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Abstract: This paper considers three dynamic systems composed of a mathematical pendulum 
suspended on a sliding body subjected to harmonic excitation. A comparative dynamic analysis of 
the studied parametric mutations of the rigid pendulum with inertial suspension point and 
damping was performed. The examined system with parametric mutations is solved numerically, 
where phase planes and Poincaré maps were used to observe the system response. Lyapunov 
exponents were computed in two ways to classify the dynamic behavior at relatively early stage of 
forced responses using two proven methods. The results show that with some parameters three 
systems exhibit a very similar dynamic behavior, i.e., quasi-periodic and even chaotic motions. 
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1. Introduction 

Mechanical engineering or other fields always require elaboration based on numerical 
computations. Each mechanical system associated with periodic excitation behaves unpredictably. 
Excitations can come from the internal imperfections of the system, such as parametric asymmetry, 
eccentricity or external forces such as wind, road defects, etc. Any chaotic behavior is undesirable, 
and their consequences can lead to the destruction of the system. One method of qualitative 
determination of the state of the system is based on computations of Lyapunov exponents. 
Qualitatively, it informs about the form of the dynamic response of the system. 

These exponents are certain characteristic numerical values, creating a spectrum that helps in 
the qualitative assessment of the dynamics of the system. They determine the convergence or 
divergence of infinitely close trajectories that begin close to each other. To know the nature of system 
dynamics, all we need to know is the sign of the Lyapunov exponent λ defined as follows: 𝜆 = lim→ lim→ 1𝑡 𝑙𝑛 |𝛿𝑍(𝑡)||𝛿𝑍 |  (1)

The Lyapunov exponent in Equation (1) is denoted by λ. Any positive value in the limit accounts 
for chaos in the system, while non-positive proves the regularity. 

There are many numerical methods of computing Lyapunov exponents, e.g., Wolf method, 
Rosenstein method, Kantz method, method based on neural network modification, synchronization 
method, and others, see [1–6]. There are two main approaches to numerical assessment in the 
literature: with known motion equations and a time series approach. For example, the first method 
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of computing the full spectrum of Lyapunov exponents is presented in [3], the calculation of the 
largest Lyapunov exponent is given in [5,6], and the determination of the spectrum of Lyapunov 
exponents can be found in [7]. 

From a practical point of view, Lyapunov exponents are used in various fields of science, such 
as: rotor systems [8], electricity systems [9], aerodynamics [10]. 

2. The Parametric Pendulum and Its Mutations  

Figure 1 shows the three analyzed dynamical systems. The first system presented in Figure 1a is 
a mathematical pendulum of the length 𝑙  attached to the moving slider of the point-focused mass 𝑀. The inertial slider moves horizontally back and forth along the x-axis and is subjected to harmonic 
forcing 𝐹(𝑡) = 𝐹 cos 𝜔𝑡, where 𝐹  denotes amplitude of the force, and 𝜔 states the frequency of 
forcing. In the second system depicted in Figure 1b the pendulum of the length 𝑙  is replaced by a 
parametric pendulum, the length of which is described by the function 𝑆(𝑡) = 𝑙 + 𝐴𝑠𝑖𝑛(𝜔𝑡), where 𝐴 is the amplitude of the periodic change of the length about 𝑙 . The generalized coordinates of first 
and second systems are: the angle 𝜑 between the pendulum and vertical axis and the displacement 𝑥 of the slider. In the third system shown in Figure 1c the first rigid pendulum of constant length is 
replaced by an elastic form, where 𝑘 and 𝑐 describe linear stiffness and damping, respectively. The 
generalized coordinates for the third system can be noted: dynamical elongation of the spring, the 
angle 𝜑 between the pendulum and vertical axis and the displacement 𝑥 of the slider. 

   
(a) (b) (c) 

Figure 1. The analyzed systems: (a) rigid pendulum, (b) first parametric mutation, (c) second 
parametric mutation in an elastic form 

In order to simplify mathematical modelling of the problem the following assumptions are 
made: 

• there is no friction in the inertial slider; 
• masses of the pendulum’s swinging body and slider are treated as point-focused masses; 
• pendulum arm of a constant or variable length is massless. 

