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Abstract: A non-local solution is obtained here in the theory of cracks, which depends on the scale
parameter in the non-local theory of elasticity. The gradient solution is constructed as a regular solution
of the inhomogeneous Helmholtz equation, where the function on the right side of the Helmholtz
equation is a singular classical solution. An assertion is proved that allows us to propose a new
solution for displacements and stresses at the crack tip through the vector harmonic potential, which
determines by the Papkovich–Neuber representation. One of the goals of this work is a definition
of a new representation of the solution of the plane problem of the theory of elasticity through the
complex-valued harmonic potentials included in the Papkovich–Neuber relations represented in a
symmetric form, which is convenient for applications. It is shown here that this new representation
of the solution for the mechanics of cracks can be written through one harmonic complex-valued
potential. The explicit potential value is found by comparing the new solution with the classical
representation of the singular solution at the crack tip constructed using the complex potentials
of Kolosov–Muskhelishvili. A generalized solution of the singular problem of fracture mechanics
is reduced to a non-singular stress concentration problem, which allows one to implement a new
concept of non-singular fracture mechanics, where the scale parameter along with ultimate stresses
determines the fracture criterion and is determined by experiments.

Keywords: singular problems; gradient fracture mechanics; Papkovich–Neuber representation;
complex potentials; new form of solutions; regular gradient solutions

1. Introduction

The problem of singularities in the theory of elasticity and in fracture mechanics is widely
discussed in the related scientific literature [1–3]. The singularity of solutions for stresses at the
crack tip in the linear theory of elasticity excludes the use of traditional criteria for the strength of
bodies with stress concentration. Moreover, the formally obtained singular solutions contradict not
only the physical meaning, but also the postulates of the theory of elasticity. Such paradoxes still
require an explanation [3]. Gradient elasticity allows one to describe size effects [4], and provides
regularization of singular solutions of differential equations of elasticity theory [5,6]. In this regard,
it would be quite natural to expect the development of gradient fracture mechanics. Nevertheless, so far
only non-singular solutions have been constructed in gradient fracture mechanics for test problems
corresponding to cracks of Mode III [7].
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For the general theory of gradient deformation, the variational model is described by the density
of potential energy:

2E = Ci jkmεi jεkm + Ci jklnmui, jkul,mn,

where ui is the displacement vector, εij the strain tensor, Cijkm and Ci jklmn are classical and gradient
moduli of elasticity respectively, having different dimensions. The force model is determined by
the Cauchy stress tensor σi j and by the tensor of double stresses of the third rank µi jk. Constitutive
equations are obviously given by the following formulas:

σi j = ∂E/∂εi j, µi jk = ∂E/∂ui, jk,
(
ui, j = ∂ui/∂x j

)
.

In the general case, the physical properties of an isotropic gradient theory are described using
seven physical constants, two of which are Lamé constants, and five others determine the tensor of
gradient moduli of the sixth rank.

As a rule, one-parameter models are used to solve applied problems. One of the most popular is a
model of the continuum in which the tensors of stresses and double stresses are determined by the
formulas [8,9]:

σi j = λϑδi j + 2µεi j, µi jk = s2(λϑ,kδi j + 2µεi j,k),

and accordingly, the elastic modules have the form:

Ci jkm = λδi jδkm + µ(δikδ jm + δimδ jk), Ci jklnm = s2λδi jδknδlm + s2µ(δilδ jmδkn + δimδ jlδkn).

Here, λ, µ are the Lame coefficients, s is the scale parameter, ϑ = uk,k is the dilation, and δi j is the
Kronecker delta.

The equilibrium equations in such a model are written through the tensor of “total” stresses
(see [9]):

(σi j − µi jk,k), j = 0 or τi j, j = 0,

where τi j = σi j − µi jk,k. Constitutive equations for such applied gradient models have the following
form (see [9]):

τi j = σi j − µi jk,k = σi j − s2σi j,kk = (1− s2∆)(λϑδi j + 2µεi j), ϑ = εi jδi j (1)

where ∆ is the Laplace operator.
Note that static boundary conditions for the considered gradient model are specified through a

linear combination of “classical” stresses τi j and derivatives of double stresses µi jk. As a result, the
boundary conditions cannot be written only through the tensor of stresses τi j, which makes it difficult
to obtain solutions. This probably explains why gradient solutions are constructed only for harmonic
problems of cracks of Mode III.

Let us note that the problem of the regularization of the classical singular crack fields was still
considered in [10–12] where the attempts were made to construct non-singular solutions. Furthermore,
in [13] these studies were discussed because the obtained solutions did not satisfy the strain compatibility
equations. Indeed, in the indicated works, it was possible to construct only approximate non-singular
solutions, which is associated with incomplete consideration of the biharmonic components on the
right side of the Helmholtz equations. In any case, in the indicated papers there are not the common
analytical solutions to problems for cracks of Mode I. In the interesting work [14] the search of solution
for the theory of cracks comes down to integral equations.

