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Abstract: Differential eigenvalue problems arise in many fields of Mathematics and Physics,
often arriving, as auxiliary problems, when solving partial differential equations. In this work,
we present a method for eigenvalues computation following the Tau method philosophy and using
Tau Toolbox tools. This Matlab toolbox was recently presented and here we explore its potential
use and suitability for this problem. The first step is to translate the eigenvalue differential problem
into an algebraic approximated eigenvalues problem. In a second step, making use of symbolic
computations, we arrive at the exact polynomial expression of the determinant of the algebraic
problem matrix, allowing us to get high accuracy approximations of differential eigenvalues.
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1. Introduction

Finding eigenfunctions of differential problems can be a hard task, at least for some classical
problems. Among others, we can find literature in Sturm–Liouville problems, in Mathieu problems
or in Orr–Sommerfeld problems describing the difficulties involved in the resolution of those
problems [1–8]. The first difficulty consists of finding accurate numerical approximations for the
respective eigenvalues.

In this work, we present a procedure based on the Ortiz and Samara’s operational approach to
the Tau method described in [9], where the differential problem is translated into an algebraic problem.
This is achieved using the called operational matrices that represent the action of differential operators
in a function. We have deduced explicit formulae for the elements of these matrices [10,11] obtained by
performing operations on the bases of orthogonal polynomials and, for some families, we have exact
formulae, which enables the construction of very accurate operational matrices. The Tau method has
already been used for these kinds of problems [5,9,12,13]; however, our work on matrix calculation
formulas adds efficiency and precision to the method.

Our main purpose is to use the Tau Toolbox, a Matlab numerical library that is being developed
by our research group [14–16]. This library allows a stable implementation of the Tau method for
the construction of accurate approximate solutions for integro-differential problems. In particular,
the construction of the operational matrices is done automatically. These facts led us to think that the
Tau Toolbox seems to be useful for these kinds of problems.
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Finally, operating with symbolic variables, we define the determinant of those matrices as
polynomials and use its roots as eigenvalues’ approximations.

We present some examples showing that, using this technique in the Tau Toolbox, we are able to
obtain results comparable with those reported in the literature and sometimes even better.

2. The Tau Method

Let D : E 7→ F be an order ν differential operator, where E and F are some function spaces, and
let gi : E 7→ R, i = 1, . . . , ν be ν functionals representing boundary conditions, so that{

Dy = f , f ∈ F,

gi(y) = φi, i = 1, . . . , ν
(1)

is a well posed differential problem.

2.1. The Tau Method Principle

A particular implementation of the Tau method depends on the choice of an orthogonal basis for
F. A sequence of orthogonal polynomials {Pn(x)}∞

n=0 with respect to the weight function w(x) on a
given interval of orthogonality [a, b] satisfies

〈Pi, Pj〉 =
∫ b

a
w(x)Pi(x)Pj(x)dx = wiδij,

where wi = 〈Pi, Pi〉 and δij is the Kronecker delta [17].
Let P be the space of algebraic polynomials of any degree and let us suppose that P is dense in F;

then, the solution y of (1) has a series representation y ∼ ∑j≥1 ajPj−1. A polynomial approximation of
degree n− 1 ∈ N is achieved by

yn =
n

∑
j=1

an,jPj−1 = Pnan, (2)

where Pn = [P0, P1, . . . , Pn−1] and an = [an,1, . . . , an,n]T .
In the Tau method sense, yn is a polynomial satisfying the boundary conditions in (1) and solving

the differential equation with a residual τn = Dyn − f of maximal order. Thus, the differential problem
is reduced to an algebraic one of finding the n coefficients an,j, j = 1, . . . , n in (2) such that{

gi(yn) = φi, i = 1, . . . , ν,

〈Pi−1,Dyn − f 〉 = 0, i = 1, . . . , n− ν,
(3)

and so the residual τn = O(Pn−ν).