Dynamical analysis of the system mutations is preceded by derivation of equations of motion. 
To find them, one can use Newton laws, however, this approach requires a better knowledge of the 
system. A more universal and simpler approach bases on deriving them from the Euler–Lagrange 
equation [11]. 

2.1. Mathematical Model of Rigid Pendulum 

The kinetic energy of the analyzed two-degrees-of-freedom (2 DoF) system is the sum of kinetic 
energies of the slider (𝑇 ) and the pendulum (𝑇 ): 𝑇 = 𝑇 + 𝑇 = 12 [𝑀𝑥 + 𝑚(𝑥 + 2𝑥𝜑𝑙 cos 𝜑 + 𝜑 𝑙 )]. (2)

In the assumed configuration of the model the potential energy of the analyzed system is as 
follows: 
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𝑈 = −𝑚𝑔𝑙 cos 𝜑. (3)

Referring to Figure 1, the following denotations have been used in Equations (2) and (3): 𝑀—
mass of the sliding body, 𝑚—mass of the mathematical pendulum, 𝑥—linear displacement and 𝑥—
velocity of the sliding body, 𝜑—angular displacement and 𝜑—angular velocity of the pendulum, 𝑙—constant length of the rigid pendulum (Figure 1a), 𝑔—gravitational constant. 

The Lagrangian 𝐿 = 𝑇 − 𝑈  satisfies the Euler–Lagrange equation for any of the assumed 
generalized coordinates. Therefore, one writes: − = 𝑄 , where 𝑞 = [𝜑(𝑡), 𝑥(𝑡)],   𝑄 = [0, 𝐹 cos 𝜔𝑡]. (4)

Substituting the equations (2) and (3) for the kinetic and potential energy into the Lagrangian, 
respectively, it allows to derive the equation of motion for each of the generalized coordinates. The 
number of coupled equations of motion depends on the number of generalized coordinates. The 
equations of motion for the analyzed 2 DoF system are as follows: 

• for the generalized coordinate 𝜑 (pendulum angle): 𝜑 + 𝑥𝑙 cos 𝜑 + 𝑔𝑙 sin 𝜑 = 0; (5)

• for the generalized coordinate 𝑥 (displacement of the slider): (𝑀 + 𝑚)𝑥 + 𝑚𝑙𝜑 cos 𝜑 − 𝑚𝑙𝜑 sin 𝜑 = 𝐹 cos 𝜔𝑡. (6)

The equations of motion (5)–(6) can be algebraically decoupled with respect to the second 
derivate: 𝑥 = 𝑚𝑔 sin 𝜑 cos 𝜑 + 𝑚𝑙𝜑 sin 𝜑 + 𝐹 cos 𝜔𝑡𝑀 + 𝑚 sin 𝜑 , 𝜑 = − 𝑥𝑙 cos 𝜑 − 𝑔𝑙 sin 𝜑. (7)

2.2. Mathematical Model of First Mutation of the Rigid Pendulum 

The kinetic energy of the analyzed two-degree-of-freedom model with parametric pendulum is 
equal to the sum of the kinetic energy of the slider and kinetic energy of the pendulum body: 𝑇 = 12 𝑀𝑥 + 12 𝑚 (𝑥 + 𝑆(𝑡) sin 𝜑 + 𝑆(𝑡)𝜑 cos 𝜑) + (−𝑆(𝑡) cos 𝜑 + 𝑆(𝑡)𝜑 sin 𝜑) . (8)

The potential energy of the analyzed system is as follows: 𝑈 = −𝑚𝑔𝑆(𝑡) cos 𝜑. (9)

The Lagrangian satisfies the Euler–Lagrange equation for any of the assumed generalized 
coordinates. Therefore, one writes: − = 𝑄 , where 𝑞 = [𝜑(𝑡), 𝑥(𝑡)]  𝑄 = [0, 𝐹 cos 𝜔𝑡]. (10)

From Equation (10) one can obtain two equations of motion: 

• for the generalized coordinate 𝜑 (pendulum angle): 𝜑𝑆(𝑡) + 2𝑚𝑆(𝑡)𝜑 + 𝑥 cos 𝜑 + gsin 𝜑 = 0; (11)