The complexity of the obtained expressions and the method of constructing approximate solutions
using the Chebyshev series did not allow the find of explicit analytical expressions that would show
the regularity of the solution. The authors do not provide analytical solutions in an accurate study
conducted in [15] using micropolar elasticity, as well as in the fundamental work [16] since, during the
construction of an approximate solution, the authors are not able to ensure fully the continuation of the
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solution directly to the crack tip. In the present work, we are going to construct an exact non-singular
solution for Mode I cracks using a new representation of the classical solution for generalized stresses
through a complex-valued scalar potential.

The modified variant of the generalized elasticity theory was proposed by the authors of [17,18],
where the defining relations are written for the generalized non-local stress tensor and the generalized
non-local strain tensor. Note that the idea of the non-local theory of elasticity was proposed in the
fundamental works [19,20]. Connection of non-local theory with gradient theories was established in
the work [21]. Theoretical aspects of non-local theories and their generalized variants and also their
applications in the area of mechanics of nano-structures and nano devices discussed in the interesting
works [22–24].

We use the applied variant of model when a generalized non-local tensor function is introduced
using the averaging operation of a local function on a given finite fragment and then the local function
is expanded in a Taylor series on local coordinates on the fragment under consideration with retention
of a finite number of terms in the series. As a result, after integrating the resulting finite Taylor series
with respect to local coordinates over the considered fragment, the non-local generalized functions are
constructed. In the proposed procedure, generalized functions are determined not only through the
values of the local function at some point of the fragment, but also in aggregate through its derivatives
of the second, fourth, etc. orders, depending on the number of terms held in the Taylor series. Here we
can see a difference from the traditional differential calculus where the function or its derivatives are
determined by their values at the point. Generalized functions in particular are determined by the
corresponding local functions through the Helmholtz operator.

The construction of the solution in the model [17,18] is carried out in two stages. At the first
stage, the traditional boundary value problem of the theory of elasticity is considered and non-local
stresses and displacements are found. At the second stage, the obtained solutions are substituted
on the right-hand side of the Helmholtz equation, which is solved with respect to local functions.
Thus, to construct the local solutions it is first proposed to solve the classical elasticity problem for
generalized stresses and displacements, and then find local stresses Ξi j and displacements Ui, by
solving the corresponding Helmholtz equations:

Ui − s2∆Ui = ui, Ξi j − s2∆Ξi j = σi j (2)

We can see that in using this model for the mechanics of cracks the generalized non-local solutions
formally coincide with the classical solution of the static boundary conditions and the local stress field
must be found as common solutions of the non-homogeneous Helmholtz equation (2). The solution
for local stresses and displacements has the form of a boundary layer.

We note that the procedure for constructing local solutions is similar to the construction of gradient
solutions considered in [25]. On the other hand, in the discussed model [18] the constitutive equations
are written on non-local generalized stresses and deformations σi j = Si jmnεmn, which is quite justified,
physically. As is evident, the constitutive equations of the discussed model are different from the
constitutive equation (1). For the mechanics of cracks, the generalized non-local solutions formally
coincide with the classical solution of the static boundary conditions, and the local stress field must be
found as a common solution of the non-homogeneous Helmholtz equations. We assume that the local
stresses are important for assessing the strength and that local stresses are involved in the strength
criteria. These stresses are found after the definition of generalized stresses (“classical”) σi j from the
equation σi j = (Ξi j − s2∆Ξi j).

The purpose of this work is to show that, for the model under consideration, the local stress field
in the vicinity of the crack tip is regular, i.e., it does not have a singularity. Non-singular solutions
could be used as the basis for constructing and testing a new concept of stress concentration in crack
mechanics proposed in [26]. We belive that for brittle cracks the non-singular cracks dependences
allow us to determine the important role for the scale parameter as a characteristic of fracture for brittle
cracks along with tensile strength. In fact, a simular algorithm was implemented in [26] for the case of
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finite cracks of normal separation in a plane strip. It was shown that the parameter s for a particular
brittle material is a constant and can be considered as a critical parameter of fracture, giving with high
accuracy a strength forecast for brittle materials.

We propose a new representation of the solution of the plane problem of the theory of elasticity
through the complex-valued harmonic potentials included in the Papkovich–Neuber representation in
a symmetric form, convenient for applications. A condition is determined under which the solution
of plane problems of elasticity can be written through one harmonic potential. This condition is also
fulfilled for problems of crack mechanics. As a result, we found the form of solution through one
harmonic potential for displacement, and stresses that allow us to construct the non-singular solutions
of mechanics of cracks.

2. New Representation of Solution through Harmonic Potential in Mechanics of Cracks

Let us consider the Papkovich–Neuber representation as a convenient analytical tool for describing
the stress-strain state of an elastic body [27]. This representation allows us to represent the displacements
and the corresponding stresses, through two auxiliary harmonic potentials: f is the vector potential
and another φ is scalar, ∇2φ = ∇2f = 0:

u =
f
µ
+
∇(φ− rf)
4µ(1− ν)

, σi j =
∂ fi
∂x j

+
∂ f j

∂xi
+
ν(δi jdivf)

1− ν
+

1
2(1− ν)

∂2(φ− rf)
∂xi∂x j

(3)

here u = {ui} is the displacement vector, σi j is the tensor of stresses, σi j = 2µ εi j + λδi jεkk, where
εi j = (1/2)(ui, j + u j,i).

