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Abstract: This study presents the design of a hybrid active disturbance rejection controller (H-ADRC)
which regulates the gait cycle of a worm bio-inspired robotic device (WBRD). The WBRD is designed
as a full actuated six rigid link robotic manipulator. The controller considers the state restrictions
in the device articulations; this means the maximum and minimum angular ranges, to avoid any
possible damage to the structure. The controller uses an active compensation method to estimate
the unknown dynamics of the WBRD by means of an extended state observer. The sequence of
movements for the gait cycle of a WBRD is represented as a class of hybrid system by alternative
reference frameworks placed at the first and the last link. The stability analysis employs a class
of Hybrid Barrier Lyapunov Function to ensure the fulfillment of the angular restrictions in the
robotic device. The proposed controller is evaluated using a numerical simulation system based on
the virtual version of the WBRD. Moreover, experimental results confirmed that the H-ADRC may
endorse the realization of the proposed gait cycle despite the presence of perturbations and modeling
uncertainties. The H-ADRC is compared against a proportional derivative (PD) controller and a
proportional-integral-derivative (PID) controller. The H-ADRC shows a superior performance as a
consequence of the estimation provided by the homogeneous extended state observer.

Keywords: adaptive disturbance rejection controller; hybrid systems; state constraint; worm robot;
bio-inspired robots

1. Introduction

The main objective of bio-mimetics is to find a practical solution of human needs imitating
models or movements of animals or even plants. One of its main applications can be found in
the field of robotics [1]. The development of bio-inspired robotic systems involves the adaptation
of different modes of locomotion like the running inspired in leopards [2], swimming inspired in
fishes [3], climbing like gecko robots [4], or crawling by worms [5,6], among others. In the case of worm
bio-inspired robots, the movement of the so-called inchworm has interesting applications exploring
narrow places in contrast to mobile robots [7]. The inchworm moves with a looping movement in which
the anterior and posterior legs are alternately made fast and released. The alternation of fastening
enables a propelling motion [8]. These bio-inspired robots can be applied in medical applications like
colonoscopies [9], in the inspection of narrow pipes [7] and robotic manipulators [10]. There exist
diverse configurations of inchworm robots from two DOF (Degrees of freedom) to five. Two DOF

Math. Comput. Appl. 2020, 25, 13; doi:10.3390/mca25010013 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
https://orcid.org/0000-0001-8309-0790
https://orcid.org/0000-0002-3854-7031
https://orcid.org/0000-0003-2066-7470
https://orcid.org/0000-0002-6296-4900
https://orcid.org/0000-0002-7157-2052
http://www.mdpi.com/2297-8747/25/1/13?type=check_update&version=1
http://dx.doi.org/10.3390/mca25010013
http://www.mdpi.com/journal/mca


Math. Comput. Appl. 2020, 25, 13 2 of 26

in-pipe robots such as [7] reproduces contraction and expansion of inchworm’s gait cycle using two
sets of magnetic clamps switching an electro-valve: rear clamp grasps the pipe firmly while the front
clamp slides forward gaining traction in the process. Similarly, in [11], a system of two mass with
a spring that contracts/expands by its anisotropic skin is described. The inching mechanism was
proposed also in [12] for planetary surface exploration vehicles (rovers) to overcome the limitations
of traditional rolling mobility. The vehicle wheel bases were expanded and contracted to achieve an
increase of net traction potential. In addition, in [13], a three-module bore robot was constructed to
carry out investigations on planetary subsurfaces such as geothermal gradient, chemical composition
and analysis of regolith. Climbot is a tele-operated five DOF (Degrees) robot able to climb a variety of
media and grasp objects [14].

One interesting problem to solve is the tracking trajectory problem in these kinds of robots [15].
The complex structures that emulate the displacement of an inchworm bio-inspired robot require robust
techniques to cope with parametric uncertainties, no modeled dynamics, and noisy measurements.
Classical PID controllers, sliding modes, and fuzzy logic controllers have been applied without
considering the hybrid behavior of the gait cycle of an inchworm represented by a multi-link robot
manipulator [16]. Modeling an inchworm robot that alternates the grasping between its anterior and
posterior legs implies a switching structure that should be studied under the concept of hybrid systems.

The hybrid framework allows for studying more complex dynamics and allows more flexibility in
modeling dynamic phenomena [17]. A hybrid system is composed of two or more sets of differential
equations describing a particular stage of behavior in dynamic systems. In the case of the WBRD, two
robot manipulators with five DOF represent its gait cycle. In order to deal with non-modeled dynamics
and parameter uncertainties, an active disturbance rejection (H-ADRC) approach can be considered.
ADRC is a technique centered on providing an effective estimation of unknown nonlinearities by means
of algebraic techniques [18]. The main concepts considered in this control designs are: (1) simplify
the plant description so as to group all disturbances and uncertainties, as well as all unknown or
ignored quantities and expressions into a single disturbance term, (2) proceed to estimate the effects
of this disturbance, in some accurate manner, and (3) devise the means to cancel its effects, using
a feasible gathered estimate as part of the feedback control action. One way to fulfill this task is to
perform a polynomial expansion and translate it into the state space as the output of an extended state
observer [19].

The control algorithm has to be able not only to force the WBRD to reach a desired trajectory; it
needs to take into account the problem of finite-time convergence and states constraints to avoid any
damage of the mechanical structure. A classical tool to deal with state constraints is the concept of
Barrier Lyapunov functions (BLF) that is a function that tends to infinite as the argument approach to a
boundary. BLF has been applied to control nonlinear systems and linear perturbed systems [20].

This manuscript proposes a novel adaptive algorithm to deal with the trajectory tracking problem
of nonlinear hybrid systems with state constraints. The proposed algorithm is applied in the WBRD
with five DOF represented by a hybrid structure. The main contributions of this study are:

• The mechanical design of a bio-inspired inchworm robot with a hybrid structure.
• A hybrid ADRC controller capable of estimating the non-modeled dynamics and providing the

fundamentals to prove the origin of the tracking error space is a practical stable equilibrium point
considering the effect of the presence of non-modeled dynamics and state constraints.

• The complete stability analysis with a BLF providing ultimate boundedness for the tracking error.
• An additional complementary adaptive algorithm to reduce the energy consumed by the

controller.
• The experimental confirmation of the controller application on an instrumented WBRD that may

emulate a gait cycle of a particular inchworm.

This manuscript is organized in the following manner. Section 2 provides a general overview of
the WBRD design as well as the links–joints configuration. Section 3 introduces the control design
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problem statement considering the hybrid nature of the gait cycle realization by the WBRD. Section 4
provides the formulation of the WBRD realization in terms of the hybrid systems framework. The next
Section 5 details all the elements of the output feedback controller to solve the gait cycle of the WBRD.
Section 6 describes some aspects regarding the implementation (numerical and experimental) of the
output feedback controller. Section 7 provides the evidence of the controller numerical implementation
over a virtualized representation of the WBRD. Section 8 demonstrates the application of the suggested
controller on a developed WBRD using the tri-dimensional (3D) printing technique. Finally, Section 9
closes the paper with some final remarks.

2. Worm Bio-inspired Robotic Device

The proposed WBRD structure satisfies a class of multi-articulated manipulator with 5 DOF.
The WBRD displacement is realized by the switched fixation of the non-inertial frames (1st and 5th) to
the supporting surface (Figure 1). Considering that WBRD moves following a path tracking based on
sequenced steps, the odd steps occur with the 1st frame as the reference and the even steps happened
considering the 5th frame as reference. The sequence formed by odd-even steps defines a gait cycle of
the WBRD. As one may notice, the change of the reference frame justifies the use of switched systems
theory to develop the output feedback controller to regulate the WBRD mobilization. This can be
noticed with the alternated reference frame marked with black squares at the bottom of Figure 1.

