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Abstract: Magnetoencephalography (MEG) aims at reconstructing the unknown neuroelectric
activity in the brain from non-invasive measurements of the magnetic field induced by neural
sources. The solution of this ill-posed, ill-conditioned inverse problem is usually dealt with using
regularization techniques that are often time-consuming, and computationally and memory storage
demanding. In this paper we analyze how a slimmer procedure, random sampling, affects the
estimation of the brain activity generated by both synthetic and real sources.
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1. Introduction

Some medical imaging modalities rely on mathematical methods to fully exploit the information
contained in the measured data, especially when the solution of a complex ill-posed inverse problem
is involved. In particular, magnetoencephalography (MEG) [1] and electroencephalography (EEG) [2]
require specific attention: These two techniques record the magnetic field and the electric potential
difference induced by neural currents, respectively, by means of sensors placed outside or on the
skull. Due to several factors (the distance of the sensors from the sources, the weakness of the
neural currents, the changes in the sensitivity of the different tissues—brain, cerebrospinal fluid,
skull, and scalp—between the source and the sensors), the signal-to-noise ratio (SNR) of these data is
extremely low. Several methods have been proposed for the inversion of the M/EEG problem, i.e.,
the reconstruction of the brain activity from the measured magnetic/electric signals: Approaches
implementing L2 regularization [3] and its variation [4] have been extensively used and, more
recently, mixed methods have also been implemented [5,6]. Beamforming methods have shown
to be particularly effective [7–9] in the analysis of MEG data.

All the inversion methods require the computation of the forward solution, i.e., the electric
potential and the magnetic field produced at sensor positions by a given neuro-electric current density
supported on the source space: The source space represents the cortical surface where the neural
currents are generated and it is usually modeled using magnetic resonance (MRI) images. If MRI
images are not available, templates can be used. In order to accurately represent the cortex, the
source space consists of thousands of points, a distant few millimeters from each other. Each point
represents the position of a current dipole on the cortical surface and for each of these points the
dipole amplitude is estimated by solving the M/EEG inverse problem. This operation can be time and
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memory-consuming, especially if one considers the new trends in MEG and EEG communities: the
real time analysis [10,11] and the employment of portable devices, such as wireless EEG caps or MEG
helmets based on room temperature magnetometers [12–15]. So far, M/EEG data are pre-processed
and analyzed off-line, but currently there is a lot of interest in the development of tools for real time
processing and data analysis, both within and outside laboratories [16–18]. For these reasons, there is a
need for fast, slim methods for the solution of the inverse M/EEG problem that can also be performed
on tablets or single-board computers.

The RAndoM Sampling mEThod (RAMSET) [19,20] meets these demands. In fact, RAMSET uses
a sampling procedure to significantly reduce the dimension of the source space thus reducing both
memory usage and computation time. A first study on the impact of this source space reduction on the
estimate of the brain activity generated by a single neural source was presented in [20] using synthetic
MEG data. In this paper we test RAMSET on both synthetic data and real MEG measurements and we
investigate how the source space reduction performed by RAMSET affects the localization accuracy of
well established inverse algorithms when the forward problem is solved by three different methods.

The paper is organized as follows: in Section 2 we sketch the forward and inverse problems and
the methods we used for their solution along with the random sampling method. The synthetic and
real data we used in the tests are also described. In Section 3 we compare the results we obtain when
applying RAMSET to these forward and inverse methods in the case of synthetic and real MEG data;
the discussion of the results is given in Section 4. Finally, our conclusions are offered in Section 5.

2. Materials and Methods

2.1. The Forward Problem and the Lead-Field Matrix

Brain signals originate from the electrical activities of the pyramidal cells in the cortical mantle.
Since the brain is a conductor, these small electrical sources induce both an electric potential difference
on the scalp and a (weak) magnetic field outside the head that can be measured by EEG and MEG
devices, respectively. The forward problem, required in the computation of the inverse solution,
consists in the calculation of the electric potential/magnetic field produced by a known current source
distribution at sensors’ positions.