We propose a new representation of the solution of the plane problem of the theory of elasticity
through the complex-valued harmonic potentials included in the Papkovich–Neuber representation in
a symmetric form, convenient for applications. We show that these representations obtained directly
from the representation of the general Papkovich–Neuber solution can be reduced to the well-known
representations of Kolosov–Muskhelishvili for the plane problem of the theory of elasticity through
two complex potentials. However, then we prove that under certain conditions a solution to a plane
problem can be represented through one complex-valued harmonic potential. Such a representation is
new and is convenient in constructing generalized solutions in crack mechanics.

Lemma 1.

1. Papkovich–Neuber’s representation allows us to present a solution to the plane problem of the theory of
elasticity through three complex potentials in the following form:

ux = Reu, σx = Re(p + τ), uy = Imu, σy = Re(p− τ), τxy = Imτ (4)

2. Papkovich–Neuber’s representation leads to the following form of the common solution for complex
potentials u , p, τ of the plane problem of the theory of elasticity through two analytic functions Φ(w) and
F(w):

u = F
µ + 1

4µ(1−ν)
∂(Φ−wF−wF)

∂w , p = 1
2(1−ν)

(
∂F
∂w + ∂F

∂w

)
, τ = 1

2(1−ν)
∂2(Φ−wF−wF)

∂w2 (5)

where w = x + iy.

Proof. We consider the plane problem of the theory of elasticity and write the displacements and
stresses in complex form, introducing in (3) complex potentials u = ux + iuy, f = fx + i fy instead of
the corresponding vector expressions u =

{
ux, uy

}
, f =

{
fx, fy

}
and complex variables w, w instead

variables x, y. Also, we use differentiation by complex coordinates w = x + iy, w = x− iy:

∂
∂w

=
1
2

(
∂
∂x
− i

∂
∂y

)
,
∂

∂w
=

1
2

(
∂
∂x

+ i
∂
∂y

)
.
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Let us define the first invariant of the stress tensor p = (σx + σy)/2 and the complex potential
τ = (σx − σy)/2 + iτxy. Then the components of the displacement vector ux, uy and the stress tensor
σx = σ11, σy = σ22, τxy = σ12 can be expressed explicitly through the introduced complex potentials in
the form of Equation (4). The Equation (3) determines the link between u, p, τ and potentials f = fx + i fy

and φ. Using representation (3) and taking into account the equalities rf = x fx + y fy = (w f + w f )/2,
f = fx − i fy we can get

u =
f
µ
+

1
4µ(1− ν)

∂(φ−w f −w f )
∂w

(6)

It is easy to establish also the following symmetric expressions for the stresses:

σx = 2∂ fx
∂x +

νdivf
1−ν + 1

4(1−ν)
∂2(φ−w f−w f )

∂x2 , σy = 2
∂ fy
∂y +

νdivf
1−ν + 1

4(1−ν)
∂2(φ−w f−w f )

∂y2 ,

τxy =
∂ fx
∂y +

∂ fy
∂x + 1

4(1−ν)
∂2(φ−w f−w f )

∂x∂y , divf = ∂ fx
∂x +

∂ fy
∂y =

∂ f
∂w +

∂ f
∂w

(7)

We take into account that the potential f is harmonic: ∆ f = 4∂2 f /∂w∂w = 0. Then Equation (7)
leads to the following equalities for complex potentials p, τ:

p =
1

2(1− ν)

 ∂ f
∂w

+
∂ f
∂w

, τ = 2
∂ f
∂w

+
1

2(1− ν)
∂2(φ−w f −w f )

∂w2 (8)

Furthermore, we take into account that for a plane statement the general complex solution of
the Laplace equation f is expressed across two analytical functions f = F1(w) + F2(w). On the
other hand, the scalar potential ϕ in (3) is real and can be written through one analytical function
ϕ = Φ1(w) +Φ1(w). The following sequence of equalities shows the possibility of writing Equations (6)
and (8) through potentials F1, F2 and Φ

1

u =
f
µ + 1

4µ(1−ν)
∂(φ−w f−w f )

∂w = F1+F2
µ + ∂

∂w
(Φ1+Φ1−w(F1+F2)−w(F1+F2))

4µ(1−ν) =

= F1
µ + ∂

∂w

(
Φ1+4(1−ν)F

(−1)
2 −wF2−wF1−wF1

)
4µ(1−ν) = F

µ + ∂
∂w

(Φ−wF−wF)
4µ(1−ν) .

here F = F1(w) and Φ = Φ1(w) + 4(1− ν)F(−1)
2 (w)−wF2(w), and F(−1)

2 is the antiderivative function F2.
We took into account that the derivative of the analytic function with respect to the conjugate complex
variable is equal to zero.