• for the generalized coordinate 𝑥 (displacement of the slider): (𝑀 + 𝑚)𝑥 − 𝑚𝑆(𝑡)𝜑 + 𝑆(𝑡) sin 𝜑 − cos 𝜑 2𝑆(𝑡)𝜑 + 𝑆(𝑡)𝜑 = 𝐹 cos 𝜔𝑡. (12)

And after decoupling Equations (11) and (12) with respect to the second derivative: 
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𝜑 = 𝑚 sin 𝜑 cos 𝜑 𝑆(𝑡) − 𝜑 𝑆(𝑡)𝑆(𝑡)(𝑀 + 𝑚 − 𝑚cos 𝜑) +  −2𝑆(𝑡)𝜑𝑆(𝑡) + − cos 𝜑 𝐹 cos 𝜔𝑡 − sin 𝜑 𝑔(𝑀 + 𝑚)𝑆(𝑡)(𝑀 + 𝑚 − 𝑚cos 𝜑) , 
𝑥 = 𝑚𝑠𝑖𝑛𝜑 𝑆(𝑡)𝜑 + 𝑔cos 𝜑 − 𝑆(𝑡) + 𝐹 cos 𝜔𝑡𝑀 + 𝑚 − 𝑚 cos 𝜑 . (13)

2.3. Mathematical Model of the Second Mutation of the Rigid Pendulum 

Similar derivation for the three-degree-of-freedom system was performed in [12]. The equation 
for kinetic energy was found follows: 𝑇 = 12 𝑀𝑥 + 12 𝑚[(𝑥 + 𝑠 sin 𝜑 + 𝑠𝜑 cos 𝜑) + (𝑠𝜑 sin 𝜑 − 𝑠 cos 𝜑) ] = 12 (𝑀 + 𝑚)𝑥 + 12 𝑚[𝑠 + 𝑠 𝜑 + 2𝑥(𝑠 sin 𝜑 + 𝑠𝜑 cos 𝜑)]. (14)

The potential energy of the analyzed system is equal to the potential energy of the pendulum 
body and potential energy of the spring: 𝑈 = 12 𝑘(𝑠 − 𝑙 ) − 𝑚𝑔𝑠 cos 𝜑. (15)

The generalized form of the Euler–Lagrange equation for the third case is as follows: − + = 𝑄 , where 𝑞 = [𝑠(𝑡), 𝜑(𝑡), 𝑥(𝑡)], 𝑄 = [0, 0, 𝐹 cos 𝜔𝑡], (16)

and 𝑅 is Rayleigh dissipation function: 𝑅 = 12 𝑐 𝑑(𝑠 − 𝑙𝑑𝑡 = 𝑐𝑠2 . (17)

The equations of motion have the following form: 

• for the generalized coordinate 𝑠 (pendulum elongation): 𝑚(𝑠 + 𝑥 sin 𝜑 − 𝑠𝜑 − 𝑔 cos 𝜑) + 𝑐𝑠 + 𝑘(𝑠 − 𝑙 ) = 0; (18)

• for the generalized coordinate 𝜑 (pendulum angle): 𝑠𝜑 + 2𝑠𝜑 + 𝑥 cos 𝜑 + 𝑔 sin 𝜑 = 0; (19)

• for the generalized coordinate 𝑥 (displacement of the slider): (𝑀 + 𝑚)𝑥 + 𝑚 cos 𝜑 (𝑠𝜑 + 2𝑠𝜑) + 𝑚 sin 𝜑 𝑠 − 𝑠𝜑2 = 𝐹 cos 𝜔𝑡. (20)

Equations (18)–(20) can be algebraically decoupled with respect to the second derivate: 𝑠 = − 𝑐𝑚 𝑠 − 𝑘𝑚 (𝑠 − 𝑙 ) + 𝑠𝜑 − 𝑥 sin 𝜑 + 𝑔 cos 𝜑, 𝜑 = − 1𝑠 (2𝜑𝑠 + 𝑥 cos 𝜑 + 𝑔 sin 𝜑), 
𝑥 = 𝑐𝑠 + 𝑘(𝑠 − 𝑙 ) sin 𝜑 + 𝐹 cos 𝜔𝑡𝑀 . 