Due to the low frequency of the currents involved in neural activity, the magnetic field at sensors’
positions~qi, i = 1, · · · , Nsens, can be computed by discretizing the Biot–Savart law:

~B(~qi) =
µ0

4π

∫
V0

~r−~qi
|~r−~qi|3

×~J(~r ) d~r , (1)

where V0 is the brain volume, having permeability µ0, and~J(~r ) is the neuro-electric current density
inside V0. The total current density~J(~r ) can be written as:

~J(~r ) =~Jp(~r )− σ(~r )∇V(~r ) , (2)

where~Jp(~r ) is the primary current produced by the neural sources, i.e., the pyramidal neurons, σ(~r )
is the macroscopic conductivity of the head tissues and V(~r ) is the electric potential obeying the
Poisson’s equation:

∇ · (σ(~r )∇V(~r )) = ∇ ·~Jp(~r ) (3)

with proper boundary conditions [21].
To discretize (1)–(3), an accurate representation of the cortex is required for several reasons: It

provides a good support for the solution of the inverse problem and it allows us to pre-compute the
forward solution only for the points of the cortex. The cortical mantle surface can be extracted from
MRI images using segmentation techniques [22–24] and discretized in a regular triangulation whose
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nodes are the support of the solution, i.e., the source space. The points of the source space are used to
discretize the forward problem and to compute the forward solution.

Boundary element methods (BEMs) [25] and finite element methods (FEMs) [26] have been
proposed for the solution of the M/EEG forward problem. FEMs are recommended for EEG because
of the sensitivity of the signal to the change of electrical conductivity in different tissues (brain,
cerebrospinal fluid, skull, and scalp). However, due to the computational demands of FEMs, currently
BEMs are the most used approach for MEG, assuming the head is constituted of different regions of
homogeneous conductivity whose value is known. This method provides accurate forward solutions
with a lower computational cost. A more simplified model is the multishell spherical model (SP)
in which the head is modeled as a set of three or four concentric spherical layers with different
conductivities representing the different tissues inside the head. In this case, the solution of the
forward problem can be approximated by an analytical expression [25]. Furthermore, in order to keep
the computational cost low, we also consider a less sophisticated model based on a discretization
of the Biot–Savart operator (1) with the assumption that σ(~r )∇V(~r ) in (2) is negligible so that
~J(~r ) ≈~Jp(~r ) [19].

Whatever model chosen for the head, the MEG forward solution can be represented as:

B = L J , (4)

where J = [~j1, . . . ,~jNp ] is the current distribution obtained by discretizing the primary current~Jp as a
sum of Np current dipoles~jk, , k = 1, · · · , Np, located on the Np grid points of the source space. The
vector B = [b1, . . . , bNsens ] contains the magnetic field bi, i = 1, . . . , Nsens, generated at sensor position
i by J. The Nsens × 3Np matrix L = [~Lik, i = 1, . . . , Nsens, k = 1, . . . , NP] is the lead-field matrix: Each
entry~Lik represents the magnetic field generated at sensor position i by a unitary dipole located at the
k-th grid point. Its expression depends on the forward model we used.

2.2. The MEG Inverse Problem

The MEG inverse problem consists in determining the vector J that minimizes the discrepancy:

∆(J) = ‖B− L J‖2,

where B is the MEG data vector having dimension Nsens. This problem results in the solution of an
underdetermined linear system that can be solved by the least squares method (LSQR) [27]. In fact, the
lead-field matrix L is usually ill-conditioned so that regularization techniques have to be used to make
the solution of the minimization problem feasible. The most common methods used to solve the MEG
inverse problem are: the weighted minimum norm estimates (wMNE) [28], the dynamic statistical
parametric map (dSPM) [4], and linearly constrained minimum variance (LCMV) beamforming
[29]. Another beamforming method, Truncated Singular Value Decomposition Beamformig (TSBF),
presented in [30] was proved to give good results when used for the solution of the MEG inverse
problem (cf. [20]).

For all the methods, the computation of the inverse solution is given by J = QB where Q is the
inverse kernel of the method. In more detail:

• LSQR provides the least squares solution J that minimizes ∆(J) without adding any further
constraints. The kernel is given by the pseudoinverse of the lead-field matrix L:

QLSQR = LT(LLT)−1 .

