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Abstract: Robust goal programming (RGP) is an emerging field of research in decision-making 

problems with multiple conflicting objectives and uncertain parameters. RGP combines robust 

optimization (RO) with variants of goal programming techniques to achieve stable and reliable 

goals for previously unspecified aspiration levels of the decision-maker. The RGP model proposed 

in Kuchta (2004) and recently advanced in Hanks, Weir, and Lunday (2017) uses classical robust 

methods. The drawback of these methods is that they can produce optimal values far from the 

optimal value of the “nominal” problem. As a proposal for overcoming the aforementioned 

drawback, we propose light RGP models generalized for the budget of uncertainty and ellipsoidal 

uncertainty sets in the framework discussed in Schöbel (2014) and compare them with the previous 

RGP models. Conclusions regarding the use of different uncertainty sets for the light RGP are made. 

Most importantly, we discuss that the total goal deviations of the decision-maker are very much 

dependent on the threshold set rather than the type of uncertainty set used. 

Keywords: goal programming (GP); robust optimization; robust goal programming (RGP); light 

robust goal programming (LRGP); multi-criteria decision making (MCDM) 

 

1. Introduction 

A decision-making process implies the need to face conflicts, whether it is a management 

strategy, government policy, firm resource allocation, or individual budget planning; a certain course 

of action usually involving multiple conflicting objectives or criteria has to be taken [1]. Multicriteria 

decision analysis has been a widespread decision tool for problems involving multiple and usually 

conflicting objectives or criteria. For instance, the multicriteria optimization is deemed as the ideal 

setting to analyze portfolio optimization problems in the sense of Markowitz, in which a pair 

objective—the risk function and the expected return function—are minimized and maximized, 

respectively, to achieve a portfolio goal [2]. In multicriteria decision making (MCDM) problems, there 

is usually an infinite number of efficient solutions due to the conflicts among objectives.  

The goal programming (GP) technique, along with its variants—lexicographic GP, weighted GP, 

and fuzzy GP—is a well-known method that is commonly used to optimize multiple goals and derive 

efficient solutions for the decision-maker (DM). The GP provides a special compromise multi-criteria 

framework by which the DM can optimize multiple, conflicting objectives and concurrently achieve 

satisfiable solutions by minimizing the deviations of objectives from aspiration levels or goals set [3]. 

GP has obtained huge success in engineering, management, and social science problems [4]. 

However, the standard GP approaches deal with deterministic goals that are precisely defined while 

practical scenarios involving uncertainties in decision problems are ignored. One of the basic 

assumptions in mathematical programming including the GP is that the exact value of the input data 

is fixed and known in advance. This assumption can, however, be violated in many situations arising 

when real-world problems are considered. This can be due to the fact that the parameters used in the 

model are just estimates of real parameters or more generally to the effect of uncertainty affecting 

some parameters. When uncertainty is taken into account, an optimal solution with respect to the 
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nominal values of the parameters can be suboptimal (or even infeasible) according to the actual 

parameters. Hence, small uncertainty in the input data can make the nominal optimal solution 

completely meaningless from a practical viewpoint.  

The robust optimization (RO) is an approach that is widely used to deal with optimization 

problems in which the parameters have uncertain values. The RO has gained a great interest among 

academics and practitioners as an important concept in uncertain linear programming since the 

seminal paper of [5]. Other approaches in the literature include the stochastic approach and the fuzzy 

method (e.g., [6,7]). One of the drawbacks of this RO approach is that the solutions provided can be 

suboptimal if compared with the solution of the so-called nominal problem, i.e., a problem without 

uncertainty in which the parameter values are fixed (for instance, to some point estimation). We 

clarify formally the concept of nominal problems in Section 2. Although classical RO approaches are 

still relevant in practice, in recent time, Fischetti and Monaci [8] proposed a light RO approach 

intended to focus on the robust but quality solution of the optimization problem. A “quality solution” 

or a “good solution” (e.g., [9–11]) of an RO problem is intended as a solution for which the optimal 

value of the robust objective function is close to the optimal value of the objective function in the 

nominal problem. In the literature (see [5,12–14]), the term “conservative solution” is used with 

reference to the difference between the optimal values of the robust problem and the nominal 

problem. When the difference between the two values is high (i.e., the solution of the robust problem 

is highly suboptimal), it is said that such a solution is very conservative. Hence, to say that a solution 

is a “quality solution” is equivalent to say that it is slightly conservative.  