Figure 1. Distribution of the WBRD’s degrees of freedom dependent on the activated vacuum pump.

The multi-articulated manipulator is formed by five solid links ls,i connected with rotational joints
characterized with angular displacement defined by θs(t),i. The variable s can be 1 if the step is odd
and 2 if the step is even. This variable is playing the role of the switching sequence usually considered
in switching systems analysis. The switching action is performed by a set of vacuum pumps that
emulates the front and rear legs subjection to the floor (see Figure 2). Each link is conformed by a
direct current (DC) motor for actuation, and a set of mechanical elements to transmit the movements.
To obtain a feedback of the actual position of each link, a set of five markers were placed in the robot.
A vision analysis system obtained the corresponding absolute angles of each link. These measurements
were the data input into the control algorithm.
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Figure 2. Elements of each link in the WBRD.

Table 1 describes the dimensions of the angles.

Table 1. Angular range of the WBRD.

Element Min Max Range

θ1,1 θ2,5 −80 80 160
θ1,2 θ2,4 −95 95 190
θ1,3 θ2,3 −95 95 190
θ1,4 θ2,2 −95 95 190
θ1,5 θ2,1 −80 80 160

Each link was designed with a scale of 50 : 1 yielding a total length of 71.6 cm in the zero position
and a total height of 7.2 cm including the pumps (Figure 3).

Figure 3. Dimensions of the WBRD.

3. Problem Definition

The WBRD displacement is represented as an alternated extension–contraction sequences
(Figure 4). This simplified representation of the WBRD displacement can be described as a hybrid
device alternating the movement of two multi-articulated (5 DOF) manipulators.
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a)

b)

c)

d)

Figure 4. Alternative representation of a gait cycle for the WBRD; (a) The rear pump is on and a first
robot manipulator structure is adopted; (b) The reference trajectories force the robot to expand almost to
reach a 0 degrees configuration; (c) The pumps switch and the second robot manipulator configuration
is adopted, the reference trajectories for the movement of the robot until a desired position; (d) A second
switching in the gait cycle is performed to complete the walking path emulating the real inchworm.

The fixation of the reference frame in the suggested alternate way modifies the description of
the WBRD. Indeed, this variation of the reference frame forces two distinct dynamic representations
for the WBRD. Such condition provides a challenging scenario for developing automatic controllers
which can ensure the tracking of reference trajectories that correspond to a bio-inspired gait cycle. This
section aims to formulate the controller design problem within the hybrid systems’ framework.

Let us consider the vector of angular displacements within a fixed part (s(t) equal either a or
b of the gait cycle θs(t) = |θs(t),i|i=1,...,5. Now, assume that, during the given part of the gait cycle,
the angular displacements must track the corresponding reference angles θ∗s(t) = |θ

∗
s(t),i|i=1,...,5. Then,

enforcing the gait cycle for the WBRD can be represented as an stabilization problem for the tracking
error ∆ ∈ R5, defined as ∆s(t) = θs(t) − θ∗s(t) within each continuous domain of s(t).

This problem statement obligates to consider the WBRD dynamics changes only if the vector of
tracking errors for all the articulations has attained a sufficiently small value (defined by the user),
namely SW∗ > 0. Therefore, the triggering signal which enforces the dynamics changing can be
obtained by measuring the norm of the tracking error within each domain of s(t). Once ‖∆s(t)‖ ≤ SW∗,
then s(t) changes from a to b or vice versa.

The problem statement concept given above enforces the fact that the vector of the angular
displacements θs,i at the WBRD must track the desired reference angles θ∗s,i ensuring the tracking errors
of all articulations enter the region characterized by ‖∆s(t)‖ ≤ SW∗ at some given finite moment Tc
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which must be bounded (Ts > 0). Such tracking problem can be described as designing the hybrid
controller us(t) such that

‖∆s(t)(t)‖ ≤ SW∗ ∀t ∈ [Tc, Ts] (1)

The maximum allowed switching time is introduced here in order to have a tracking trajectory
independent safety condition that can turn off the WBRD if the switching condition is not attained in a
reasonable period. Notice that the switching condition introduces a class of a non-constant sampling
discrete state which depends on the accomplishment of the condition provided in (1).

This study assumes that only θs(t) is continuously locally measurable all the time. However, θ̇s(t)
is not available. Therefore, the control design considers an output feedback realization.

4. Hybrid Formulation of the Worm Walking Cycle

The changing dynamics of WBRD can be characterized using a combination of continuous
and discrete states. Such representation agrees with the fundamentals of hybrid systems [21]. This
formulation to describe the gait evolution of the proposed WBRD is enforced because there is not
a strict periodicity which may define the transition between the gait domains (a or b) that is from
continuous to continuous (a to b or vice versa) dynamics passing through the discrete state domain.

If the WBRD exerts a regular mono-directional walking gait, the transitions between the
continuous stages follows an ordered sequence (a -> b -> a ->...). This sequenced dynamical behavior
justifies the application of a class of multi-domain hybrid systems framework considering a predefined
order of phases (or domains). Such representation leads to defining a so-called coherent cycle.

Formally, a multi-domain hybrid control system can be described considering a tuple [22,23]
HD = (Γ, D, U, S, ∆, FG), where Γ = (V; E) describes the sequenced cycle of transitions. Consequently,
v ∈ V defines a transition vertex connection the continuous domains, v+ represents the subsequent
vertex of v during the gait cycle, while e = {v→ v+} corresponds to the transition from the analyzed
vertex v to v+.

Continuous Dynamical Representations. Considering the links masses, their inertia as well as
their lengths properties of the WBRD, the equation of motion (EOM) that can be used within a given
continuous domain Dv can be determined by the Euler–Lagrange equations (considering that, within a
given domain, the WBRD obeys a manipulator representation) [24]. Therefore, assuming that xa = θs(t)
in each fixed domain, the dynamics of the WBRD corresponds to:

ẋa(t) = xb(t)

ẋb(t) = f (xa(t), xb(t)) + g (xa(t)) u(t) + D−1 (xa(t)) J>v (xa(t))Fv (xa(t), xb(t)) +

ξ (xa(t), xb(t), t)

(2)

Here, xa ∈ Xa ⊂ R5, xb ∈ Xb ⊂ R5 and u ∈ Rn are the vectors of angular displacements, angular
velocities, and the applied torques (operating as the control actuators) respectively for the WBRD.

The drift vector field f : Xa × Xb → R5 corresponds to f (xa, xb) =

−D−1 (xa) [C (xa, xb) xb + G(xa)], the state dependent matrix D : Xa → R5×5 defines the inertia of the
WBRD, the matrix C : R5 ×R5 → R5×5 defines the Coriolis effects while G : R5 → R5 defines the
effect of gravitational force over the WBRD dynamics. The vector function g : R5 → R5×5 characterizes
the control action effect over the WBRD dynamics with g = D−1.

The uncertain section of the model is gathered in ξ : Xa ×Rnv ×R→ R5 which characterizes the
presence of external perturbations and internal modeling uncertainties in the WBRD. Usually, this
term aggregates nonlinear behavior such as joint frictions, backslash, and some other elements that are
usually complex for modeling.