• wMNE provides a weighted minimum norm estimates of ∆(J). The kernel is given by:

QwMNE = RLT(LRLT + λC)−1 ,
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where R is the spatial covariance matrix of the dipole strength vector, C is the noise covariance
matrix of the data and λ > 0 is the regularization parameter. We set λ to 0.5||LT B||∞.

• dSPM provides noise-normalized estimates, through the application of a normalized version of
the wMNE inverse operator:

W = RLT(LRLT − C)−1 ,

where C and R are as above. Each column QdSPM
i of the dSPM kernel matrix QdSPM is given by:

QdSPM
i =

wi√
wiCwT

i

,

where wi is the i-th row of W.
• For LCMV beamforming each row of the kernel is given by:

QLCMV
i = (LT

i C
−1Li)

−1LT
i C
−1 ,

where Li is the i-th column of the lead-field matrix L.
• In TSBF beamforming each row QBF

i of the beamforming kernel matrix QBF is computed as:

QBF
i = Z/

√
ZTLi

with
Z = (LLT + τ INsens)

−1(−Li) ,

where τ > 0 is the regularization parameter. The matrix L is regularized by means of a truncated
singular value decomposition, employing 80 singular values, and τ is set to 10−8 (cf. [20]).

To solve the inverse problem we used: a Matlab [31] routine for LSQR; the Minimun Norm
Estimate (MNE) routines for wMNE, dSPM, and LCMV; and a homemade implemented Matlab
routine for TSBF. For all the methods, the lead-field matrix was preconditioned by dividing each
column for its norm.

2.3. The Random Sampling Method

The RAndoM Sampling mEThod (RAMSET) allows the computation of the solution of the MEG
inverse problem using just a small set of points in the source space. The key idea consists in modeling
the neuro-electric current distribution J appearing in the forward problem (4) as a linear combination
of few current dipoles. The number M of the current dipoles can be chosen in the order of the number
of measurements Nsens so that the resulting lead-field matrix has 3M� 3Np columns and the memory
storage is considerably reduced. Moreover, the conditioning of the inverse problem is improved and it
can be solved even without adding further constraints [19].

RAMSET randomly selects M current dipoles by choosing among the NP entries of the vector J a
set K of M indexes sampled by a uniform distribution, i.e.

J ≈ J̃ = [~jk, k ∈ K] . (5)

This random drawing of source positions from the source space leads to approximate the forward
solution as B ≈ L̃ J̃, where L̃ = [~Lik, i = 1, . . . , Nsens, k ∈ K] is a Nsens × 3M matrix approximating the
lead-field matrix L.

In this paper we use the random sampling method to sample from the three lead-field matrices
described in Section 2.1, i.e., the lead-field matrix computed using the boundary element method
(LF-BEM) [25], the lead-field matrix computed using the spherical model (LF-SP) [25], and the lead-field
matrix computed using the discretized Biot–Savart law (LF-BS) [19]. We compute these matrices using
the boundary element method and the spherical model available in MNE software (http://martinos.

http://martinos.org/mne/stable/index.html
http://martinos.org/mne/stable/index.html
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org/mne/stable/index.html) [32], while we discretize the Biot–Savart operator (1) by a homemade
implemented Matlab routine.

2.4. Tests on Synthetic Data

In order to assess the robustness of RAMSET with respect to the neural source position, we
created Nd synthetic datasets, using the anatomical information contained in the sample dataset within
the MNE software [32]. A dipole position was randomly selected for Nd = 100 times from a source
space containing 18,841 points (3.1 mm source spacing) and a synthetic waveform was associated
to it in order to create synthetic MEG evoked fields. Noise coming from the pre-stimulus of a real
measurement was added: The SNR at the peak is 17.25 ± 2.57 dB. As a forward model for the data
generation we employed the boundary element method.

In order to avoid “inverse crime” we employed a different source space for the solution of the
inverse problem. We analyzed the data using a source space containing 7498 points (4.9 mm source
spacing), not coincident with the points used to generate the data. Due to this, we have to deal with
some un-eliminable distance error (1 mm) between the “real” source and the reconstructed one. We
consider here the three models for the forward solution and the five kernels for the inverse solution
described in the above sections: The lead-field matrices for LF-BEM, LF-SP, and LF-BS were sampled
by RAMSET and the solution of the minimization step was performed by means of LSQR, wMNE,
dSPM, LCMV, and TSBF methods. We computed the estimates using M = 500, M = 1000, M = 2000,
and M = 4000 random points in Nruns = 10 runs, selecting in each run a different sample of current
dipoles in the source space. For comparison we evaluated also the solution obtained when using the
full source space (FSS).