Although the RO was born as an approach to optimization problems with a single objective [15], 

it has been extended in the literature to address MCDM problems, for example, the multiobjective 

portfolio optimization [2,16] and the data envelopment analysis [14,17,18]. One growing area of 

research in this field is the robust goal programming (RGP), which combines the RO with the GP 

technique. The RGP was first introduced by [19], and its potential use in multi-criteria linear 

programming problems is discussed in [20]. RGP has been applied, for example, to the multi-

objective portfolio selection problem in [16], the capital budgeting problem in [21], and a 

transportation problem, specifically, the United States Transportation Command‘s (USTRANSCOM) 

liner rate-setting problem in [22]. Despite this, the RGP methodology remains underdeveloped and 

less applied, specifically when considering different robust concepts and variants of GP techniques. 

In fact, since the model proposal of [19], only recently in [13] was the conceptual foundation of the 

RGP touched upon heavily, deepening the application to MCDM problems. Hanks et al. [13] 

proposed norm-based uncertainty sets using cardinality-constrained robustness and strict robustness 

via ellipsoidal uncertainty and compared their approach with the interval-based approach in [19]. 

However, their robust models have the aforementioned drawback—they can be highly suboptimal if 

compared to the solution of the nominal problem, e.g., their quality is low or, equivalently, they are 

very conservative. See [23] for discussion on reducing the conservatism of the RO.  

The aim of this paper is to overcome this drawback in the RGP models. To this extent, we 

introduce a model that we call light robust goal programming which gathers the features of light 

robustness introduced in [8,12] and and “Γ-robustness” proposed in [13,19]. The light robustness 

approach addresses the conservatism of the RGP by setting a limit to the deterioration of the objective 

value compared to the nominal solution. We focus our proposed model on two arbitrary sets, i.e., the 

budget of uncertainty of [12] and the ellipsoidal uncertainty sets of [24,25]. As a main result, we show 

that the new model’s solution is "not too far" from optimality from the nominal GP model or—in the 

aforementioned terminology—is a quality solution or, equivalently, a less conservative solution if 

compared with the solutions obtained with the approaches in [13] and [19]. Furthermore, the 

proposed models are generalized to include modeling uncertainties in the hard constraint of the GP 

model that were left unconsidered in previous studies.  

The outline of the paper is the following. In Section 2, we provide a thorough review of the GP 

method, the RO concepts, and the RGP approaches. This section also includes a review of the RGP 

models in [13] and [19]. Section 3 introduces the proposed light RGP models. We perform a numerical 

comparison in Section 4 and conclude the paper in Section 5. 
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2. Preliminaries 

In this section, we provide a brief introduction to the GP technique, the RO approach, and the 

RGP. The section also reviews the RGP methodology in the literature and sets the pace for a new 

approach in the next section. 

2.1. The Goal Programming Method 

GP arose from the study of the executive compensation plan in [26], where the authors sought 

to minimize the total deviations between realized goals and expected goals. Since then, the GP has 

become by far the most popular technique used in dealing with decision problems with a multiplicity 

of objectives due to its versatility and the underlying concept of satisfying solution to decision 

situations. The literature evidence to the bulk of applications of the GP technique to MCDM can be 

found, e.g., in [4] and [27].  