The function Fv : TQ×Uv → Rnv (nv is the number of total holonomic restrictions) represents
the contact wrenches containing the constraint forces and/or moments. Here, TQ represents the
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characteristic states occurring during the contact wrenches, and Uv is the corresponding set of control
actions which leads to the contact wrenches uv, which are relevant during the WBRD transition from
continuous to continuous domains (floor contact). To enforce the velocity independent (holonomic)
constraints, the second order differentiation of the constraints should be set to zero; that is,

Jv(xa)ẋb + J̇v (xa, xb) xb = 0 (3)

The constrained dynamics of the system must be determined using the trajectories of (2) together
with (3).

Holonomic Constraints. Given that the WBRD model with coordinates xa ∈ Q, Q ∈ R5 is
the configuration space, the complete dynamics within a domain depends simultaneously on the
Lagrangian as well as the contact constraints. All potential contacts of the WBRD with the floor (if not
physical obstacles are considered) forces a holonomic constraint, ηc(xa). Considering that Cv is an
indexing set of the possible holonomic constraints defined on Dv, then the holonomic constraints of the
domain corresponds to ηc(xa) = {ηc(xa)}c∈Cv

constant while the corresponding kinematic constraints

corresponds to Jv(xa)q̇ = 0, Jv(q) is the Jacobian of ηc(xa), i.e., Jv(xa) =
∂ηc(xa)

∂xa
.

The nature of the WBRD justifies that all the states (angular displacements and velocities) are
uniformly bounded in time. Therefore, the state x> =

[
x>a , x>b

]
is included in the set X+ = X+

a ∪ X+
b

defined as:
X+

a =
{

xa | −∞ < x−a,i ≤ xa,i ≤ x+a,i < +∞,
}

X+
b =

{
xb | −∞ < x−b,i ≤ xb,i ≤ x+b,i < +∞,

} (4)

with xi the i-th component of x, and the corresponding limits sup
t≥0

(xi) + ε = x+i and in f
t≥0

(xi)− ε = x−i

with ε a small constant real scalar and xi is either xi,a or xi,b. Indeed, the set X+ defines the holonomic
restrictions for the WDRD structure.

Domains and Guards. A limited number of forces/moments appears if the holonomic constraints
are active. These conditions can be represented in the form of component-wise inequalities
νvFv(xa, xb, uv) ≥ 0, νv is the function containing the parameters of the WBRD. The unilateral
constraints in the set Uv complete the admissible configurations for the WBRD via the domain of
admissibility Dv:

Dv = {(xa, xb, uv) ∈ TQ×Uv | Av(xa, xb, uv) ≥ 0} (5)

for v ∈ V. The boundary of each sub-domain are characterized with

Av(xa, xb, uv) =

νvFv(xa, xb, uv)

hv(xa)

 ≥ 0 (6)

A state guard Se corresponds to a proper subset of the domain Dv boundary, which is determined
by an edge condition connected to the transition from Dv to the subsequent domain, D+

v . Let us define
He(xa; xb; uv) as an appropriate set of elements taken from (6) which characterize the edge condition.
Using such elements, the guard can be characterized as

Se = {(xa, xb, uv) ∈ TQ×Uv | He(xa; xb; uv) = 0; Ḣe(xa; xb; uv) < 0
}

(7)

Discrete Dynamics. Consider the guard Se as a reset map Re that connects the system states over
the guard to the subsequent domain. Considering the pre-impact states (x−a ; x−b ) on Se, the post-impact
states (x+a ; x+b ) of D+

v are computed using a reset map Re by assuming the contact characterized by a
perfectly plastic impact (if an impact occurs) [25]. Following the ideas in [26], the states configurations
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of the WBRD remain invariant during the impact, i.e., (x−a ; x+a ); however, post-impact velocities must
satisfy the plastic impact equation:[

D(x−a ) −J>v+(x−a )
J>v+(x−a ) 0

]
·
[

x+b
δFv

]
=

[
D(x−a )x−b

0

]
(8)

where δ defines the impulse function for the forces in the WBRD during the contact with the floor.
Virtual Constraints. Analogously to the described holonomic constraints, virtual constraints

(recognized as the tracking errors in the control literature) correspond to the functions that modulates
the dynamics the WBRD to track certain reference trajectories. The term virtual arises from the fact that
such operative constraints must be enforced via a set of feedback (state or output) control instead of
using forced physical restrictions. In equivalence to tracking errors, virtual constraints correspond
to ∆s(t). In here, the desired trajectories are proposed accordingly to the technique proposed in [24],
where a novel technique to design monotonic and differentiable trajectories over a gait cycle is precisely
detailed [27].

Here, one may notice that the goal of the proposed controller is steering ∆s(t) to the origin
if possible or at least to the zone (indeed, an invariant set) defined in (1) within each continuous
domain. In this study, we avoid driving ∆s(t) to the invariant set tracking through discrete dynamics.
Considering that WBRD must realize movements with the aim of attaining the next switching
configurations, the sequence of desired movements x∗a ∈ R5 and x∗b ∈ R5 should be calculated
considering the distance between objects, the stable configurations for the WBRD, and so on. Notice
that the position of the j-th articulation x∗a,j is known in advance assuming that the desired velocity
x∗b,j can be estimated by direct differentiation (notice that the design of reference trajectories provides
differentiable with continuous derivative flows).

Once the conditions to describe the WBRD have been detailed, it is feasible to propose the
controller that can steer the virtual constraints to the origin or at least to the invariant set in (1).

5. Controller Design

5.1. Abstracted Representation of the WBRD

The aim of this research work is developing an output feedback loop controller for a WBRD, which
should take into account the hybrid nature of the gait cycle and the state restrictions which define the
angular restrictions at each joint. The proposed controller considers then the joints restrictions formed
during the standing stage of the WBRD. The dynamics of the WBRD (considering the hybrid nature) is
described as follows:

d
dt

xa(t) = xb,s(t)(t)
d
dt

xb(t) = fs(t) (x(t)) + gs(t) (xa(t)) u(t) + ξs(t) (x(t), t)
(9)

Here, xa ∈ R5 is the vector of angular displacements of the joints considered in the WBRD. The vector
xb ∈ R5 is the vector of the angular velocities of all joints. The nature of WBRD structure enforces the
existence of restrictions for all components in the state vector that is (4).

The function fs(t) : R10 ×R+ → R5 in (9) represents the drift term that corresponds to internal
dynamics of the BIMR:

‖ fs(t)
(

x1)− fs(t)
(

x2) ‖ ≤ L f ‖x1 − x2‖,
x1 ∈ R10, x2 ∈ R10, L f ∈ R+ (10)
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The function gs(t) : R5 → R5 characterizes how the input function affects the robot dynamics.
This function is invertible by the nature of the biped robot (formed as class of alternated robotic
muti-articulated arm) and satisfies

0 < g− ≤ |gs(t) (xa) | ≤ g+ < +∞ g− ∈ R+, g+ ∈ R+ (11)

The bounded function u ∈ R5 is referred to as the control function, which must take into account
the hybrid nature of the WBRD dynamics. By assumption, all the admissible controls belong to the
following so-called admissible set:

Uadm=
{

u : ‖u‖2 ≤ u0 + u1‖x‖2, u0 ∈ R+, u1 ∈ R+
}

(12)

The term ξs(t) : R10 ×R+ → R5 corresponds to admissible class of uncertainties and perturbations
affecting the dynamics of WBRD. By assumption, the term ξs(t) satisfies the following restriction:

‖ξs(t) (x, t) ‖2 ≤ ξ0 + ξ1‖x‖2, ξ0 ∈ R+, ξ1 ∈ R+ (13)

5.2. H-ADRC Design

Considering the hybrid nature of the WBRD and the state restrictions, there are a few possible
controllers that can be used. This study considers the application of a class of output feedback hybrid
ADRC which can take into account the state constraints.