The stresses potentials are converted similarly:

p = 1
2(1−ν)

(
∂ f
∂w +

∂ f
∂w

)
= 1

2(1−ν)

(
∂F1
∂w + ∂F1

∂w

)
,

τ = 2 ∂ f
∂w + 1

2(1−ν)
∂2(φ−w f−w f )

∂w2 = ∂2

∂w2

(
Φ1+4(1−ν)F

(−1)
2 −wF2−wF1−wF1

)
4µ(1−ν) .

Thus, Equations (6) and (8) are reduced to the form of Equation (5), which are defined with two
analytical functions F(w) and Φ(w). Note that for problems of plane stress state in Equations (3), (5),
(6) and (8) the value ν should be replaced by the value ν∗ = ν/(1 + ν). The lemma is proved. �

Theorem 1.

1. Equation (5), obtained solely on the basis of the Papkovich–Neuber representation, fully corresponds to
the Kolosov–Muskhelishvili representation (see [28]), in which stresses and displacements are expressed
through two analytical functions using the formulas:

σx + σy = 4Re
{
ψ′(w)

}
, σy − σx + 2iτxy = 2

{
wψ′′ (w) + χ′′ (w)

}
(9)
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2µ(ux + iuy) = (3− 4ν)ψ(w) −wψ′(w) − χ′(w) (10)

where ψ, χ are Kolosov–Muskhelishvili’s potentials
2. There is a relation between the functions f and φ under which the Papkovich–Neuber relation can be

written through one harmonic potential, assuming that φ = 0.
3. For problems of crack mechanics, the Pakovich–Neuber representation can always be written through one

harmonic vector potential.

Proof.

1. Comparing the right and left parts of Equations (5) and (9) it is easy to see that they are completely
consistent with each other, if accept that ψ = 0.5F/(1− ν) , χ = −0.5Φ/(1− ν), or

F = 2(1− ν)ψ, Φ = −2(1− ν)χ (11)

Substitution of the functions F(w) and Φ(w) from Equation (11) into Equation (5) for complex
displacements u = ux + iuy shows that the resulting equation exactly coincides with the expression
for displacements. The first part of the theorem is proved.

2. To prove the second part of the theorem, we consider again the representation (3) and show that
there is somewhat overdetermined, since between the functions f and φ a relationship can be
established, which does not change the stress–strain state. Indeed, we can introduce the following
harmonic scalar function satisfying the equality:

r
∂ h
∂ r
− 4(1− ν)h = φ, ∇2h = 0, f = ∇h (12)

As a result, if Equality (12) holds, then for any harmonic function φ it can be resolved with respect
to the function h and the Papkovich–Neuber representation (3) can be rewritten by redefining the
vector potential f with condition φ = 0.

3. Let us briefly consider the cases when relation (12) is not satisfied. We represent the function
φ in the form rαχ(ϕ,θ), where ϕ and θ are the angular coordinates, which are independent
from the radial coordinate r. Equality (12) does not satisfied if α = 4(1 − ν). For negative
values of the exponent, Equation (12) always has a solution, and without loss of generality the
relation (3) can be written assuming condition φ = 0. Therefore, for problems of crack mechanics,
the Papkovich–Neuber representation can always be written in terms of a single harmonic vector
potential. The theorem is proved. �

Thus, the general solution of problems of the plane theory of elasticity can be expressed not only
using two analytical functions in the form of Equation (5), but also in equivalent form using one
harmonic function f = F1(w) + F2(w) (i.e., through Papkovich–Neuber complex potential):

u =
f
µ
−

1
4µ(1− ν)

∂(w f + w f )
∂w

(13)

p =
1

2(1− ν)

 ∂ f
∂w

+
∂ f
∂w

, τ = 2
∂ f
∂w
−

1
2(1− ν)

∂2(w f + w f )

∂w2 (14)

Let us consider the canonical singular problem of the theory of elasticity, which defines the
problem of fracture mechanics for the plane problem:

y = 0, −∞ < x < 0, σy = τxy = 0,
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and leads to the determination of the correct solution in stresses, tending to zero when w→∞ as
O(|w|1/2), w = x + iy, i =

√
−1.

It is known that the correct solutions to this problem for a plane problem for normal separation
crack and transversal shear, respectively are given through two Kolosov–Muskhelishvili potentials.
This solution for a crack open displacement is written as follows (see [1]):

ux =
KI

µ

√
r

2π

(
1− 2ν+ sin2 θ

2

)
cos

θ
2

, uy =
KI

µ

√
r

2π

(
2− 2ν− cos2 θ

2

)
sin

θ
2

(15)

σx =
KI
√

2πr

(
1− sin

θ
2

sin
3θ
2

)
cos

θ
2

, σy =
KI
√

2πr

(
1 + sin

θ
2

sin
3θ
2

)
cos

θ
2

(16)

τxy =
KI
√

2πr
cos

θ
2

cos
3θ
2

sin
θ
2

(17)

Here ux, uy, σx, σy, τxy are components of the displacement vector and stress tensor, respectively,
r, θ are polar coordinates in the vicinity of the top of the crack KI is stress intensity factors.