The basic idea of the GP technique is to set up specific goals 𝑔𝑡  for each objective function 

𝑓𝑡(𝒙), 𝑡 = 1, … , 𝑇. Then, the total deviation ∑ |𝑑𝑡|𝑇
𝑡=1  where 𝑑𝑡 is the deviation from the goal 𝑔𝑡 for 

the 𝑡 -th objective function is minimized. For simplicity of computation, mostly, the absolute 

deviation is split into positive and negative deviations (respectively 𝑑𝑡
+ and 𝑑𝑡

−) such that  |𝑑𝑡| =

𝑑𝑡
+ − 𝑑𝑡

−. The deviations can be defined as 𝑑𝑡
+ = max (𝑓𝑡(𝑥) − 𝑔𝑡, 0) and 𝑑𝑡

− = max (𝑔𝑡 − 𝑓𝑡(𝑥), 0). The 

positive and the negative deviations underscore the over- and the underachievement of goals for each 

𝑡-th goal of the objective function. Overachievement of the DM goals subject to constraints is attained 

if 𝑑𝑡
+ > 0, while underachievement means 𝑑𝑡

− > 0. When the deviations are driven to zero, the goals 

of the model are achieved [7,19]. A typical GP model for a min-type cost function is formulated as 

follows: 

z∗ = Min ∑ 𝑤𝑡(𝑑𝑡
+ + 𝑑𝑡

−)
𝑇

𝑡=1
 

s.t. 
(1) 

𝑓𝑡(𝒙) + 𝑑𝑡
− − 𝑑𝑡

+ = 𝑔𝑡  ∀𝑡 ∈ 𝑇 (2) 

𝑨𝒙 ≤ 𝒃 (3) 

𝒙 ≥ 0, 𝑑𝑡
−, 𝑑𝑡

+ ≥ 0  ∀𝑡 ∈ 𝑇 (4) 

where 𝒙 ∈ ℝ𝑛 is a vector of decision variables, and 𝑤𝑡  is the penalty weight for missing the goal. In 

the sequel, we assume implicitly that the penalty weight is equal for all deviations, hence we set 𝑤𝑡 =

1 for all 𝑡. The objective function then minimizes the sum of the positive and the negative deviations 

for each goal. Constraint (2) computes the respective positive and negative deviation from each goal. 

Constraint (3) relates to additional constraints in the decision space that is not related to the DM goals. 

It is important to note that the achievement function is a key element to variants’ consideration of 

goals and the priorities attached to them by the decision-maker. As indicated in [28], the GP method 

results are sensitive to the type of function used. Different variants of the achievement function, 

namely, the traditional weighted GP, the pre-emptive lexicographic GP, and the Chebyshev 

MINMAX GP, which reflect different preferences structures have been introduced. 

2.2. RO and Concepts 

Uncertainty in the parameters of MCDM problems including the GP can lead to inaccurate and 

unreliable decisions that are sometimes meaningless from a practical point of view [12,25,29]. The RO 

enables us to overcome this problem since it focuses on finding the worst-case performance for all 

feasible realization of the uncertain parameters. The robust solution is obtained through an altenative 

reformulation of the uncertain problem called the robust counterpart. A general form of the robust 

counterpart to the uncertain linear program is given as: 

Min𝑥  [Max(𝐴,𝑏,𝑐)∈𝒰 𝒄t𝒙] (5) 
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s.t. 

 𝑨𝒙 ≤ 𝒃  ∀(𝑨, 𝒃, 𝒄) ∈ 𝒰 (6) 

where (𝑨, 𝒃, 𝒄) are uncertain technological coefficients, a right-hand side vector, and a cost coefficient 

vector that take values in the uncertainty set 𝒰 ⊆ ℝ𝑛 . The robust problem re-casted in this form 

produces a solution that is the best possible in the worst-case scenario. If we consider an element 

(𝑨𝟎, 𝒃𝟎, 𝒄𝟎) ∈ 𝒰 we can consider the so-called nominal problem: 

Min𝑥  [𝑐0
𝑡𝒙] 

s.t. (7) 

𝑨𝟎𝒙 ≤ 𝒃𝟎 (8) 

The vector (𝑨𝟎, 𝒃𝟎, 𝒄𝟎) can be interpreted as a point estimation of the parameters’ value. Clearly, the 

true value of the parameters is unknown, and such uncertainty is taken into account by assuming 

that they can take values in the uncertainty set 𝒰. As indicated in [30], the robust counterpart is the 

main precursor of several RO concepts, e.g., strict robustness, interval-based/cardinality constrained 

robustness, norm-based robustness, adjustable robustness, and recoverable robustness. Here, we 

provide but a few of these concepts. 