(21)

3. Methods 

To numerically solve the systems of second order ordinary differential equations (7), (13) and 
(21), they were written in the form of first order differential equations. The vector of initial conditions 
for the first and second system is assumed, [𝜑, 𝜑, 𝑥, 𝑥] = [0, 0, 0, 0]. In the case of the third system of 
three degrees of freedom, the additional equation associated with the pendulum elongation only 
represents the incremental elongation of the spring measured from its free length 𝑙 . The vector of 
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initial conditions is assumed as well,  [𝑠, 𝑠, 𝜑, 𝜑, 𝑥, 𝑥] = [0, 0, 0, 0, 0, 0].  Numerical analysis of the 
presented models was carried out in two different environments. Phase planes and Poincaré maps 
were found using a program prepared in the Python programming language, and computations of 
Lyapunov exponents were carried out using codes written in Matlab environment. ODEINT from the 
SciPy Python library and ODE45 from the Matlab library was used to solve the system of ordinary 
differential equations. 

3.1. Computation of Lyapunov Exponents 

Lyapunov exponents are one of the most commonly used tools in analyzing the impact of small 
disturbances on system solution. These are the values that determine the exponential convergence or 
divergence of trajectories beginning close to each other [13]. 

Two methods of computing Lyapunov exponents were used in the study. The first method is 
described in [14]. This method simultaneously solves the first-order ODE system, its variational 
equations and determines the spectrum of Lyapunov exponents. The second method used for 
computations is available on the Mathworks file sharing page [15]. The numerical code is based on 
the algorithm for computing Lyapunov exponents on the basis of ODE proposed in the work [4]. 

Both selected methods were validated for the Lorenz system written in Equation (22) with the 
parameters 𝜎 = 10.0, 𝑅 = 28, and 𝐵 = 8/3 and also initial conditions [0.0, 1.0, 0.0]. Table 1 shows a 
comparison of obtained Lyapunov exponents spectrum with a reference values found in [16]: 𝑋 = 𝜎(𝑌 − 𝑋), 𝑌 = 𝑋(𝑅 − 𝑍) − 𝑌, 𝑍 = 𝑋𝑌 − 𝐵𝑍. (22)

Table 1. Comparison of Lyapunov exponents (time is measured in seconds). 

Exponents 
𝒕𝒆𝒏𝒅 = 𝟏𝟎 𝟎𝟎𝟎 𝒕𝒆𝒏𝒅 = 𝟏𝟎𝟎 𝟎𝟎𝟎 

Literature Method 1 Method 2 Literature Method 1 Method 2 𝜆  0.9022 0.903269 0.9012 0.9051 0.90609 0.903240 𝜆  0.0003 0.0003 0.00209 0.0000 0.00003 0.001804 𝜆  −14.5691 −14.5703 −14.566 −14.5718 −14.5728 −14.5681 

Computed spectra of Lyapunov exponents are very similar to the reference values taken from 
the literature [13,14], respectively. 

4. Results 

Presented systems were examined for the set of parameters presented in Table 2.  
  



Math. Comput. Appl. 2019, 24, 90 6 of 16 

 

Table 2. Parameters of the simulations (values of 𝑀, 𝑚, 𝐹  and 𝑙  are common for all the systems). 

Parameter Rigid Pendulum First Parametric Mutation Second Parametric Mutation 
M [kg]  5  
m [kg]  0.3  
F0 [N]  4  
l0 [m]  0.35  
A [m] - 0.15;  0.1;  0.001 - 

c [Ns/m] - - 0.05;  9.05 
k [N/m] - - 40;  2000 

Results Figures 2–5 
Table 3 

Figures 6–9 and 15–17 
Tables 4 and 6 

Figures 10–14 and 18–20 
Tables 5 and 7 

Frequency of harmonic forcing 𝜔 was assumed in the range from 1.24 to 9.24 rad/s. Vector of 
state variables for the first and second system is assumed, 𝑦 = [𝑦 , 𝑦 , 𝑦 , 𝑦 ] = [𝜑, 𝜑, 𝑥, 𝑥], and for the 
third system is taken as follows, 𝑦 = [𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 , 𝑦 ] = [𝑠, 𝑠, 𝜑, 𝜑, 𝑥, 𝑥]. 
4.1 Numerical Simulation of the Rigid Pendulum 

Figures 2–5 show phase planes and Poincaré maps for different frequencies of harmonic 
excitation 𝜔. By the assumed definition, the map definition results in stroboscopic analysis of the 
phase space at time instances being a multiple of the period 𝑇 = 2𝜋/𝜔. The map presentation on a 
shaded background created by a cross-section of the phase space has most likely been first used in 
the work [17]. The corresponding values of Lyapunov exponents are shown in Table 3. 