Consider again the Papkovich–Neuber representation (see [27]), which allows us to present a
general solution to the problem of the theory of elasticity; that is, both displacement vector u and their
corresponding stresses σ(u) on a surface element with a normal vector n, through only one harmonic
vector potential f (in accordance with Theorem 1):

u =
f
µ
−
∇(rf)

4µ(1− ν)
, σ(u) =

∂f
∂n

+ n∇f +
ν(ndivf)

1− ν
−

1
2(1− ν)

∂∇(rf)
∂n

, ∆f = 0 (18)

Here, the differential combination n∇f means the expression
{
n j(∂ f j/∂xi)

}
, σ(u) =

{
σi jn j

}
, where

σi j is the stress tensor. Let us prove that the solution of the classical singular problem (for the
example of a crack open displacement (15)–(17)) can be represented also through one harmonic
complex-valued potential.

Theorem 2. An explicit expression exists for the harmonic potential for which the general representation of the
solution of the plane Papkovich–Neuber problem (13), (14) is completely equivalent to the classical representation
for the singular solution for a crack Mode I given by Equations (15)–(17).

Proof. Let us find an explicit expression of the harmonic potential f for a crack Mode I. We first consider
the classical solution (13) for the displacement components ux, uy and transform them, distinguishing
the coordinate y = r sinθ = i(w−w)/2. We obtain:

ux =
KI

µ

√
r

2π

(
(1− 2ν) cos

θ
2
+

1
2

sinθ sin
θ
2

)
, uy =

KI

µ

√
r

2π

(
2(1− ν) sin

θ
2
−

1
2

sinθ cos
θ
2

)
.

Using the written equalities, we can get a complex-valued value of displacements u = ux + iuy:

u = ux + iuy = KI√
2πµ

(
2(1− ν)w1/2

− i y
2 w−1/2

−Rew1/2
)
=

= KI√
2πµ

(
2(1− ν)w1/2 + w−w

4 w−1/2
−

w1/2+w1/2

2

)
= KI√

2πµ

(
2(1− ν)w1/2

−
ww−1/2

4 −
w1/2

2 −
w1/2

4

)
.

In the resulting expression, we select the derivative with respect to the coordinate w:

u = KI

√
2
π
(1− ν)

w1/2

µ
−

1
4µ(1− ν)

∂

∂w

ww1/2 + ww1/2 +
w3/2

3

 (19)
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Assuming in (19) that w1/2 = f , we rewrite the complex value of displacements u = ux + iuy in
the form:

u = KI

√
2
π
(1− ν)

 f
µ
−

1
4µ(1− ν)

∂

∂w

w f + w f +
w3/2

3

 (20)

In order to reduce Equation (20) to the form (13) we must show that the last term in Equation (20)
can always be compensated by the corresponding choice of the harmonic function. Instead of the
harmonic function f = w1/2 in Equation (20), we propose to consider another harmonic function fI
obtained as the sum of the function f = w1/2 and the harmonic function Aw1/2 with some unknown
coefficient A, so far fI = w1/2 + Aw1/2.

It is easy to verify that one can find a constant A such that Expression (20), in which instead of
the function f = w1/2 stands fI, coincides completely in appearance with Formula (13) for complex
displacements, found in accordance with the Papkovich–Neuber representation. Indeed, after some
transformations we find A = −1/(5− 8ν). Now the statement of the theorem is verified by direct
substitution. Thus, for a crack open displacement in the classical formulation, the field of elastic
displacements and stresses in the vicinity of the crack tip is described by the Papkovich–Neuber
representation (13) and (14) in complex form with a potential fI having the following expression
through complex variables w and w:

fI = KI

√
2
π

w1/2
−

w1/2

5− 8ν

(1− ν) (21)

We have thus proved that the mathematical description of the crack is based on harmonic functions
with a half-integer value of the exponent for the complex variable w. The form obtained for representing
the solution is based on one complex potential, which represents the solution in a form convenient for
construction of the gradient solutions. The theorem is proved. �

The statement proved above is also valid for crack of mode II and crack of mode III. For example,
for the classical singular solution mode II:

ux =
KII

µ

√
r

2π

(
2− 2ν+ cos2 θ

2

)
sin

θ
2

, uy = −
KII

µ

√
r

2π

(
1− 2ν− sin2 θ

2

)
cos

θ
2

(22)

σx = −
KII
√

2πr

(
2 + cos

θ
2

cos
3θ
2

)
sin

θ
2

, σy =
KII
√

2πr
cos

θ
2

cos
3θ
2

sin
θ
2

(23)

τxy =
KII
√

2πr

(
1− sin

θ
2

sin
3θ
2

)
cos

θ
2

(24)

the following harmonic function of complex variables w, w can be found:

fII = −i KII

√
2
π

w1/2
−

3w1/2

5− 8ν

(1− ν) (25)

This harmonic function establishes a correspondence of the classical singular solution (22)–(24)
with the solution given by the Papkovich–Neuber representation (13) and (14).