The localization accuracy was estimated by computing (for each run) the distance localization
error (DLE) [33] defined as the distance between the estimated source with maximum amplitude and
the real source position. Then, the DLE is averaged over all the runs in order to get its mean and
standard deviation.

2.5. Tests on Real Data

We considered a dataset within the MNE software [32]: The dataset consists of MEG recordings
during auditory and visual stimuli. As reported in the MNE manual, the MEG data were acquired
with the Neuromag Vectorview system at Athinoula A. Martinos Center Biomedical Imaging,
MGH/HMS/MIT (Massachusetts General Hospital, Harvard Medical School, Massachusetts Institute
of Technology). According to the processing suggested by the MNE manual, the data were filtered
between 0–40 Hz and a MEG sensor was excluded from the analysis. The trials of each condition
were properly averaged in order to get four evoked fields (Left Auditory, Right Auditory, Left Visual,
and Right Visual). We used the routine available within MNE for the estimation of SNR in real data.
The estimated SNR values, around 90 ms after the stimulus, are around 10 for the left auditory, right
auditory, right visual data, and around 5 for the left visual data. MRI images, acquired with a Siemens
1.5 T Sonata scanner using an magnetizationrPrepared - rapid gradient echo MPRAGE sequence, were
processed using Freesurfer (http://surfer.nmr.mgh.harvard.edu/) [22,23] and MNE in order to extract
the source space. A source space containing 18,841 points (3.1 mm source spacing) representing the
cortical mantle was created as well as the three lead-field matrices described in Section 2.1.

As in the synthetic case, for all the three forward models and the five inversion kernels we
compute the estimates with M = 500, M = 1000, M = 2000, and M = 4000 random points in
Nruns = 10 runs. We compute also the results obtained when using the full source space.

In this case, at each run we computed the DLE as the distance between the the estimated source
with maximum amplitude and the dipole estimated by the dipole fitting method [1] implemented in
MNE at the time sample with peak of activity. Finally, we get the average and standard deviation
values of the DLE across all the runs.

http://martinos.org/mne/stable/index.html
http://martinos.org/mne/stable/index.html
http://surfer.nmr.mgh.harvard.edu/
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3. Results

3.1. Synthetic Data

The results are summarized in Figure 1 where boxplots of DLE for sources at different depth
levels are shown: D > 5 stays for the sources at least 5 cm from the origin of the head coordinate
system, 3 ≤ D ≤ 5 for the sources between 3 and 5 cm from the origin, and D < 3 for the sources at
less than 3 cm from the origin.

The boxplots show that the random sampling method is able to give a good localization of the
dipole source. In fact, the DLE does not increase significantly when using just few points of the source
space or the full source space (cf. the blue and yellow boxplots in Figure 1).
To be more specific:

• Case M = 500 (Blue bloxplots): The DLE is in the order of 2 cm or less in the case of superficial
sources, i.e., distance from the head center greater than 5 cm, for all the forward and inverse
methods. Higher errors are produced when using LF-SP, especially when coupled with dSPM. In
the case of deep sources, i.e., when the distance from the head center is less than 5 cm, the DLE
increases for all the methods except dSPM especially when coupled with LF-BEM. In this case the
error remains below 2 cm. We notice that both LSQR and wMNE produce a very high DLE, i.e.,
greater than 3 cm, when coupled with any of the forward models, while TSBF produces good
results, i.e., DLE less than 1 cm, when the distance of the sources from the center is geater than
3 cm especially when coupled with LF-BEM. In conclusion, when using just M = 500 points in
the source space the boundary element method coupled with dSPM or TSBF gives acceptable
small DLE values.

• Case M = 1000 (Light blue boxplots): The behavior of all the methods is very similar as in the
previous case. There is just a small decrease in the values of the DLE that is more evident for TSBF
especially when coupled with LF-BEM.