 
Figure 2. Phase planes (gray lines) and Poincaré maps (red and green dots) for 𝜔 =  3.64. 

 
Figure 3. Phase planes (gray lines) and Poincaré maps (red and green dots) for 𝜔 =  4.94. 
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Figure 4. Phase planes (gray lines) and Poincaré maps (red and green dots) for 𝜔 =  7.24. 

As shown in the Poincaré maps in Figures 2–4, a system with a rigid pendulum of constant 
length tends to be quasi-periodic. For the tested 𝜔 ∈ [1.24, 9.24] rad/s with a step of 0.1, the system 
is stable and does not show chaotic behavior (in a vibration that is far from a resonance frequency of 
excitation). However, forms of quasi-periodic behavior change with frequency, but do not stabilize 
on periodic orbits. The computed spectra of Lyapunov exponents indicate that the behavior of the 
system is two-periodic. Lyapunov exponents 𝜆  and 𝜆  tend to converge to zero, while the others 
are negative. Both methods provide slightly different but similar results. Interesting trajectories of 
the convergence of Lyapunov exponents are presented in Figure 5. 

Table 3. Spectra of Lyapunov exponents for the system with rigid pendulum. 

Parameter Method 𝟏 Method 𝟐 𝜔 𝑡  𝜆  𝜆  𝜆  𝜆  𝜆  𝜆  𝜆  𝜆  

3.64 
150 0.01777 0.01497 −0.00204 −0.03070 0.02563 0.02160 −0.00294 −0.04429 350 0.00884 0.00834 −0.00117 −0.01601 0.01275 0.01203 −0.00169 −0.02310 650 0.00621 0.00571 −0.00202 −0.00991 0.00896 0.00824 −0.00291 −0.01430 

4.94 
150 0.03443 0.01742 −0.01842 −0.03344 0.04968 0.02513 −0.02657 −0.04824 350 0.01399 0.00900 −0.00612 −0.01698 0.02019 0.01299 −0.00883 −0.02450 650 0.01221 0.00626 −0.00852 −0.00998 0.01761 0.00904 −0.01229 −0.01439 

7.24 
150 0.01524 0.00940 −0.00030 −0.02436 0.02199 0.01357 −0.00043 −0.03514 350 0.00896 0.00689 −0.00060 −0.01525 0.01293 0.00994 −0.00087 −0.02201 650 0.00578 0.00517 −0.00117 −0.00978 0.00834 0.00745 −0.00168 −0.01411 

The 𝜆  and 𝜆  exponents stabilize, while 𝜆  and 𝜆  oscillate with decreasing amplitude, 
which was necessary to prove. The behavior of a rigid pendulum with a fixed length can be compared 
with the behavior of the third system with a flexible pendulum with assumed damping constant. 
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Figure 5. Time history of Lyapunov exponents for 𝜔 =  4.94 (the case of rigid pendulum) 

.4.2 Numerical Simulation of the First Mutation of the Rigid Pendulum 

Selected behaviors of the dynamical model of two degrees of freedom with a parametric forcing 
are presented in Figures 5–7. Table 4 shows the computed spectra of Lyapunov exponents. 

 
Figure 6. Phase planes (gray lines) and Poincaré maps (red and green dots) for 𝐴 = 0.1, 𝜔 = 4.94. 

 
Figure 7. Phase planes (gray lines) and Poincaré maps (red and green dots) for 𝐴 = 0.1, 𝜔 = 7.64. 

Replacing a rigid pendulum with a fixed length by a parametric pendulum makes the system 
more unpredictable. 
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Table 4. Spectra of Lyapunov exponents for the first mutation of rigid pendulum. 

