillations are introduced by the discontinuous
implementation of the set-valued function. In contrast, we can see the absence of chattering in the
estimation provided by FSMO.

5. Conclusions

We presented an FSMO and its application to solve the chaos synchronization problem of a
hyperchaotic Lorenz-type system. First, we designed a SMO using the Lyapunov stability theory.
The proposed SMO requires the measurement of two state variables from the hyperchaotic system.
Later, we designed an FSMO by means of fuzzy inference in order to avoid the chattering problem
derived of the SMO. More specifically, a fuzzy inference system was designed to replace the set-valued
function sgn(·). Finally, the effectiveness of synchronization for hyperchaotic system and the proposed
observers were verified by the performance index MAE and IAE.
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