2.2. Operational Formulation

For a given n ∈ N, n > ν, we define the matrix

Tn =

[
Bν×n

D(n−ν)×n

]
= (ti,j)

n
i,j=1 : ti,j =


gi(Pj−1), i = 1, . . . , ν

〈Pi−ν−1,DPj−1〉
wi−ν−1

, i = ν + 1, . . . , n
(4)

and the vector

bn =

[
gν

fn−ν

]
= (bi)

n
i=1 : bi =


φi, i = 1, . . . , ν

〈Pi−ν−1, f 〉
wi−ν−1

, i = ν + 1, . . . , n.
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If, in problem (1), the differential operatorD is linear and the gj are ν linear functionals, then problem (3)
can be put in matrix form as

Tnan = bn.

The matrix Tn, called the Tau matrix, can be evaluated from operational matrices, that is, matrices
translating into coefficients vectors the action of a differential operator D in a function y.

Proposition 1. Let P = [P0, P1, . . .] be an orthogonal polynomial basis, y = Pa and M, N infinite matrices
such that

xP = PM and
d

dx
P = PN.

Then, for each k ∈ N0,

xky = PMka and
dk

dxk y = PNka. (5)

Proof. For k = 1, the result is true by hypothesis. Now, supposing that (5) is true for a k ∈ N, then

xk+1y = x(xky) = (xP)Mka = PMk+1a

and
dk+1

dxk+1 y =
d

dx
(

dk

dxk y) = (
d

dx
P)Nka = PNk+1a,

ending the proof by induction.

The following result generalizes the algebraic representation from the previous proposition to
differential operators.

Corollary 1. Let D : Pn 7→ Pn+h be a linear differential operator with polynomial coefficients

D =
ν

∑
i=0

pi
di

dxi , pi ∈ Pni (6)

and let h = maxi=0,...,ν{ni − i}.
If yn = Pnan, then Dyn = Pn+hD(n+h)×nan with

D(n+h)×n =
ν

∑
i=0

pi(M)Ni
(n−i)×n,

where pi(M) =
ni

∑
k=0

pikM
k
(n+h)×(n−i) when pi =

ni

∑
k=0

pikxk, and Ak
m×n denotes the main m× n block of the

matrix (Ap)k with p = max{m, n}.

In [9], the authors discussed the application of this operational formulation of the Tau method to
the numerical approximation of eigenvalues defined by differential equations. They proved that, for a
differential eigenvalue problem, where in (1)

D =
t

∑
r=0

λrDr

and λ is a parameter, the zeros of det(Tn(λ)) approach the eigenvalues of (1).
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2.3. Tau Matrices’ Properties

Given that we are dealing with a general orthogonal polynomial basis, instead of particular cases
like Chebyshev or Legendre, we can only make assumptions about general properties of Tau matrices
Tn. Anyway, we can’t expect to have symmetric matrices and, in general, they can be considered sparse
but with a low level of sparsity.

Since P in Proposition 1 is an orthogonal basis, then M is the tridiagonal matrix with the
coefficients of its three term recurrence relation. Therefore, for problems with polynomial coefficients,
matrices pi(M) of Corollary 1 are banded matrices, with all non-zero elements between the
±ni diagonals.

Matrices N are always strictly upper triangular and so pi(M)Ni are ni − i upper Hessenberg
matrices. The resulting D(n−ν)×n block of Tn defined in (4) is a general h upper Hessenberg matrix.

Moreover, one advantage of the Tau method is its ability to deal with boundary conditions,
allowing the treatment of any linear combination of values of y and of its derivatives for gi in (1). Thus,
the ν× n block Bν×n in Tn is usually dense, with its entries gi(Pj), made by linear combinations of

orthogonal polynomial values Pj(xk) and of its derivatives P(l)
j (xk), in prescribed abscissas xk.

Assembling those blocks Bν×n and D(n−ν)×n in Tn, we get an ν + h upper Hessenberg matrix.
For some problems, whose dependence on the eigenvalues λ is verified only in the differential

equation, we can use Schur complements to reduce matrix sizes. Considering matrix Tn in (4)
partitioned as

Tn =

[
B1 B2

D1 D2,

]
where B1 is ν× ν and the other blocks are partitioned accordingly. If B1 is non-singular, then

det(Tn) = det(B1)det(D2 −D1B
−1
1 B2)

and the problem is reduced to solve

det(Cn) = 0, Cn = D2 −D1B
−1
1 B2, (7)

reducing to n− ν the problem dimension. In the worst case, when B1 is singular, we have to work
with the n× n matrix Tn.