Parameters Method 1 Method 2 𝐴 𝜔 𝑡  𝜆  𝜆  𝜆  𝜆  𝜆  𝜆  𝜆  𝜆  0.1 3.64 150 1.05622 0.00771 −0.03341 −1.02892 1.51680 0.01113 −0.04823 −1.47763 350 0.75607 0.00573 −0.01674 −0.74642 1.52133 0.00826 −0.02417 −1.50741 650 0.69003 0.00404 −0.01001 −0.68438 1.53322 0.00582 −0.01440 −1.52512 0.1 4.94 150 0.01552 0.00254 −0.00010 −0.02015 0.02239 0.00366 −0.00015 −0.02908 350 0.00809 0.00229 −0.00002 −0.00951 0.01167 0.00331 −0.00003 −0.01372 650 0.00589 0.00330 −0.00043 −0.00936 0.00850 0.00476 −0.00062 −0.01351 0.15 7.24 150 0.99155 0.00947 −0.03341 −0.97197 1.76220 0.01367 −0.04821 −1.73450 350 1.28874 0.00648 −0.01674 −1.27534 1.44346 0.00935 −0.02415 −1.42404 650 1.24185 0.00444 −0.00997 −1.23712 1.28666 0.00641 −0.01439 −1.27978 
The system is not able to achieve periodic behavior for the frequencies tested. Figure 6 shows 

chaotic or quasi-periodic behavior, but the definitely positive value of Lyapunov exponents confirms 
the chaotic behavior of the system. Figure 8 presents the time history of the Lyapunov exponents 
spectrum. You can see that the exponents are stable and the system is chaotic. The system may also 
exhibit quasi-periodic behavior, as shown in Figure 7. Amplitude 𝐴 of periodic change in length of 
about 𝑙  has a significant impact on the behavior of the system. When the 𝐴 value varies from 0.1 
to 0.15, and the harmonic forcing frequency increases by about 0.1, the system exhibits chaotic 
behavior, as shown in Figure 9. Such behavior can easily be seen on the Poincaré map and this is 
clearly indicated by definitely positive Lyapunov exponent. By changing parameter 𝐴 , quasi-
periodic or chaotic behavior is observed in different frequency ranges. 

 
Figure 8. Time history of Lyapunov exponents for 𝜔 = 4.94. 

 
Figure 9. Phase planes (gray lines) and Poincaré maps (red and green dots) for 𝐴 = 0.15, 𝜔 = 5.04. 
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4.3 Numerical Simulation of the Second Mutation of Rigid Pendulum 

In Figures 10–12 phase planes and Poincaré maps for the second mutation are presented. Table 
5 presents the computed spectra of Lyapunov exponents. 

 
Figure 10. Phase planes (gray lines) and Poincaré maps (red, green and blue dots) for 𝐶 = 0.05,  𝑘 = 40 and 𝜔 = 2.84. 

Figure 11. Phase planes and Poincaré maps (colors as above) for 𝐶 = 0.05, 𝑘 = 40 and 𝜔 = 5.84. 

 
Figure 12. Phase planes and Poincaré maps (colors as above) for 𝐶 = 9.05, 𝑘 = 40 and 𝜔 = 3.14. 

  



Math. Comput. Appl. 2019, 24, 90 11 of 16 

 

Table 5. Spectra of Lyapunov exponents for the system with second mutation of rigid pendulum. 

Parameters Method 𝟏 
 𝑡  𝜆  𝜆  𝜆  𝜆  𝜆  𝜆  𝐶 = 0.05 𝜔 = 2.84 

150 0.01389 0.00730 −0.02455 −0.03430 −0.05477 −0.07696 350 0.00888 0.00554 −0.01581 −0.02795 −0.05893 −0.07962 650 0.00393 0.00330 −0.00826 −0.01600 −0.06848 −0.08189 𝐶 = 0.05 𝜔 = 5.84 

150 0.03793 0.00730 −0.03099 −0.03481 −0.05579 −0.09234 350 0.03348 0.00554 −0.00579 −0.02795 −0.06891 −0.10467 650 0.02850 0.00393 −0.00646 −0.01600 −0.07304 −0.10459 𝐶 = 9.05 𝜔 = 3.14 

150 0.00730 −0.01519 −0.04510 −0.05959 −5.33830 −24.73932 350 0.00554 −0.00924 −0.02146 −0.02795 −5.36490 −24.76804 650 0.00393 −0.00528 −0.01458 −0.01600 −5.37365 −24.77849 
Parameters Method 𝟐 