The design of the proposed H-ADRC considers the design of an approximation for the uncertain
section of the WBRD which is valid within each continuous domain. In this study, let assume that the
control free right-hand section of the WBRD dynamics (Fs(t) = fs(t) + ξs(t)) can be represented as the
composition of a nominal model f0,s(t)(x) added with a modeling function f̃s(t)(x, t), which represents
those dynamical behaviors that are not modeled, which is Fs(t)(x, t) = f0,s(t)(x) + f̃s(t)(x, t).

In this case, this uncertain section added to the external disturbances element can be represented
as f̃s(t)(x, t) + ξs(t)(x(t), t), where f̃s(t)(x, t) represents the modeling error f̃s(t)(x, t) = fs(t)(x, t) −
f0,s(t)(x) with f0,s(t) : R10 → R5 describing the nominal model of the WBRD that could be estimated by
diverse methods in such a way that the Euler–Lagrange modeling technique is still applicable. In this
study, the first option is considered. Consequently, consider the following necessary assumption which
must be used in the design of the H-ADRC.

Assumption 1: There exists a matrix of constants for each continuous subsystem as(t) ∈ R(p+1)×5

such that the function Fs(t) evaluated over the trajectories x = x(t) could be represented as Fs(t)(x, t) =
a>s(t)κ(x) + f̄s(t)(x, t).

In this study, the time-dependent vector κ ∈ Rp+1 (see [28,29] for further details) is

κ = [1, t, · · · , tp] (14)

The term f̄s(t)(x, t) is called the modeling error produced by the approximation of Fs(t)(x, t) by a
finite number p of elements in the basis and admits the following bounds by assumption

‖ f̄s(t)(x, t)‖ ≤ f+0 , ∀t ≥ 0 (15)

The so-called nominal model for each continuous domain a>s(t)κ(t) can be expressed as a>s(t)κ(t) =

a0,s(t) + a1,s(t)t + a2,s(t)t2 + · · ·+ ap,s(t)tp [30]. In this study, the function a>s(t)κ(x(t)) can be represented
as a chain of integrators of some predefined constant matrices. Thus, the approximation presented
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above states that Fs(t)(x, t) must be the solution of an integration operation of an uncertain function
plus the approximation error: that is,

a>s(t)κ(t)=a0,s(t)+
t∫

τ1=0

a1,s(t)dτ1+
t∫

τ1=0

τ1∫
τ2=0

2a2,s(t)dτ2dτ1

+ · · ·+
t∫

τ1=0

· · ·
τp−1∫

τp=0

p!ap,s(t)dτp · · · dτ1

(16)

Equation (16) can be reorganized in an equivalent differential form:

a>s(t)κ(t) = ρ0,s(t)(t) ρ0,s(t) = D>ρs(t), D =
[

I5, 0, · · · , 0
]>

, D ∈ R5∗(p+1)

dρs(t)(t)
dt

= Φρs(t)(t), Φ =

{
1 i f i = j− 1
0 i f otherwise

(17)

The vector of initial conditions for ρs(t) is ρs(t)(0) = [a0,s(t), a1,s(t), a2,s(t), ..., ap,s(t)]. Now,
the problem formulation given can be rephrased as follows: Given an output reference trajectory
x∗ for the system (9), let us design an output feedback controller that, regardless of the unknown
non-modeled dynamics or external disturbances that forces the states x to track asymptotically the
desired reference trajectories, with the tracking error restricted to a small neighborhood near the origin
and proportional to a power of the uncertainties and perturbations. The first stage in solving this
problem is designing an extended state observer to reconstruct the non-measurable part of the state.

5.3. Closed-Loop Dynamics Based on the H-ADRC Structure and Extended State Observer

Let us consider the reference trajectories x∗a and x∗b that are governed by

d
dt

x∗a (t) = x∗b,s(t)(t)
d
dt

x∗b (t) = h∗s(t)(t)
(18)

where h∗s(t) : R+ → R5 is a continuous function with respect to time which can vary according to the
active semi-cycle of the WBRD. The proposed reference trajectories satisfy the following bound for
x∗ = [(x∗a )>, (x∗b )

>]>, ‖x∗‖2 ≤ x∗,+, x∗,+ > 0.
Based on the approximation proposed for Fs(t)(x, t) and the reference trajectories given in (18),

the dynamics of the tracking error ∆ are given by

d
dt

∆a(t) = ∆b,s(t)(t)
d
dt

∆b(t) = D>ρs(t)(t) + f̃s(t)(x(t), t) + ξs(t) (x(t), t) + gs(t) (xa(t)) u(t)− h∗s(t)(t)

d
dt

ρs(t)(t) = Φρs(t)(t)

(19)
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Notice that the bounds for the state x presented as holonomic constraints and the bounds for the
reference trajectories provide the following estimation for the bounds of the tracking error ∆ in each
continuous domain:

‖∆(t)‖2
Hs(t)

< V+, V+ = 2λmax

{
Hs(t)

}
(x+ + x∗,+) + ε

x+ =
5

∑
i=1

(
max

{
x−a,i, x+a,i

})2
+
(

max
{

x−b,i, x+b,i

})2
ε > 0

(20)

The design of the output feedback controller needs to provide an extended state robust state
estimator of (9) which in this case satisfies the following hybrid dynamics:

d
dt

x̂a(t) = x̂b,s(t)(t) + La,s(t)ea,s(t)(t)

d
dt

x̂b(t) = D>ρ̂s(t)(t) + gs(t)

(
xa,s(t)(t)

)
u(t) + Lb,s(t)ea,s(t)(t)

d
dt

ρ̂s(t)(t) = Φρ̂s(t)(t) + Lc,s(t)ea,s(t)(t)

ea,s(t)(t) = x̂a,s(t)(t)− xa,s(t)(t)

(21)

Notice here that ea,s(t)(t) = C>(x̂s(t)(t) − xs(t)(t)), x̂s(t) = [x̂>a,s(t), x̂>b,s(t)]
> and C = [I5, 05]

>.

The observer gains are defined by La,s(t) ∈ R5×5 and La,s(t) ∈ R5×5. These gains must be calculated
depending on what the active WBRD semi-cycle is.

The dynamics of ea,s(t) are associated with an extended state observer connected to:

d
dt

ea(t) = eb,s(t)(t) + La,s(t)ea,s(t)(t)

d
dt

eb(t) = D>ρ̃s(t)(t) + Lb,s(t)ea,s(t)(t)

d
dt

ρ̃s(t)(t) = Φρ̃s(t)(t) + Lc,s(t)ea,s(t)(t)

(22)

where ρ̃s(t) = ρ̂s(t) − ρs(t).
Let us consider the proposed output-based controller satisfying:

u(t) = g−1
s(t)

(
xa,s(t)(t)

) [
−K>a,s(t)∆a,s(t) − K>b,s(t)(x̂b,s(t)(t)− x∗b,s(t)(t)) + h∗s(t)(t)− D>ρ̂s(t)(t)

]
(23)

where K>a,s(t) ∈ R5×5 and K>b,s(t) ∈ R5×5 are the piece-wise constant gains of the controller which are
adjusted in each continuous dynamics.