In the following sections, we illustrate the application of the Tau method to approximate
eigenvalues in some classical problems.

3. Problems with Polynomial Coefficients

Sturm–Liouville problems arise from vibration problems in continuum mechanics. The general
form of a fourth order Sturm–Liouville equation is

(p(x)y′′(x))′′ − (q(x)y′(x))′ + r(x)y(x) = λµ(x)y(x), a < x < b (8)

with appropriate initial and boundary conditions, where a < b ∈ R, p, q, r, and µ are given piecewise
continuous functions, with p(x) > 0 and µ(x) > 0. These conditions mean that (8) has an infinite
sequence of real eigenvalues, bounded from above, and each one has multiplicity of at most 2 [1].

If p and q are differentiable functions, it is an elementary task to give (8) the form

p(x)y(4)(x) + 2p′(x)y′′′(x) + (p′′(x)− q(x))y′′(x)− q′(x)y′(x) + (r(x)− λµ(x))y(x) = 0.

From this equation, we derive the operational matrix for the general form of the fourth order
Sturm–Liouville differential operator associated with (8)
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D = p(M)N4 + 2p′(M)N3 + (p′′(M)− q(M))N2 − q′(M)N+ r(M)− λµ(M). (9)

Assuming that coefficients p, q, r, and µ are polynomials, or convenient polynomial
approximations of the coefficient functions, then the height of this differential operator is well
defined as

h = max{deg(p)− 4, deg(q)− 2, deg(r), deg(µ)},

where deg(.) is the polynomial degree. One consequence of Corollary 1 is that to evaluate the block
D(n−ν)×n in (4) we have to apply (9) with M and N truncated to its first n + h lines and columns.

The Tau matrix of a fourth order Sturm–Liouville problem is the n × n matrix Tn =

[B4×n;D(n−4)×n], where B4×n is the 4 × n matrix representing boundary conditions and D(n−4)×n
is the first (n− 4)× n main block of D.

Example 1. Consider the Sturm–Liouville boundary value problem{
y(4)(x) = λy(x), 0 < x < 1,

y(0) = y(1) = y′(0) = y′′(1) = 0,
(10)

whose exact eigenvalues satisfy [1,2]

tanh( 4√
λ)− tan( 4√

λ) = 0. (11)

In that case D = N4 − λI, where I is the identity matrix, and the boundary conditions can be
represented by Bn = [v0; v1; v0N; v1N

2], where v0 = [1,−1, · · · , (−1)n−1] and v1 = [1, 1, · · · , 1] are
length n line vectors with the polynomial base values in the boundary domain.

For each n > 4, Cn in (7) is an n− 4 square matrix and its determinant an n− 4 degree polynomial.
We use the Matlab function roots to find its zeros and we inspect their accuracy by testing if they satisfy
relation (11).

In Figure 1, we present | tanh( 4
√

λn,k) − tan( 4
√

λn,k)| for k = 1, . . . , 10 the first 10 eigenvalues
approximations obtained with n = 21, 28, 35 and n = 42, with Chebyshev and Legendre bases shifted
to [0, 1].
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Figure 1. | tanh( 4
√

λn,k)− tan( 4
√

λn,k)|, k = 1, 2, . . . , 10, λn,k being the roots of det(Tn) in Example 1.
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Example 2. A very similar problem, presented as the clamped rod problem in [12,18], is{
y(4)(x) = λy(x), −1 < x < 1,

y(±1) = y′(±1) = 0.
(12)

In that case, and whenever we have a symmetric problem and a symmetric base, the matrix Cn

in (7) has zeros intercalating all non-zero elements. We can reduce the problem dimension, defining
two matrices CO and CE with respectively the odd and the even entries of Cn, then det(Cn) =

det(CO)det(CE). In that case, since Cn is an 4-upper Hessenberg matrix, CO and CE are 2-upper
Hessenberg matrices. The sparsity pattern of those two matrices, in Legendre basis and with n = 52,
are showed in Figure 2.

0 5 10 15 20 25

0

5

10

15

20

25

nz = 376

CO

0 5 10 15 20 25

0

5

10

15

20

25

nz = 376

CE

Figure 2. Sparsity pattern of CO and CE with n = 48 in Legendre base, for Example 2.