 𝑡  𝜆  𝜆  𝜆  𝜆  𝜆  𝜆  𝐶 = 0.05 𝜔 = 2.84 

150 0.01989 0.01054 −0.03525 −0.04980 −0.07995 −0.10981 350 0.01282 0.00799 −0.02280 −0.04032 −0.08502 −0.11487 650 0.00568 0.00476 −0.01192 −0.02308 −0.09879 −0.11814 𝐶 = 0.05 𝜔 = 5.84 

150 0.05473 0.01054 −0.04471 −0.05022 −0.08049 −0.13322 350 0.04830 0.00799 −0.00836 −0.04033 −0.09942 −0.15100 650 0.04112 0.00568 −0.00932 −0.02308 −0.10537 −0.15089 𝐶 = 9.05 𝜔 = 3.14 

150 0.01054 −0.02192 −0.06507 −0.08598 −7.70154 −35.69129 350 0.00799 −0.01333 −0.03096 −0.04032 −7.73992 −35.73272 650 0.00568 −0.00762 −0.02103 −0.02308 −7.75253 −35.74780 
In the case of a system with a flexible pendulum, it is worth noting the effect of damping. In the 

case of weak damping and low frequency of harmonic forcing, the system shows quasi-periodic 
behavior, as shown in Figure 10.  

Figure 11 shows that at higher forcing frequencies the system remains chaotic. Strong damping 
makes the system stiffer, and some weak damping gives the system more freedom. This hypothesis 
was verified in Figure 12, on which periodic movement is clearly visible. Numerical analysis showed 
that for 𝜔 ∈ [3.14, 9.24], where 𝐶 = 9.05, behaviors are periodic. The computed values of Lyapunov 
exponents (see Table 5) confirm the observed dynamic behavior. Figure 13 proves that for quasi-
periodic motion, the spectrum of Lyapunov exponents changes with an increasingly smaller 
amplitude. Figure 14 shows that in the case of periodic conservation and high energy dispersion in 
the system spectra of Lyapunov exponents are more stable than in the case of quasi-periodicity. 

 
Figure 13. Time history of Lyapunov exponents starting at 𝑡 = 50 for 𝐶 = 0.05, 𝑘 = 40, 𝜔 = 2.84. 
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Figure 14. Time history of Lyapunov exponents starting at 𝑡 = 50 for 𝐶 = 9.05, k = 40 and 𝜔 = 3.14. 

4.4 Observation of Similarities in the Behaviour of Systems with a Rigid Pendulum and Its Mutations 

In this section, we present the results for a special case when all the analyzed systems behave in 
a similar way. In the case of the second system, the amplitude of the pendulum length is A = 0.001, 
while the parameters of the third system are as follows, k = 2000 and C = 0.05. 

The previously presented spectra of Lyapunov exponents have proved that the most accurate 
results are obtained for a longer observation time, therefore in this part only the results for time 𝑡 =650 are presented. 

Figures 15–17 show the behavior of the second system, while the spectrum of Lyapunov 
exponents can be found in Table 6. 

 
Figure 15. Phase planes (gray lines) and Poincaré maps (red and green dots) for 𝐴 = 0.001, 𝜔 = 3.64. 

 
Figure 16. Phase planes and Poincaré maps (colors as above) for 𝐴 = 0.001, 𝜔 = 4.94. 
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Figure 17. Phase planes and Poincaré maps for 𝐴 = 0.001, 𝜔 = 7.24. 

Table 6. Spectra of Lyapunov exponents for the second mutation of the system with rigid pendulum. 

Parameters Method 𝟏 Method 𝟐 𝐴 𝜔 𝜆  𝜆  𝜆  𝜆  𝜆  𝜆  𝜆  𝜆  0.001 3.64 0.00621 0.00393 −0.00063 −0.00952 0.00896 0.00567 −0.00091 −0.01373 0.001 4.94 0.01251 0.00393 −0.00651 −0.00996 0.01805 0.00567 −0.00940 −0.01438 0.001 7.24 0.00516 0.00393 −0.00022 −0.00888 0.00745 0.00567 −0.00031 −0.01281 
For a small amplitude of pendulum length changes, the behavior of the system is the same as 

for a rigid pendulum system. 