• Case M = 2000, 4000 (Sea blue and ochre boxplots, respectively): By increasing the number of
points in the source space the localization results slightly improve. This is more evident for LSQR
and wMNE that produce a DLE less than 2 cm in the case of superficial sources. In the case of
deep sources, lower values are given by TSBF and dSPM coupled with LF-BEM.

• Case FSS (Yellow boxplots): When using the full source space, the DLE does not decrease
significantly. All the inversion methods produce good results in the case of superficial sources
also when coupled with the less accurate forward model LF-BS. In the case of deep sources, dSPM
and TSBF give better localization results when coupled with LF-BEM.

To summarize, for superficial sources the random sampling method gives a rather small DLE
when using TSBF as inversion method. Better results are obtained when it is coupled with the
boundary element method to solve the forward problem, even if the spherical model and the discretized
Biot–Savart operator also give good results. In the case of deep sources, dSPM coupled with the
boundary element method is the most accurate method even when just few hundreds of points are
selected in the source space.
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Figure 1. Synthetic sources: boxplots of distance localization error (DLE) with respect to the distance D
[cm] of the true source from the origin for lead-field matrix computed using the boundary element
method (LF-BEM) (first column), lead-field matrix computed using the spherical model (LF-SP) (second
column), and lead-field matrix computed using the discretized Biot–Savart law (LF-BS) (third column)
and different values of M. Color legend: Blue: M = 500; Light blue: M = 1000; Sea green: M = 2000;
Ochre: M = 4000; Yellow: full source space. Least squares method (LSQR), the weighted minimum
norm estimates (wMNE), the dynamic statistical parametric map (dSPM), and linearly constrained
minimum variance (LCMV) truncated singular value decomposition beamforming (TSBF).



Math. Comput. Appl. 2019, 24, 98 8 of 20

3.2. Real Data Analysis

The results regarding DLE are shown in Figures 2–5 for Left Auditory, Right Auditory, Left Visual,
and Right Visual data, and full source space, respectively. The plots show that also in this case the
random sampling method gives results comparable with methods that use the full source space:

• Left Auditory Case (Figure 2): The random sampling method with M ≤ 4000 gives lower errors
when using LCMV or TSBF as inversion methods. In particular, for M = 500 the DLE is about 1 cm
or less when they are coupled with LF-BS. As for the other inversion methods, LSQR produces a
slightly higher DLE, i.e., below 2 cm, while wMNE and dSPM produce a DLE greater than 2 cm.
As expected, the DLE decreases when M increases except for wMNE, which is the less accurate
inversion method. Nevertheless, the decrease is very small for M ≥ 2000.

• Right Auditory Case (Figure 3): In most methods the DLE does not depend significantly on M.
Its value is less than 2 cm for all the methods except wMNE and dSPM, which show very high
errors. The best results are given by LCMV coupled with LF-BEM and TSBF coupled with LF-BS
that produces a very low error with M = 500 even if also LSQR give acceptable results.

• Left Visual Case (Figure 4): Also in this case the results depend slightly on M. For M = 2000 and
M = 4000 the DLE is about 1 cm or less for all the methods except dSPM coupled with LF-SP.

• Right visual case (Figure 5): The DLE is less than 2 cm for M ≥ 2000 and for all the inversion
methods when using LF-BS as forward model. When using LF-BEM or LF-SP, the error is higher
for wMNE and dSPM. The error decreases slightly with M and the lower error is given by LCMV
with LF-BEM or LF-SP and TSBF with LF-BS.

• FSS (Yellow histograms of Figures 2–5): When using the full source space the accuracy does not
increase significantly except when using LF-SP as forward model. As in the case of M ≤ 4000,
LMCV and TSBF give better results, i.e., DLE in the order of 1 cm or less, except for LMCV with
LS-BS in the case of right auditory evoked field. TSBF gives a lower error even when coupled
with LF-BS. wMNE and dSPM give high values of the DLE in the auditory case while for the
visual case the error is lower than 2 cm except dSPM with LF-SP. For LSQR the DLE is less than
2 cm in all the cases.