The first 14 eigenvalues, evaluated with an 16× 16 matrix, are presented in [12]. In Table 1,
we compare those values with our results in the Legendre basis and with n = 16 and n = 52. We
present values of λ52,k/k4, which allows us to verify that our estimates satisfy the property that the kth
eigenvalue is proportional to k4 [18].

Table 1. Eigenvalues of Example 2 presented in [12] and λn,k with n = 20 and n = 52 in Legendre basis.

k λk [12] λ16,k λ52,k λ52,k/k4

1 3.12852439×101 3.128524385877707×101 3.128524385877221×101 31
2 2.377210675×102 2.377210675311160×102 2.377210675311198×102 15
3 9.136018866×102 9.136018831954221×102 9.136018831951466×102 11
4 2.4964874758×103 2.496487437857343×103 2.496487437856835×103 9.8
5 5.5710074688×103 5.570962978086419×103 5.570962978573987×103 8.9
6 1.08631975968×104 1.086758221396396×104 1.086758221697812×104 8.4
7 1.93928004466×104 1.926303581823010×104 1.926302825661405×104 8.0
8 3.05369477203×104 3.178016789424974×104 3.178009645408997×104 7.8
9 6.03075735206×104 4.960468438481630×104 4.958769590877672×104 7.6

10 7.11035649235×104 7.407231618213559×104 7.400084934912209×104 7.4
11 3.597677558196×105 1.091110089932048×105 1.064806931408837×105 7.3
12 3.856105241227×105 1.548144789089380×105 1.486344772858071×105 7.2
13 1.62401642422808×107 2.619042084314734×105 2.022155654215451×105 7.1
14 1.71337968904269×107 3.728032882888538×105 2.691234348268295×105 7.0

Example 3. Consider the following Sturm–Liouville problem with non-null q and r coefficients{
y(4)(x)− (αx2y′(x))′ + (βx4 − α)y(x) = λy(x), 0 < x < 5,

y(0) = y′′(0) = y(5) = y′′(5) = 0,
(13)

with constants α, β ∈ R.
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The operational matrix (9) for this case is

D = N4 − αM2N2 − 2αMN+ βM4 − (α + λ)I

and Bn = [v0; v0N
2; v1; v1N

2], with the same v0 and v1 vectors of the previous example.
If λn,k is the kth root of det(Tn), and considering δ̃n,k =

λn,k−λn−1,k
λn,k

as an estimative of the relative

error in λn−1,k, then δn = maxk=1,...,m |δ̃n,k| is an estimative of the maximum relative error in the first m
eigenvalues of the problem. In Figure 3 left, we present δn, with m = 6 and with m = 8 for Example 3
with α = 0.02 and β = 0.0001 for n = 16, . . . , 45. In Figure 3 right, the absolute relative error |δ̃n,1| in
the lowest eigenvalue is presented for the same n values.

20 30 40
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

m=8

n

δn = maxk=1,...,m |λn,k−λn−1,k
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|
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δn,1 = |λn,1−λn−1,1

λn,1
|

δ
n
,1

Figure 3. δn = maxk=1,...,m δ̃n,k, m = 6 and m = 8, (left) and δn,1 (right), in Example 3.

In Table 2, we compare our results with those of [2] for the first six eigenvalues, and of [8] for the
first 4, obtained with values α = 0.02 and β = 0.0001.

Table 2. Eigenvalues of Example 3 presented in [8] and [2] and λn,k with n = 35.

k λk [8] λk [2] λn,k

1 0.21505086437 0.21505086436971492 0.2150508643697136
2 2.75480993468 2.754809934682884 2.754809934683077
3 13.2153515406 13.215351540558812 13.21535154055782
4 40.9508193487 40.95081975913755 40.95081975916199
5 99.05347813813880 99.05347806349896
6 204.35449348957833 204.3557322681771

Example 4. Now, we consider the Orr–Sommerfeld problem{
y(4)(x)− 2α2y′′ + α4y = iαR[(U − λ)(y′′ − α2y)−U′′y], −1 < x < 1,

y(±1) = y′(±1) = 0,
(14)

with fixed constants α, R and function U.