Figures 15–17 show quasi-periodic behavior because they show almost the same behavior as 
Figure 2–4. The values of Lyapunov exponents in Table 3 and Table 6 are very close to each other. 
This means that with a small change in the length of the pendulum, the second system with the first 
mutation of the pendulum behaves as rigid. 

Figures 18–20 show the results for a system with a flexible parametric pendulum. The 
corresponding spectra of Lyapunov exponents can be found in Table 7. 

In the case of very high stiffness and low damping of the parametric pendulum, the behavior of 
the system is usually quasi-periodic. Phase planes and Poincaré maps presented in Figures 18–20 are 
very similar to those shown in Figures 2–4. This means that the behavior of a system with a parametric 
elastic pendulum is almost the same as that of a rigid counterpart. The computed spectra of Lyapunov 
exponents indicate quasi-periodic behavior. 

 
Figure 18. Phase planes (gray dots) and Poincaré maps (red, green and blue dots) 𝐶 = 0.05, 𝑘 = 2000 
and 𝜔 = 3.64. 
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Figure 19. Phase planes and Poincaré maps (colors as above) for 𝐶 = 0.05, 𝑘 = 2000 and 𝜔 = 4.94. 

 
Figure 20. Phase planes and Poincaré maps (colors as above) for 𝐶 = 0.05, 𝑘 = 2000 and 𝜔 = 7.24. 

Table 7. Spectra of Lyapunov exponents for the system with elastic pendulum. 

Parameters Method 𝟏 𝐶 𝜔 𝜆  𝜆  𝜆  𝜆  𝜆  𝜆  0.05 3.64 0.00393 0.00075 −0.01353 −0.01600 −0.06176 −0.08026 0.05 4.94 0.01020 0.00393 −0.01600 −0.02238 −0.06867 −0.07771 0.05 7.24 0.00393 −0.00136 −0.01149 −0.01600 −0.06330 −0.07856 
 Method 𝟐 
 𝜆  𝜆  𝜆  𝜆  𝜆  𝜆  0.05 3.64 0.00567 0.00108 −0.01952 −0.02308 −0.08910 −0.11579 0.05 4.94 0.01471 0.00567 −0.02309 −0.03229 −0.09907 −0.11211 0.05 7.24 0.00567 −0.00197 −0.01658 −0.02308 −0.09132 −0.11333 

Visible differences may be due to early stage dynamics, where both methods may have different 
convergence factors to the most true values. However, we note that despite this, the type of behavior 
observed has been verified. 

5. Conclusions 

Mathematical models of the system with inertial sliding body, rigid pendulum and its 
parametric mutations were created. The dynamics of the three systems were examined on the basis 
of phase planes, Poincaré maps and spectra of Lyapunov exponents. It was observed that the first 
system consisting of a fixed-length pendulum and an inertial slider behaves quasi-periodically. The 
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results for the second system show that the behavior of the system strongly depends on the amplitude 
of the periodic change in length around its static elongation. For small pendulum length amplitudes, 
the behavior is quasi-periodic or chaotic, but if the amplitude is high enough, the system tends to be 
chaotic, as confirmed by Lyapunov exponents. As for the system containing the parametric 
pendulum, it has been observed that for the same value of pendulum stiffness the behavior of the 
system depends on the amount of dispersed kinetic energy. In the case of small values of the damping 
coefficient, the system easily behaves chaotically, while in the case of high values of the coefficient, it 
behaves periodically. 

If the amplitude of the pendulum length change around the static elongation for the second 
system is very small, the system behaves almost the same as a rigid pendulum system. A similar 
conclusion can be drawn by comparing the behavior of the third system (the second parametric 
mutation of the pendulum) with the first system. For high elastic pendulum stiffness value and low 
damping factor the observed behaviors are similar. 

Selected methods of computing Lyapunov exponents gave rather similar results and proved to 
be very useful. The behavior of the examined models based on the obtained values of Lyapunov 
exponents are consistent with the results obtained from the Poincaré map visualization. It has been 
observed that for the periodic and chaotic movement, the values of Lyapunov exponents appear to 
stabilize over time. In the case of quasi-periodic behavior of the spectral system of Lyapunov 
exponents, they fluctuate with decreasing amplitude. 
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