Let us introduce the extended state vector z ∈ R10+10+5(p+1) defined as z = [∆>, e>, ρ̃>]> with
e = [e>a , e>b ]

>. The dynamics of z are described by

d
dt

z(t) = Π(Ks(t), Les,s(t), Lc,s(t))z(t) + Ξs(t)(x(t), t) (24)
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with

Π(Ks(t), Les,s(t), Lc,s(t)) =

 AK,s(t) −BKb,s(t)E −BD>

05 AL,s(t) BD
05 Lc,s(t)C> Φ



Ξs(t)(x, t) =

 B f̃s(t)(x, t) + Bξs(t) (x(t), t)
B f̃s(t)(x, t) + Bξs(t) (x(t), t)

05(p+1)


(25)

where AK,s(t) = A− BKs(t), AL,s(t) = A+ Les,s(t)C>, Λ = Λ> ∈ RNp×Np , B> = [05, I5]; and E = [05, I5].
The stability analysis considers the study over the dynamics of z. This analysis provides the result

of the tracking controller, the state estimator, and the reconstruction of the uncertain section in the
WBRD dynamics. This methodology yields the satisfaction of the close-loop analysis of the output
feedback controller which offers a class of separation-principle for the proposed design. This is an
additional theoretical contribution of this study. The following theorem details the main result of
this study.

Theorem 1. Consider the state observer given in (21) and the output feedback controller proposed in (23) with
gains adjusted such that all matrices A− BKs(t) and A + Les,s(t)C> are Hurwitz for the WBRD dynamics with
incomplete information approximated with (17).

If there is a sequence of positive definite matrices QR,s(t),Tκ
and QL,s(t),Tκ

such that positive definite and
symmetric solutions Hs(t),Tκ

> 0 and Ms(t),Tκ
exist for the following matrix inequalities Rics(t)(Hs(t),Tκ

) ≤ 0,
Lyaps(t)(Ms(t),Tκ

) ≤ 0 and LyapD
s(t)Ns(t),Tκ

) ≤ 0 with

Rics(t)(Hs(t),Tκ
) = Hs(t),Tκ

AK,s(t) + A>K,s(t)Hs(t),Tκ
+ Hs(t),Tκ

(Λ1 + Λ2)Hs(t),Tκ
+ QR,s(t),Tκ

(26)

Lyaps(t)(Ms(t),Tκ
) = Ms(t),Tκ

Π2,s(t) + Π>2,s(t)Ms(t),Tκ
+ Π>2,s(t)Λ3Π2,s(t) + ε−1Π>1,s(t)Λ

−1
1 Π1,s(t) + QL,s(t),Tκ

(27)

LyapD
s(t)Ns(t),Tκ

) =

[
Π>(Tκ)Ns(t),Tκ+1

Π(Tκ)− Ns(t),Tκ
Π>(Tκ)Ξs(t)(x(Tκ), Tκ)

Ξ>s(t)(x(Tκ), Tκ)Π(Tκ) Nk,Tκ+1

]

Π(Tκ) = Π(Ks(Tκ), Les,s(Tκ), Lc,s(Tκ))

(28)

then the extended state z converges exponentially to the invariant set ID,Tκ × IZ,Tκ defined by

ID,Tκ × IZ,Tκ =
{
(∆, z0) | ‖∆‖2

Qk,Tκ−Qk,Tκ ,0
≥ β2, ‖z0‖2

QL,k,Tκ−QL,k,Tκ ,0
≥ β2

}
with β j = 2λmax

(
B>Λ−1

j B
) (

ξ0 + ξ1(x+)2 + f+0
)

, j = 2, 3, Λ2 ∈ R5×5, Λ3 ∈ R5×5 are positive and

symmetric definite matrices and Qk,Tκ ,0 ∈ R5×5, QL,k,Tκ ,0 ∈ R(5+5(p+1))×(5+5(p+1)) are positive definite
matrices fulfilling Qk,Tκ

> QL,k,Tκ ,0, Qk,Tκ
> QL,k,Tκ ,0.

The rate of exponential convergence is given by:

αk = min
{

λmin

{
H−1/2

k Qk,0H−1/2
k

}
, λmin

{
M−1/2

k QL,k,0M−1/2
k

}}
Proof. The estimation of the adjustment laws for the controller gains uses the concept of Lyapunov
stability based on BLF. Formally, the proposed BLF which is used to prove the stability of the origin
considers as a class of practical equilibrium point for the movement of the WBRD. In this study,
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the logarithmic function is used, one of the most common BLFs [31,32]. The suggested BLF function to
get the stability analysis in this study is given by

V(z) :=
2

∑
k=1

Vk,Tκ
(∆, z0)

Vk(∆, z0) =

[
ln

(
V+

V+ − ‖∆‖2
Hk,Tκ

)
+ z>0 Mk,Tκ

z0

]
, z0 = [e>, ρ̃>]>

(29)

where k = 1, 2. Notice then that s(t) = 1 represents the case a and s(t) = 2 represents the case b.
The full-time derivative of V(z) is

d
dt

Vk,Tκ
(∆(t), z0(t)) =

[
2∆>(t)Hk,Tκ

V+ − ‖∆(t)‖2
Hk,Tκ

d
dt

∆(t) + 2z>0 (t)Mk,Tκ

d
dt

z0(t)

]
(30)

Reorganizing the differential equation (30) yields

d
dt

Vk(∆(t), z0(t)) = 2

[
∆>(t)Hk,Tκ

V+ − ‖∆(t)‖2
Hk,Tκ

, z>0 (t)Mk,Tκ

]
d
dt

z(t) (31)

The substitution of
d
dt

z(t) on the full-time derivative of V(z(t)) leads to the following form:

d
dt

Vk(∆(t), z0(t)) = 2

[
∆>(t)Hk,Tκ

V+ − ‖∆(t)‖2
Hk,Tκ

, z>0 (t)Mk,Tκ

]
[Π(Kk, Les,k, Lc,k)z(t) + Ξk(x(t), t)] (32)

Notice that the term ∆>(t)Hk,Tκ
Π(Kk, Les,k, Lc,k)z(t) can be handled as follows:

∆>(t)Hk,Tκ
Π(Kk, Les,k, Lc,k)z(t) = ∆>(t)Hk,Tκ

(A− BKk)∆(t) + ∆>(t)Hk,Tκ
Π1,kz0(t) (33)

where Π1,k =
[
−BKb,kE −BD>

]
.

Let us consider the application of the Young inequality, which satisfies:

X>Y + Y>X ≤ X>NX + Y>N−1Y

valid for any X, Y ∈ Rr×s and any 0 < N = N> ∈ Rs×s [33]. Therefore, the following upper bound for
∆>(t)HkΠ1,kz0(t) is valid:

2∆>(t)Hk,Tκ
Π1,kz0(t) ≤ ‖Hk,Tκ

∆(t)‖2
Λ1

+ ‖Π1,kz0(t)‖2
Λ−1

1
(34)

In equivalent form, ∆>(t)Hk,Tκ
Ξk(x(t), t) accepts the following upper bound:

∆>(t)Hk,Tκ
B f̃k(x, t) ≤ ‖Hk,Tκ

∆(t)‖2
Λ2

+ ‖B f̃k(x, t) + Bξk (x(t), t) ‖2
Λ−1

2
, (35)

Introducing the following matrix Π2

Π2 =

[
05 I5 05(p+1)
05 05 I5(p+1)

]
×

 AK,k −BKb,kE −BD>

05 AL,k B D
05 Lc,kC> Φ

 =

[
AL,k B D

Lc,kC> Φ

]
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The terms including z>0 (t)Mk,Tκ
in the time derivative of V(z(t)) can be presented as