Finally, we consider the longitudinal shear crack (Mode III), which in the spatial theory of elasticity
is described by the following relations for displacements and stresses:

uz =
KIII

µ

√
2r
π

sin
θ
2

, τxz = −
KIII
√

2πr
sin

θ
2

, τyz =
KIII
√

2πr
cos

θ
2

(26)
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It is easy to check that the stress–strain state for this case (26) is also completely described by the
spatial version (3) of the Papkovich–Neuber representation with non-zero plane harmonic potential
fz(x, y) and its compensating potential φ = z fz(x, y), where:

fIII = fz(x, y) = KIII

√
2
π

Im
(
w1/2

)
(27)

Thus, strain–stress state for Mode I, II, and III singular cracks can be described on the basis of the
Papkovich–Neuber formulas with the aid of one complex potential with a fractional degree. These
forms are convenient for constructing a generalized gradient regular solution.

Remark 1. Note that harmonic functions establishing a correspondence between singular classical solutions of
crack mechanics and solutions constructed using the Papkovich–Neuber representation are not analytic because,
as is easily verifiable, the Cauchy relations are not satisfied for them.

In the future, our goal is to construct the local stresses and displacements associated with classical
stresses and displacements through the Helmholtz equation using generalized elasticity. Consequently,
the field of local stresses will describe the non-singular crack solutions.

3. Regular Gradient Solutions in Crack Mechanics

Let us construct a regular solution for crack Mode I, using an applied version of the non-local
theory of elasticity. Using the algorithm discussed earlier in the Introduction, we can determine the
local displacement and stress fields as general solutions of the inhomogeneous Helmholtz Equation (2),
on the right-hand sides of which the well-known classical solutions are taken. We rewrite relation (2),
introducing on the right-hand sides of the Helmholtz equations the classical solutions written in terms
of complex displacements u(w, w) and complex potentials p = p(w, w), τ = τ(w, w) (see Equation (4):
p = (σx + σy)/2, τ = (σx − σy)/2 + iτxy. The generalized theory of elasticity allows finding the local
stresses and displacements associated with classical stresses and displacements through the Helmholtz
equation. The fields of local stresses describe the regular crack solutions as:

U − s2∆U = u, P− s2∆P = p, T− s2∆T = τ (28)

Here u, p, τ are the potentials of displacements and stresses expressed through the
Papkovich–Neuber potential (21) by the formulas (13) and (14).

The general solution of Equation (28) is constructed as the sum of the general solution of the
homogeneous Helmholtz equation and the particular solution of the inhomogeneous Helmholtz
equation. It holds the following lemma, indicating the structure of a particular solution of the
Helmholtz equation.

Lemma 2. Assume that function φ is the right-hand side of the Helmholtz equation, written with respect to a
function Φ. Assume also that function φ is a biharmonic function:

Φ − s2∆Φ = φ, (29)

where ∆2φ = 0. Then, a particular solution of the inhomogeneous Helmholtz equation has the form:

Φ = φ+ s2∆φ. (30)

Proof. The lemma is proved by directly substituting Expression (30) into Equation (29). �
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The regularity of the generalized solution of Equation (29) is ensured by the structure of a
homogeneous solution and the special choice of arbitrary constants in this solution. Since the functions
u, p, τ in Equation (28) and their particular solutions (see Equation (30)) contain singularities with only
a half-integer value of the exponent in the degree of the complex variable w, among the solutions of the
homogeneous Helmholtz equation we are interested only in singular functions with the same value of
the exponent in the degree of the complex variable w.

It was shown in [29,30] that a system of such singular solutions can be constructed in an explicit
analytical form using radial multipliers satisfying a special recurrence relation:

Φ̂n − s2∆Φ̂n = 0, Φ̂n(w, w) = ĥn(r)w−1/2−n, r = (w w)1/2, n ≥ 0 (31)

ĥn(r) =
1
2

(
rĥ′n−1(r) − (2n− 1)ĥn−1(r)

)
, n ≥ 1, ĥ0(r) = e−r/s (32)

Thus, solutions of Equation (28) in the gradient theory of cracks can be constructed by explicitly
taking into account Expressions (31) and (32).

A complete representation of the generalized solution (classical solutions) for a crack Mode I for
generalized displacements ui and generalized complex stress potentials p, τ is given by Formulas (13),
(14) and (21). As a result, taking into account the statement of Lemma 2 and Relations (31) and (32),
we find:

U =
f
µ
−

1
4µ(1− ν)

∂(w f + w f )
∂w

−
s2

µ(1− ν)
∂2 f

∂w2 +
∑

n
AnΦ̂n(w, w) (33)

P =
1

2(1− ν)

 ∂ f
∂w

+
∂ f
∂w

+∑
n

BnΦ̂n(w, w) (34)

T = 2
∂ f
∂w
−

1
2(1− ν)

∂2(w f + w f )

∂w2 −
2s2

1− ν
∂3 f

∂w3 +
∑

n
CnΦ̂n(w, w) (35)

Here An, Bn, Cn are unknown coefficients that are selected from the compensation condition for
singular terms in gradient potentials U, , T.

The specific structure of the solutions in the last terms of the above-stated equations, which are
general solutions of the homogeneous Helmholtz equations, is found taking into account the order
of the singularities in the corresponding particular solutions. So, in Expression (33), the first three
terms determine a particular solution of the Helmholtz equation for generalized displacement U.
They include derivatives with respect to the argument w up to the second order, which give rise to
singularities of the form w−3/2. Therefore, in order to compensate for the singularities in (33), we should
use A0 = 0, A1 , 0, An = 0, n ≥ 2.