These results are confirmed by Figures 6–15 where the intensity of the estimated sources at time 90
ms is displayed. The shown intensity is the average intensity, obtained by averaging the solutions on
the 10 runs and then normalizing between 0 and 1. For visualization purposes we consider as support
the full source space and divide the intensity into five intervals: For values in the [0, 0.3] interval the
color associated to the source space point is gray, in (0.3, 0.5] the color is blue, in [0.5, 0.7), the color
is sky blue, in [0.7, 0.9) the color is cyan and in [0.9, 1] the color is yellow. The red circle represents
the dipole fitted by the dipole fitting method [1] implemented in MNE. Figures 6–10 refer to the left
auditory evoked field for the five inverse methods we consider. The first row of each figure refers to
the case M = 500, the second to the case M = 2000, and the third one to the full source space case.
Figures 11–15 refer to the right visual evoked field for the five inverse methods we consider. Again,
the first row of each figure refers to the case M = 500, the second to the case M = 2000, and the third
one to the full source space case.
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(a) (b)

(c) (d)

(e)

Figure 2. Left Auditory evoked field: Mean DLE [cm] and standard deviation obtained averaging over
N = 10 runs using LSQR (a), wMNE (b), dSPM (c), LCMV (d), and TSBF (e) at 90 ms for LF-BEM,
LF-SP, and LF-BS.
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(a) (b)

(c) (d)

(e)

Figure 3. Right Auditory evoked field: Mean DLE [cm] and standard deviation obtained averaging
over N = 10 runs using LSQR (a), wMNE (b), dSPM (c), LCMV (d), and TSBF (e) at 90 ms for LF-BEM,
LF-SP, and LF-BS.
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(a) (b)

(c) (d)

(e)

Figure 4. Left Visual evoked field: Mean DLE [cm] and standard deviation obtained averaging over
N = 10 runs using LSQR (a), wMNE (b), dSPM (c), LCMV (d), and TSBF (e) at 90 ms for LF-BEM,
LF-SP, and LF-BS.
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(a) (b)

(c) (d)

(e)

Figure 5. Right Visual evoked field: Mean DLE [cm] and standard deviation obtained averaging over
N = 10 runs using LSQR (a), wMNE (b), dSPM (c), LCMV (d), and TSBF (e) at 90 ms for LF-BEM,
LF-SP, and LF-BS.
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Figure 6. Left Auditory evoked field: The intensity of the estimated sources, averaged over N = 10
runs, at 90 ms obtained using LSQR with M = 500 random points (first row), M = 2000 (second row)
and the full source space (third row) for LF-BEM (left column) and LF-BS (right column). The red circle
represents the dipole fitted using MNE.

Figure 7. Left Auditory evoked field: The intensity of the estimated sources, averaged over N = 10
runs, at 90 ms obtained using wMNE with M = 500 random points (first row), M = 2000 (second row)
and the full source space (third row) for LF-BEM (left column) and LF-BS (right column). The red circle
represents the dipole fitted using MNE.
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Figure 8. Left Auditory evoked field: The intensity of the estimated sources, averaged over N = 10
runs, at 90 ms obtained using dSPM with M = 500 random points (first row), M = 2000 (second row)
and the full source space (third row) for LF-BEM (left column) and LF-BS (right column). The red circle
represents the dipole fitted using MNE.

Figure 9. Left Auditory evoked field: The intensity of the estimated sources, averaged over N = 10
runs, at 90 ms obtained using LCMV with M = 500 random points (first row), M = 2000 (second row)
and the full source space (third row) for LF-BEM (left column) and LF-BS (right column). The red circle
represents the dipole fitted using MNE.
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Figure 10. Left Auditory evoked field: The intensity of the estimated sources, averaged over N = 10
runs, at 90 ms obtained using TSBF with M = 500 random points (first row), M = 2000 (second row)
and the full source space (third row) for LF-BEM (left column) and LF-BS (right column). The red circle
represents the dipole fitted using MNE.

Figure 11. Right Visual evoked field: The intensity of the estimated sources, averaged over N = 10
runs, at 90 ms obtained using LSQR with M = 500 random points (first row), M = 2000 (second row)
and the full source space (third row) for LF-BEM (left column) and LF-BS (right column). The red circle
represents the dipole fitted using MNE.
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Figure 12. Right Visual evoked field: The intensity of the estimated sources, averaged over N = 10
runs, at 90 ms obtained using wMNE with M = 500 random points (first row), M = 2000 (second row)
and the full source space (third row) for LF-BEM (left column) and LF-BS (right column). The red circle
represents the dipole fitted using MNE.