2z>0 (t)Mk,Tκ
Π2,kz0(t) + 2z>0 (t)Mk,Tκ

Π2,kΞs(t)(x(t), t) ≤

z>0 (t)
(

Mk,Tκ
Π2,k + Π>2,k Mk,Tκ

)
z0(t) + ‖Π2,kz0(t)‖2

Λ3
+ ‖B f̃k(x, t) + Bξk (x(t), t) ‖2

Λ−1
3

(36)

Taking together the results in (33) to (36) yields

d
dt

Vk(∆(t), z0(t)) ≤

 2∆>(t)Hk,Tκ
AK,k∆(t) + ‖Hk,Tκ

∆(t)‖2
Λ1+Λ2

+ ‖B( f̃k(x, t) + ξk (x(t), t))‖2
Λ−1

2
+ ‖Π1z0(t)‖2

Λ−1
1

V+ − ‖∆(t)‖2
Hk,Tκ

+

z>0 (t)
(

Mk,Tκ
Π2,k + Π>2,k Mk,Tκ

)
z0(t) + ‖Π2,kz0(t)‖2

Λ3
+ ‖B( f̃k(x, t) + ξk (x(t), t))‖2

Λ−1
3

(37)

Noticing that min∆

{
V+ − ‖∆(t)‖2

Hk,Tκ

}
= ε, then

d
dt

Vk(∆(t), z0(t)) ≤

∆>(t)
(

Hk,Tκ
AK,k + A>K,k Hk,Tκ

+ Hk,Tκ
(Λ1 + Λ2)Hk,Tκ

)
∆(t) + ‖B( f̃k(x, t) + ξk (x(t), t))‖2

Λ−1
2

V+ − ‖∆(t)‖2
Hk,Tκ

+

z>0 (t)
(

Mk,Tκ
Π2,k + Π>2,k Mk,Tκ

+ Π>2,kΛ3Π2,k + ε−1Π>1,kΛ−1
1 Π1,k

)
z0(t) + ‖B( f̃k(x, t) + ξk (x(t), t))‖2

Λ−1
3

(38)

Based on the upper bounds of (13) and the bounds for the modeling error yields to estimating upper
norms of ‖B( f̃k(x, t) + ξk (x(t), t))‖2

Λ−1
2

and ‖B( f̃k(x, t) + ξk (x(t), t))‖2
Λ−1

3
as:

‖B( f̃k(x, t) + ξk (x(t), t))‖2
Λ−1

j
≤ β j, (39)

Similarly, the time derivative of (38) can be bounded as

d
dt

Vk(∆(t), z0(t)) ≤

∆>(t)
(

Hk,Tκ
AK,k + A>K,k Hk,Tκ

+ Hk(Λ1 + Λ2)Hk

)
∆(t) + β2

V+ − ‖∆(t)‖2
Hk,Tκ

+

z>0 (t)
(

Mk,Tκ
Π2,k + Π>2,k Mk,Tκ

+ Π>2,kΛ3Π2,k + ε−1Π>1,kΛ−1
1 Π1,k

)
z0(t) + β3

(40)

Notice that (40) can be represented as follows:

d
dt

Vk(∆(t), z0(t)) ≤
[

∆>(t)Rick(Hk,Tκ
)∆(t)− ∆>(t)Qk,Tκ

∆(t) + β2

V+ − ‖∆(t)‖2
Hk,Tκ

]
+[

z>0 (t)Lyapk(Mk,Tκ
)z0(t)− z>0 (t)QL,k,Tκ

z0(t) + β3
] (41)

Taking into account the assumptions that Rick(Hk,Tκ
) < 0 and Lyapk(Mk,Tκ

) < 0 yielding

d
dt

Vk(∆(t), z0(t)) ≤ −
[

∆>(t)Qk,Tκ
∆(t)− β2

V+ − ‖∆(t)‖2
Hk,Tκ

+ z>0 (t)QL,k,Tκ
z0(t)− β3

]
(42)

If we consider that ∆ ∈ ID,Tκ and z0 ∈ IZ,Tκ , then

d
dt

Vk(∆(t), z0(t)) ≤ −
[

∆>(t)Qk,Tκ ,0∆(t)
V+ − ‖∆(t)‖2

Hk,Tκ

+ z>0 (t)QL,k,Tκ ,0z0(t)

]
(43)

Following the ideas given in [20], it is possible to prove that

d
dt

Vk(∆(t), z0(t)) ≤ −αkVk(∆(t), z0(t)) ∀(∆, z0) /∈ ID,Tκ × IZ,Tκ
(44)
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Consequently, Vk(∆(t), z0(t)) converges asymptotically to the invariant set ID,Tκ × IZ,Tκ within a
given continuous sub-domain. This is enough to prove the stability within each continuous sub-domain.
Now, to prove the stability of the hybrid form, let us consider that the tracking error is already bounded;
then, let us propose the discrete analysis for the dynamics of z evaluated on the specific times where
the sequential transition from a -> b or vice versa. With the aim of evaluating this stability analysis,
one may propose the discrete Lyapunov-like function such as

Vd
Tκ
(z(Tκ)) :=

2

∑
k=1

Vd
k,Tκ

(z(Tκ)) Vd
k,Tκ

(z(Tκ)) = z>(Tκ)Nk,Tκ
z(Tκ)

Nk,Tκ
=

[
Hk,Tκ

05

05+5(p+1) Mk,Tκ

] (45)

The discrete analysis of the discrete Lyapunov like function yields

∆Vd
k,Tκ

(z(Tκ)) = z>(Tκ)Nk,Tκ+1 z(Tκ)− z>(Tκ)Nk,Tκ
z(Tκ) (46)

Notice that

∆Vd
k,Tκ

(z(Tκ)) = z>(Tκ+1)Nk,Tκ+1
z(Tκ+1)− z>(Tκ)Nk,Tκ

z(Tκ)

=
[
z>(Tκ) Ξ>k (x(Tκ), Tκ)

] [Π>(Tκ)Nk,Tκ+1
Π(Tκ)− Nk,Tκ

Π>(Tκ)Ξk(x(Tκ), Tκ)

Ξ>k (x(Tκ), Tκ)Π(Tκ) Nk,Tκ+1

] [
z(Tκ)

Ξk(x(Tκ), Tκ)

]
(47)

With the assumption that the matrix inequality (28) is negative definite, then, ∆Vd
k,Tκ

(z(Tκ)) is negative
and, therefore, the discrete jumps remain negative confirming the local asymptotically stability of the
origin for the extended system based on the state z.

Remark 1. Notice that the H-ADRC controller can be useful if the proposed control gains can be sufficiently
adequate such that SW∗ ≤ β2. This fact can be guaranteed a priori if a formal optimization of the size for the
invariant set proposed in the statement of Theorem 1. The solution of this aspect is outside the scope of this study.
However, we assume that the condition described in this remark is fulfilled.

Remark 2. Notice that adjusting the gains in adaptive form could reduce the large amplitude oscillations along
the transient period of the tracking trajectory process. The adaptive adjustment of the gains satisfies:

d
dt

K̂s(t) = −
(

V+ − ‖∆‖2
Hk,Tκ

)−1
Ω−1

k HK,k∆s(t) (48)

with Ω ∈ R5×5. This result can be obtained directly with a similar stability analysis to the one introduced in
Theorem 1. The main change is introducing a modified Lyapunov like function satisfying

Vad(z) :=
2

∑
k=1

Vad
k,Tκ

(∆, z0)

Vad
k (∆, z0) = ln

(
V+

V+ − ‖∆‖2
Hk,Tκ

)
+ z>0 Mk,Tκ

z0 + trace
{

K̃>s(t)ΩkK̃s(t)

} (49)

where K̃s(t) = K̂s(t) − Ks(t) and trace refers to the trace operator. A similar study analysis yields the design of
the adaptive gains which can presumably reduce the oscillating transitions.