Furthermore, in Equality (34), the first term, which is a particular solution of the Helmholtz
equation for the harmonic potential of stresses P, contains only the first derivative with respect to
variables w, w. Therefore, in the last term we should put V0 , 0, Vn = 0, n ≥ 1.

Finally, since in Equation (35) a particular solution includes derivatives with respect to the
argument w up to the third order and contains singularities w−1/2, w w−3/2 and w−5/2, then in the term
representing the general solution of the homogeneous equation, we should put S0 , 0, S1 = 0, S2 , 0,
Sn = 0, n ≥ 3.

The constants A1, V0, S0, S2 in the solution obtained in this way are explicitly found in such a
way as to compensate for the singularities in the general solutions (33)–(35). We get:

A1 =
KI s2
√

2πµ
, B0 = −

KI

2
√

2π
, C0 =

KI

4
√

2π
, C2 = KI

√
2
π

s2 (36)
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Thus, Equalities (33)–(36) allow us to construct regular generalized solutions for complex
displacements U and complex stress potentials P and T. The components of generalized displacements
Ux, Uy, and generalized stresses Ξx, Ξy, Txy in the gradient theory of elasticity are calculated through
the real and imaginary parts of complex potentials (33)–(35) according to the following formulas:

Ux = ReU, Uy = ImU, Ξx = Re(P + T), Ξy = Re(P− T), Txy = ImT (37)

As a result, we obtain the following regular generalized solutions describing the non-singular
stress–strain state of a normal separation crack in a gradient formulation:

U =
KI
√

2πµ

(3
2
− 2ν

)
w1/2

−
w1/2

4
+

s2

2

1−
(r/s)2

2
+ 2ĥ1(r)

w−3/2
 (38)

P =
KI
√

2π

1− ĥ0(r)
2

(
w−1/2 + w−1/2

)
(39)

T = −
KI

4
√

2π

(1− ĥ0(r)
)
w−1/2 + 6s2

1−
(r/s)2

6
−

4
3

ĥ2(r)

w−5/2
 (40)

where:

ĥ0(r) = e−r/s, ĥ1(r) = −
r/s + 1

2
e−r/s, ĥ2(r) =

(r/s)2 + 3(r/s + 1)
4

e−r/s.

When deriving (38)–(40), we take into account the relations ww−1/2 = r2w−3/2, ww−3/2 = r2w−5/2

in Expressions (39) and (40) written down taking into account (21). We also take into account that
functions ĥ0, ĥ1 and ĥ2 are real functions. The coefficients Ai, Vi, Si for the radial multipliers ĥ0, ĥ1

and ĥ2 are chosen so that in the expressions (38)–(40) there are no singular components. We can verify
this, if we take into account the specific form of functions Φ̂n(w, w) and the asymptotic behavior of the
exponential in functions ĥ0, ĥ1 and ĥ2 in Equations (38)–(40):

(x + 1)e−x = 1− x2 + O(x3), (x2/2 + x + 1)e−x = 1− x3/6 + O(x4). (41)

Using the polar coordinates w = r (cosθ+ i sinθ) in Expressions (38)–(40), we obtain an explicit
regular everywhere generalized gradient solution for the normal separation crack, written for the
components of displacement:

Ux =
KI

µ

√
r

2π

[(
1− 2ν+ sin2 θ

2

)
cos

θ
2
+

s2r−2

2

(
1− (r/s + 1)e−r/s

)
cos

3θ
2

]
(42)

Uy =
KI

µ

√
r

2π

[(
2− 2ν− cos2 θ

2

)
sin

θ
2
−

s2r−2

2

(
1− (r/s + 1)e−r/s

)
sin

3θ
2

]
(43)

and stress components:

Ξx =
KI
√

2πr

[(
1− sin

θ
2

sin
3θ
2
−

3e−r/s

4

)
cos

θ
2
−

s2

2r2

(
3−

(
r2

s2 + 3(r/s + 1)
)
e−r/s

)
cos

5θ
2

]
(44)

Ξy =
KI
√

2πr

[(
1 + sin

θ
2

sin
3θ
2
−

5e−r/s

4

)
cos

θ
2
+

s2

2r2

(
3−

(
r2

s2 + 3(r/s + 1)
)
e−r/s

)
cos

5θ
2

]
(45)

Txy =
KI
√

2πr

[(
cos

θ
2

cos
3θ
2

+
e−r/s

4

)
sin

θ
2
−

s2

2r2

(
3−

(
r2

s2 + 3(r/s + 1)
)
e−r/s

)
sin

5θ
2

]
(46)
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Note that as the scale parameter tends to zero s→ 0 , the solutions (42)–(46) go into the classical
singular solution.

The asymptotics of Expressions (44)–(46) up to terms of the order of O(r/s) is calculated on
the basis of Relation (41), where x = r/s. To use (41), we transform the expression in parentheses
in (44)–(46) as follows:

s2

2r2

(
3−

(
r2

s2 + 3(r/s + 1)
)
e−r/s

)
=

3s2

2r2

(
1−

(
r2

2s2 + r/s + 1
)
e−r/s

)
+

e−r/s

4
.