The particular case U = 1− x2 is the Poiseuille flow and, with α = 1 and R = 10000 was treated
in [3–5,12]. The operational matrix in that case is

D = N4 − [(2α2 + (1− λ)iαR)I − iαRM2]N2 + (α4 + (1− λ)iα3R− 2iαR)I − iα3RM2.
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Like in Example 2, this is an upper Hessenberg matrix with zeros intercalating its non-zero elements
and we can reduce the problem dimension, splitting in two matrices the Schur complement Cn of the
resulting Tau matrix Tn. Choosing Chebyshev basis, this is the operational version of the Tau procedure
of [5], where the author was confined to eigenvalues associated with symmetric eigenfunctions, which
is equivalent to finding the eigenvalues of CE.

In [5], the author obtained for λ1 = 0.23752649 + 0.00373967i as an 8 decimal places exact value
for the most unstable mode of this problem. Working with double-precision arithmetic, we obtain
λ1 = 0.2375264889204038 + 0.003739670740170985i. This value results with n = 58 that is an 29× 29
matrix CE, the same dimension used in [5].

In addition, with Rc = 5772.22, the smallest value of R for which an unstable eigenmode exists [5],
and αc = 1.02056, we get the results presented in Table 3, together with those of [5].

Table 3. Values of λ1 of Example 4 with critical values Rc = 5772.22 and α = 1.02056.

n λ1

50 0.2640017404987603− 3.099641201518763i× 10−9

60 0.2640017396216782− 3.035288544655118i× 10−9

80 0.2640017390806805− 2.028898296212456i× 10−9

n λ1 [5]

44 0.26400174− 1.7i× 10−9

50 0.26400174 + 5.9i× 10−10

4. Non-Polynomial Coefficients

In the previous section, we solved problems in the conditions of Corollary 1, i.e., with differential
operators acting in polynomial spaces. In a more general situation, if some of the coefficients pi in (6)
are non-polynomial functions, then the corresponding matrices pi(M) are functions of M instead of
polynomial expressions.

If a non-polynomial function pi in (6) can be defined implicitly by a differential problem, with
polynomial coefficients, then we can first of all use the Tau method to find a polynomial approximation
p̃i to pi and use p̃i(M) to approximate the matrix pi(M).

Example 5. Mathieu’s equation appears related to wave equations in elliptic cylinders [19]. For an arbitrary
parameter q, the problem is to find the values of λ for which non-trivial solutions of

y′′(x) + (λ− 2q cos(2x))y(x) = 0 (15)

exist with prescribed boundary conditions.

It can be shown that there exists a countably infinite set of eigenvalues ar associated with even
periodic eigenfunctions and a countably infinite set of eigenvalues br associated with odd periodic
eigenfunctions [19]. We are interested in reproducing some of those values given in there.

The operational matrix for problem (15) is

D = N2 + λI − 2q cos(2M).

Our first step to approximate Mathieu’s eigenvalues is to approximate matrix cos(2M). This can
be done by, firstly, considering the function z(x) = cos(2x) as the solution of a differential problem,
using Tau method to get a polynomial approximation zn(x) ≈ z(x). In a second step, the operational
matrix D is approximated by

D̃ = N2 + λI − 2qzn(M)
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and, finally, the last step consists in building the Tau matrix Tn and evaluating the zeros of its
determinant.

We take integer values q = 0, 1, . . . , 16 and boundary conditions y′(−1) = y′(π/2) = 0 to get
ar(q) for even r, y′(−1) = y(π/2) = 0 for odd r, and y(−1) = y(π/2) = 0 to get br(q) for odd r and
y(−1) = y′(π/2) = 0 for even r.

In Figure 4, we show Mathieu eigenvalues ar(q), r = 0, . . . , 5 and br(q), r = 1, . . . , 6. Values were
obtained with a 18th degree polynomial approximation z18 ≈ cos(2x) and a 36× 36 Tau matrix T36 in
Chebyshev polynomials.

We can observe, as pointed out in [19], that, for a fixed q > 0, we have a0 < b1 < a1 < b2 < · · ·
and that ar(q), br(q) approach r2 as q approaches zero.