Figure 13. Right Visual evoked field: The intensity of the estimated sources, averaged over N = 10
runs, at 90 ms obtained using dSPM with M = 500 random points (first row), M = 2000 (second row)
and the full source space (third row) for LF-BEM (left column) and LF-BS (right column). The red circle
represents the dipole fitted using MNE.
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Figure 14. Right Visual evoked field: The intensity of the estimated sources, averaged over N = 10
runs, at 90 ms obtained using LCMV with M = 500 random points (first row), M = 2000 (second row)
and the full source space (third row) for LF-BEM (left column) and LF-BS (right column). The red circle
represents the dipole fitted using MNE.

Figure 15. Right Visual evoked field: The intensity of the estimated sources, averaged over N = 10
runs, at 90 ms obtained using TSBF with M = 500 random points (first row), M = 2000 (second row)
and the full source space (third row) for LF-BEM (left column) and LF-BS (right column). The red circle
represents the dipole fitted using MNE.
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4. Discussion

To summarize, the random sampling method highly reduces the computational cost at the price
of a lower accuracy, especially in the case of deep sources. Nevertheless, the results show that the
accuracy of the random sampling method is comparable with the accuracy obtained when using the
full source space in the case of superficial sources. In this case a few thousands of points sampled from
the source space are sufficient to have a DLE less than 1 cm when using LCMV with the boundary
element method or TSBF with all the three forward models. The DLE increases as the depth of the
source increases. For deep sources better accuracy is given when using dSPM as the inversion method
and LF-BEM as a forward model.

We point out that although the average of 10 runs is poor from a statistical viewpoint, it is a
good compromise between accuracy and computational cost. In [20] the authors investigated how the
increasing of the number of runs up to 50 affects the localization accuracy. They found that accuracy
does not improve significantly as the number of runs increases.

Before testing the random sampling method on real-time applications there are several issues
to be further analyzed. First of all, it should be investigated if the choice of the distribution from
which to sample the source space can affect the results. Here, we used the uniform distribution but
other types of distributions could improve the accuracy of the localization [34]. Another issue to
be investigated is how the accuracy depends on the number of sensors. In the tests we used a few
hundreds of magnetometers but portable devices have just a few dozen sensors. Finally, we should
analyze if our approach can localize sources spatially close to each other with an acceptable accuracy.
We will investigate these issues in the future.

We point out that other approaches to reduce the dimension of the source space are based
on its parcellisation (see, for instance, [35]). These methods require a computationally demanding
pre-processing since they require an available atlas based on the MRI of the subject or on a template
and to assign each point to a parcel. This pre-processing can be performed off-line on MRI images and
it allows the keeping of information on the anatomical or functional brain region, where the activity is
located, that could be relevant for real-time applications. On the contrary, our approach has a very
low computational cost at the price of losing anatomical or functional information on the active brain
region. This could be done as a post-processing step at the cost of increasing the computational time.

5. Conclusions

The solution of the MEG inverse problem is a tricky task that usually requires time and memory
consuming methods to be solved. Here, we test a recently proposed technique, the random sampling
method (RAMSET), and analyze how the source space reduction performed by RAMSET affects the
localization accuracy of well-established inverse methods applied to synthetic and real MEG data. We
found results that are comparable with the ones obtained by using full source space methods, while
using lower computational cost and memory storage. As the numerical tests show, the employment
of a few hundreds of points in the source space does not compromise the capability of detecting
neural sources, as shown in synthetic MEG datasets. Moreover, we showed that the employment
of a lead-field matrix computed in a slimmer way does not prejudice the reconstruction accuracy of
superficial sources. These results suggest that random sampling could be an efficient tool for the
analysis not only of real evoked activities but also of raw data such as in the case of real-time recordings
and measurements acquired with portable devices. The use of the random sampling with this kind of
data and, in particular, with EEG data, will be the subject of a forthcoming paper.
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