As a result, we obtain the asymptotic behavior for stresses, which shows the absence of singularities
at the origin:

Ξx = 1
s KI

√
r

2π

[(
1− sin θ

2 sin 3θ
2

)
cos θ2 −

1
4 cos 5θ

2

]
+ O

(
r3/2

s2

)
,

Ξy = 1
s KI

√
r

2π

[(
1 + sin θ

2 cos 3θ
2

)
cos θ2 + 1

4 cos 5θ
2

]
+ O

(
r3/2

s2

)
,

Txy = 1
s KI

√
r

2π

[
sin θ

2 cos θ2 cos 3θ
2 −

1
4 sin 5θ

2

]
+ O

(
r3/2

s2

)
.

Using the radial multipliers method and the Papkovich–Neuber representations for classical
solutions of cracks Mode II and Mode III through the one harmonic potential, the local solutions for
displacement and stresses of these modes of cracks were established:

Ux =
KII

µ

√
r

2π

[(
2− 2ν+ cos2 θ

2

)
sin

θ
2
+

s2r−2

2

(
1− (r/s + 1)e−r/s

)
sin

3θ
2

]
(47)

Uy =
KII

µ

√
r

2π

[(
−1 + 2ν+ sin2 θ

2

)
cos

θ
2
+

s2r−2

2

(
1− (r/s + 1)e−r/s

)
cos

3θ
2

]
(48)

Ξx = −
KII
√

2πr

[(
2 + cos

θ
2

cos
3θ
2
−

7e−r/s

4

)
sin

θ
2
−

s2

2r2

(
3−

(
r2

s2 + 3(r/s + 1)
)
e−r/s

)
sin

5θ
2

]
(49)

Ξy =
KII
√

2πr

[(
cos

θ
2

cos
3θ
2

+
e−r/s

4

)
sin

θ
2
−

s2

2r2

(
3−

(
r2

s2 + 3(r/s + 1)
)
e−r/s

)
sin

5θ
2

]
(50)

Txy =
KII
√

2πr

[(
1− sin

θ
2

sin
3θ
2
−

3e−r/s

4

)
cos

θ
2
−

s2

2r2

(
3−

(
r2

s2 + 3(r/s + 1)
)
e−r/s

)
cos

5θ
2

]
(51)

and

Uz =
KIII

µ

√
2r
π

sin
θ
2

, Txz = −
KIII
√

2πr

(
1− e−r/s

)
sin

θ
2

, Tyz =
KIII
√

2πr

(
1− e−r/s

)
cos

θ
2

(52)

Analytical solutions for displacements and stresses (42)–(46) and (47)–(52) supplement the results
presented in the work [29].

Non-singular solutions (44)–(46) are the basis for constructing and testing a new concept of stress
concentration in crack mechanics proposed in [26]. Indeed, we can see that for the problem considered

above, the normal stresses Ξy along the crack extension can be represented as Ξy = KIs1/2
√

2π
Ξy

0(r,λ),

r = r/c, λ = c/s, where c is some parameter of the length. It is easy to verify, that the real value
Ξy

0(r,λ) is a function of r and is a positive bounded continuous function of the parameter r over
the entire determination interval 0 < r < ∞ that becomes zero when r = 0. The maximum of this
function is realized in some neighborhood of the point r = 0, r > 0. Figure 1 shows the distribution
of normalized stresses Ξy

0(rλ) in the vicinity of the crack tip alone the normalized distance from the
crack tip (θ = 0). Obviously, the distribution of this function over the parameter r is a typical picture
for stress concentration.
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Therefore, to evaluate the strength, it is proposed to use the following procedure. First, the dependence
of the maximums of relative stresses Ξy

0(rλ) on the parameter λ is found. Then, using the known
explicit Equation (45), the dependence of the maximum points of function Ξ0

ymax
(λ) on the parameter

λ is constructed. This dependence is essentially a dependence of the stress concentration coefficient on
a parameter λ. In the case when the ultimate stress level characterizing failure is determined by the
ultimate stresses σb for brittle cracks, the constructed dependence allows one to determine the relative scale
parameter λ = c/s, which along with tensile strength is characteristic of the fracture for brittle cracks.

4. Conclusions

A new representation is proposed, for the first time, for the classical asymptotic solution for
singular cracks through harmonic potentials Equations (21), (25) and (27), which allows explicitly
indicating the structure of particular solutions of the equation. On the other hand, the use of the radial
factor method made it possible to establish the explicit form of the corresponding general solutions
of the homogeneous Helmholtz equation. Together, the representations obtained make it possible
to indicate, for the first time, a clear procedure for determining the exact solutions for non-singular
local stress fields and the corresponding displacement fields. The complex form of representation
of solutions leads not only to compact solutions, but ensures their completeness, eliminating the
possibility of losing some components of solutions. We believe that the solutions obtained can be
considered as a reference for similar problems in the gradient mechanics of cracks.
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