0 2 4 6 8 10 12 14 16
−30

−20

−10

0

10

20

30

40

a0

b1

a1

b2

a2

b3

a3
b4

a4

b5

a5

b6

ar(q), br(q), q = 0, 1, . . . , 16

q

Figure 4. Mathieu eigenvalues ar(q), r = 0, . . . , 5 and br(q), r = 1, . . . , 6, for q = 0, . . . , 16 in Example 5.

Example 6. Mathieu’s equation also appears coupled with a modified Mathieu’s equation in systems of
differential equations as multi parameter eigenvalues problems. The particular case

y′′1 (x1) + (λ− 2q cos(2x1))y1(x1) = 0, 0 < x1 < π
2 ,

y′1(0) = y′1(
π
2 ) = 0,

y′′2 (x2)− (λ− 2q cosh(2x2))y2(x2) = 0, 0 < x2 < 2,

y′2(0) = y2(2) = 0

(16)

is studied in [6,7] associated with the eigenfrequencies of an elliptic membrane with semi axes α = cosh(2) and
β = sinh(2).
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To approximate eigenvalues for this problem, we first have to approximate cos(2x) and cosh(2x)
by polynomials. Considering, as in the previous example, z16 ≈ cos(2x) the 16th degree Tau solution of{

z′′(x) + 4z(x) = 0, 0 < x < π
2 ,

z(0) = 1, z(π
2 ) = −1,

(17)

and w16 ≈ cosh(2x) as the same degree Tau solution of{
w′′(x)− 4w(x) = 0, 0 < x < 2,

w(0) = 1, w′(0) = 0,
(18)

then
D̃1 = N2 + λI − 2qz16(M)

and
D̃2 = N2 − λI + 2qw16(M)

are matrices approximating the operational matrices associated with differential equations (16).
For each fixed q, we define matrices Tau T1 and T2, representing Mathieu and modified Mathieu

equations, respectively. Defining an(q) the nth eigenvalue of T1, in ascending order, and Am(q) the
mth eigenvalue of T2, in descending order, in [6], it was proved that an(q) and Am(q) are analytical
functions of q. Moreover, for each pair (m, n), it was proved the existence and uniqueness of an
intersection point of curves an(q) and Am(q). Those intersections identify the eigenmodes of the
elliptic membrane.

In Figure 5, we recover, and extend, figures presented in [6] and in [7]. Intersection points of an(q),
the almost vertical curves, and Am(q), the oblique curves, are the eigenpairs (a, q) of (16).

−10 0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

a(q), A(q)

q

 

 

a(q) even
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Figure 5. Mathieu eigenvalues an(q) and Am(q), for q = 0, . . . , 12 in Example 5. Only values
a(q), A(q) ∈ [−15, 85] are presented.

5. Nonlinear Eigenvalues Problem

In some differential problems, the eigenvalues can arise in a nonlinear relation with eigenfunctions.
Let us consider the following second order problem, related to Weber’s equation:

Example 7. {
y′′(x) + (λ + λ2x2)y(x) = 0, −1 < x < 1,

y(−1) = y(1) = 0.
(19)
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The operational matrix corresponding to the differential equation is

D = N2 + λI + λ2M2

and so det(Tn) is a polynomial with degree 2(n− 2) in λ.
In Table 4, we present the 10 eigenvalues closest to zero, obtained with n = 30 and with n = 31.

We can verify that maxk=−5,...,5 |λk(30)− λk(31)| < 5× 10−9.

Table 4. Eigenvalues of Example 7 with n = 30 and n = 31. Decimal places presented are those that
coincide, until to the first distinct two.

k λk(n = 30) λk(n = 31)

−5 −19.674904478 −19.674904482
−4 −13.62505355977 −13.62505355969
−3 −13.200062264051 −13.200062264066
−2 −7.0356879747644 −7.0356879747642
−1 −6.59716200235713 −6.59716200235723

1 1.951702364990329 1.951702364990324
2 4.28611106118016 4.28611106118021
3 7.5459203349991 7.5459203349981
4 10.126005915959 10.126005915966
5 13.52870217426 13.52870217408

6. Conclusions

Since the pioneering works of Orzag [5] and Ortiz and Samara [9], the Tau method has been
scarcely used to solve differential eigenvalues’ problems. With our work, we conclude that the Tau
method is a competitive one if we want to evaluate with high accuracy the first eigenvalues, in a large
kind of differential problem.
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