Remark 3. The result attained above requires the design of the extended state observer (21), which must
provide efficient approximation of the angular velocities of all the articulations. Such condition implies complex
instrument requirements for the BIMR. Such condition enforces that the estimation error must converge faster
to the corresponding invariant set than the tracking controller does. A possible alternative is using some variant
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of robust time differentiator which can produce the estimation of the required angular velocities. The so-called
super-twisting algorithm can provide such solution, but the close loop stability analysis requires some further
work. The reader is referred to the studies given in [34] for more details.

Remark 4. The application presented in this manuscript needs to solve six different matrix inequalities offline.
All of them are Riccati equations and their solutions are quite regular in control theory. Indeed, there exist
numerical solvers that can help to find the solution of these inequalities. The requirements to find the solution of
a Riccati equation (in general form) given by

A>P + PA + PRP + Q = 0, P = P> > 0 (50)

are

• The matrix A is Hurwitz, as a consequence:
• The pair (A, R1/2) is controllable.
• The pair (A, Q1/2) is observable.

Notice that the stability of matrix A in our case is related with the gain matrices Ks(t) and Les,s(t) that can
be selected in such a way A− BKs(t) and A− Les,s(t)C> are Hurwitz.

6. Implementation Issues

The proposed H-ADRC controller requires several technical aspects that must be considered
before it can be implemented. This section details the arrangement of all the aspects needed to realize
both the numerical and the experimental evaluations.

6.1. Numerical Evaluation

In the simulation system, it is necessary to introduce a force sensing element. The information of
the force sensor is used to detect the moment when the corresponding ending section of the WBRD
has touched the surface. Notice that such contact must be part of the condition to switch between the
subsystems that define the gait scenarios a and b. Including this additional sensor in the condition
ensures that the WBRD is completing the semi-cycle in the adequate configuration.

In this study, the numerical simulations used a virtualized representation of the WBRD based
on the SimMechanics Toolbox R© of Matlab R©. The virtual model includes all the articulations and
the mechanical representation of vacuum pumps that are going to be used as the electro-mechanical
elements to change the reference frame in the hybrid representation of the gait cycle of the WBRD and
allowing for evaluating the suggested controller. The mechanical representation of the WBRD was
prepared in the Solid-Works R© software including all the mobile actions that must be exerted by the
WBRD (Figure 5).

Figure 5. WBRD exported to simMechanics for simulation.
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6.2. Experimental Evaluation

The experimental evaluation of the proposed controller was implemented in a polymer-based
WBRD. The design of the robot followed the structure proposed in the numerical evaluation.
The experimental prototype was constructed using the 3D printing technique using poly-lactic acid
(PLA) as building material.

The constructed WBRD used DC motors to realize the mobilization of all joints. A set of gears
transmits perpendicular movement to the mechanical structure to reach the desired angular trajectories.
Each of the DC actuators was regulated with a DC source to alternate power converter using a pulse
width modulation (PWM) methodology.

The numerical realization of the controller used a distributed strategy considering the combination
of a processing board (TIVA1294 from Texas Instruments) and a personal computer (Alienware 17S
from Dell Computers). The processing board realizes the PWM formulation based on the calculated
control action in the personal computer (PC).

The PC realizes an image-based-processing algorithm which calculates the articulation angles
using physical markers placed over the WBRD structure (Figure 6). The algorithm is described in
Algorithm 1 which is based on the application of simplified morphological image processing methods.
The first algorithm is complemented with the calculus of the state estimator (21) and then the output
feedback controller proposed in (23) is evaluated according to Algorithm 2. The estimated control
action is sent to the processing board via a serial protocol (RS-232).

The H-ADRC requires including vacuum pumps at the first and the last links of the bio-inspired
robot. Each of the pumps is activated once all the angles have attained their reference values. The pump
is activated to define the change of the reference framework. The activation action is also evaluated in
the algorithm and then sent to the processing board.

Figure 6. Implementation control in the WBRD.
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Algorithm 1 Position image recovery

1: Start
2: P← a frame form the camera . The threshold is selected to find the marker place on the robot

joints
3: if Pi,j,3 < 10 and Pi,j,1 > 180 then . Detect orange markers
4: Ai,j = 1
5: else
6: Ai,j = 0
7: end if
8: if Pi,j,3 < 60 and Pi,j,1 < 128 then . Detect green markers
9: Bi,j = 1

10: else
11: Bi,j = 0
12: end if
13: A =imclose(A) . Morphological closing of the image
14: B =imopen(B) . Morphological opening of the image
15: G = A + B . Create logical image
16: C =DetectCentroids(G) . Function to detect centroids
17: for i = 1, 2, ..., 6 do . Calculating the absolute angle with the slope of neighbor centroids

18: Ti = arctan(Ci+1
2 −Ci

2
Ci+1

1 −Ci
1
)

19: end for
20: θ1 = T1
21: S = 0
22: for i = 1, 2, ..., 5 do . Calculating the relative angle, with respect with the first one
23: S = S + θi
24: θi+1 = Ti − S
25: end for
26: Return θ

27: Start control calculation . Go to Algorithm 2

Algorithm 2 Control implementation

1: Start
2: Obtain the corresponding angles θj,i . From Algorithm 1
3: Check the switching condition . To see what pump is active and the corresponding system j = 1, 2

4: Implement the extended observer to recover θ̇j,i from Equation (17) . To recover ˙̂θj,i and ρ̂j,i
5: Implement the control law in (23) for the corresponding system
6: Evaluate the obtained decoupled controllers to convert into a pulse modulation signal (PWM)
7: if |uj,i| > 255 then . These values correspond to the high time in the PWM signal
8: uj,i = 255
9: else

10: uj,i = uj,i
11: end if
12: Evaluete the control to determine the movement direction of the actuators
13: if sign(uj,i) > 1 then
14: dj,i = 1
15: else
16: dj,i = 0
17: end if
18: Send the values through serial comunication (RS-232 protocol) to the TIVA1294
19: Activate a PWM with the values of uj,i and dj,1 to be sent to the H bidges
20: Return to Algorithm 1 to calculate again the current position
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7. Simulation Results

The proposed output feedback controller was evaluated using a set of numerical evaluations
considering the exerting of three completes gait cycles . The corresponding sequences of reference
angular movements were calculated using a biomechanical study of a Leptidoptera gonodonta or
measuring worm. Once the angles were calculated, the method to produce the reference trajectories
was implemented. These reference trajectories were injected into the SimMechanics software.

The numerically simulated model in SimMechanics-Matlab was evaluated considering the real
masses (assuming the construction based on PLA material) and dimensions of each mechanical section
of the WBRD. This strategy allowed for evaluating the controller as well as tuning the gains of both
the estimators and controllers. These gains were used as the initial values in the experimental device.

The angular trajectories measured from the simulated WBRD were compared with the reference
trajectories (Figure 7). The shown trajectories correspond to the reference signals, the measured
position with the proposed H-ADRC (using the estimated velocities from the state estimator), and the
state feedback form. The comparison of all trajectories confirms that the H-ADRC controller provides
an equally faster convergence than other controllers, but it has less oscillations during the transient
period. Such characteristic is a consequence of the additional compensation provided by the extended
state observer that can actively compensate the effect of external perturbations and internal modeling
imprecision. The comparison with a classical PID controller confirms such additional benefit of
introducing the augmented compensation aggregated in the H-ADRC form. In addition, the proposed
controller tracks the reference with smaller deviations than all other controllers considered for
comparison. Notice also that these trajectories confirm the presence of high-frequency oscillations at
the beginning of the tracking period (first three seconds). Although these oscillations may be undesired
for the WBRD movements, the tracking exerted after the oscillations period justifies the introduction
of H-ADRC based compensation due to its robustness against matched perturbations.

Figure 8 shows (in logarithmic scale) the control associated energy enforced by the state feedback
(marked with PD) and the H-ADRC controllers. This comparison considers that both controllers solve
the tracking with the same convergence quality. The application of the compensated control form
consumes smaller amounts of energy and augments the working life of the DC motors’ actuators.
These controllers were chosen for this comparison because they provided the best trajectory tracking
among the evaluated controllers.
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Figure 7. Comparison of reference trajectories with controlled states implementing either the PD and
the proposed H-ADRC controllers.
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Figure 8. Euclidean norm of the control energy used with each control algorithm.

Figure 9 details the comparison of the Euclidean norms of the tracking errors obtained with the
application of the same evaluated controllers that were presented in Figure 8. This figure highlights
the rate of convergence and the ultimately bounded zone for the tracking errors. This figure is also
presented in logarithm scale for the purpose of better detecting the differences among the proposed
controllers. In both cases, the H-ADRC forces a faster convergence and smaller oscillations amplitude
in steady-state for the controlled trajectories.
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Figure 9. Euclidean norm of the tracking error for each control technique used in simulation.

Figure 10 demonstrates a sequence of image captures obtained from the simulated evaluation
of the H-ADRC application over the WBRD. This sequence highlights the sequence of movements
exerted by the entire simulated WBRD associated with the sequence of articular movements enforced
by the distributed form of the proposed controllers. The sequence also demonstrates the benefits
of introducing the simulated SimMechanics model because it allows for getting an efficient gains
adjustment which yields to satisfying the complete gait sequence. Moreover, the hybrid analysis of the
controller is confirmed with the efficient tracking of the reference angular positions in both scenarios a
and b.
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Figure 10. Sequence of movements of the gait cycle of the WBRD in simulation.

8. Experimental Results

Once the simulated evaluation showed acceptable results measured in terms of the tracking errors
and the consumed energy, the control was implemented according to Algorithms 1 and 2. Different
controllers were implemented with the aim of evaluating the advantages of the proposed methodology.
The H-ADRC controller was compared with the classical state feedback controller using the derivative
obtained by means of the extended state observer and an experimental PID form.

Figure 11 shows the comparison of the angular displacements obtained in the experimental results
with three different controllers. For the PD controller supplied with the estimated derivative, the vector
of the five different proportional gains were selected as kP = [23, 45, 50, 45, 23] and the derivative gains
were kD = [2.41, 3.51, 4, 3.51, 2.41]. The case of the integral part included the same proportional and
derivative gains while the integral gains were: kI = [0.5, 0.9, 1.2, 0.75, 0.3]. The hardware configuration
used to evaluate the proposed controller provided an updating time of the control action of 0.05 s,
which was enough to successfully realize the gait cycle by the experimental WBRD.

The comparison of the proposed controllers confirmed that the observed additional compensation
of the H-ADRC improves the tracking efficiency for all the articulations. Moreover, the oscillations of
the measured angular are reduced during the transient period. In addition, one may notice that state
feedback provides the worst tracking performance among the evaluated controllers. This result was
also true for all the trajectories in the constructed WBRD.

The comparison of the controllers’ performances was realized through the calculus of the norm
of the tracking errors (Figure 12a). This comparison proves that the tracking error is smaller if the
evaluated controller was the H-ADRC in comparison with the other two controllers (state feedback
and PID). Notice that the PID form provides a comparable tracking quality to the H-ADRC. Notice
that a fair comparison between the evaluated controllers cannot include the norm of the tracking error
only, but it must include the energy associated with the controller. Here, one may notice that H-ADRC
uses larger energy (measured in terms of the norm of the control action) than the other two controllers
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(Figure 12b). This increment is actually not significant (12%), and it occurs only during the 20% of the
evaluated period corresponding to the gait cycle.

0 2 4 6 8 10

90

100

110

120

130

140

150

160

0 2 4 6 8 10

40

50

60

70

80

90

100

0 2 4 6 8 10

40

50

60

70

80

90

100

0 2 4 6 8 10

90

100

110

120

130

140

150

160

Figure 11. Comparison of the trajectory tracking task in the WBRD by means of different control
techniques.
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Figure 12. Performance index for each control technique: (a) comparison of the Euclidean norm of the
tracking error; (b) energy used by each controller represented by the evolution of the integral of the
square control action u.

Figure 13 provides a sequence of photographs corresponding to the experimental evaluation of
the H-ADRC controller over the constructed WBRD. These photos reveal a sequence of the BIMR
positions if the controller BIMR regulates the DC motor actuators yielding a coordinated articular
movements. The sequence confirms the effects of the additional compensation integrated in the



Math. Comput. Appl. 2020, 25, 13 23 of 26

H-ADRC. Additionally, the sequence confirms the performance of the alternated activation of the
vacuum pumps according to the realization of the gait semi-cycle in either scenario a or b.

Experimentally, the hybrid controller provides the efficient tracking of the reference angular
positions in both scenarios a and b, despite the model of the WBRD not having been used at all in the
experimental sequences.

Figure 14 is intended to highlight the sequence realized by pumps that remain attached to the
floor after the proposed controller drives the trajectories toward the references (red arrows for the
attached and blue arrows for the released pumps). This strategy succeeded in keeping the angular
velocities bounded at each joint in the bioinspired robot. In addition, the reference trajectories for
the controller were proposed to keep the distal section of the WBRD closer to the floor. In addition,
the absolute values of their time derivatives are small enough to limit the possibility of having fast
variations of the controlled angular position at each join, which also contributes to reducing high
frequency oscillation of the tracking error. All of these strategies together restricted the possibility of
the discontinuous movements’ effect on the proposed WBRD.

Figure 13. Experimental gait sequence.
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Figure 14. Reference framework switching: (a) second vacuum pump activated (red arrow) in zero
position; (b) second vacuum pump activated during gait cycle; (c) first vacuum pump activated in zero
position; (d) first vacuum pump activated during gait cycle.

Remark 5. The magnitude of the control signal depends on the initial conditions of the position and velocities
of the suggested mobile robot links. Moreover, the magnitude of the control is a trade-off between the convergence
time, as well as the accuracy on the tracking error. This problem can be solved by an adaptive version of the
controller in order to reduce the control magnitude as the tracking error approaches the origin. In addition,
the energy is necessary to fulfill the restrictions imposed by the Barrier function. In the case of the experimental
results, the control signal is restricted according to the signal that is sent to the robotic device, which means
that a pulse Width modulated (PWM) signal is implemented in the device. The maximum value for the control
output is 2N with N the number of bits used for implementing PWM signal. Under this condition, the CD
motor is moving as its maximum speed, which is always bounded.

9. Conclusions

The proposed controller exhibited an acceptable performance even in the presence of parametric
uncertainties and noisy measurements. The hybrid structure allows for dealing with the WRBD
represented by two link robot manipulators alternating between their first and last links as a reference
for its working space. This result constitutes one of the first ADRC approaches dealing at the same
time with hybrid systems with restricted variables. A barrier technique imposed angular restrictions
in the robotic device avoiding any damage to its physical structure. Moreover, the H-ADRC controller
reduces the steady state error compared with classical output feedback structures like state-feedback
(PD form) and extended state state feedback (PID structure).
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