2.2.1. Strict Robustness  

Strict robustness follows the pessimistic view of maximizing the worst-case over all scenarios in 

the uncertainty set. It was introduced in [31] and significantly extended in [9]. It is the highest form 

of robustness with guaranteed feasibility for all (𝑨, 𝒃, 𝒄) ∈ 𝒰 in that the probability of violating the 

𝑖-th constraint is zero. Mathematically, a solution 𝒙 to the optimization problem max {𝒄t𝒙: 𝑨(𝝃)𝒙 ≤

𝒃} where 𝝃 denotes an uncertain parameter is called strictly robust if it is feasible for all scenarios in 

𝒰, i.e., if 𝑨(𝝃)𝒙 ≤ 𝒃 ∀𝝃 ∈  𝒰. The notion of strict robustness is plausible in some applications, such 

as constructing a very stable bridge or nuclear power plants; however, the idea to hedge against all 

scenarios in most other applications could be counterproductive. For example, in the robust 

formulation for the timetabling for public transport, being strictly robust provides a less practically 

applicable timetable, since it is difficult to meet all announced arrival and departure times even with 

high buffer times considered in the uncertainty set [32]. In fact, applying strict robustness can lead to 

a very conservative solution. An approach that provides less conservative solutions is due to [24], 

who introduced the ellipsoidal uncertainty set in which the “most likely“ values of the uncertain 

parameters are scaled down by the DM via the size of the ellipsoid. Further in [25], the authors 

combined the interval uncertainty set of [31] with the ellipsoid to provide a robust model that is less 

conservative and practically reliable.  

2.2.2. “Γ-robustness” or Budget of Uncertainty  

Bertsimas and Sim [12] introduced the concept of “Γ-robustness” predicated on the fact that not 

all uncertain parameters will simultaneously take their worst-case values; instead, up to Γ of the 

coefficients that are allowed to change are protected against. The Bertsimas and Sim approach thus 

relaxes the assumption of feasibility for all (𝑨, 𝒃, 𝒄) ∈ 𝒰 to feasibility for some (𝑨, 𝒃, 𝒄) ∈ 𝒰 in model 

(5) and (6), restricting the number of coefficients allowed to change from the nominal values. The 

approach leads to the concept of cardinality constrained robustness [30]. Thus, for the uncertain 

matrix 𝑨 = (𝑎𝑖𝑗) where each 𝑎𝑖𝑗 , 𝑗 ∈ 𝐽𝑖 and 𝐽𝑖 = {𝑗|�̂�𝑖𝑗 > 0} is the set of coefficients in row 𝑖 that are 

subject to uncertainty, and each 𝑎𝑖𝑗  lies in the interval [𝑎𝑖𝑗 − �̂�𝑖𝑗 , 𝑎𝑖𝑗 + �̂�𝑖𝑗], denote by 𝑛 = |𝑁| and 

𝑚 = |𝑀| the number of variables and constraints in the linear programming (LP) model, respectively. 

The robust counterpart is obtained by replacing each row 𝑖 ∈ 𝑀  of Constraint (6) by the new 

constraint: 

∑ 𝑎𝑖𝑗𝑥𝑗 + max
{𝑆𝑖|𝑆𝑖⊆𝐽𝑖,|𝑆|=Γ𝑖 } 

 {∑ �̂�𝑖𝑗|𝑥𝑖|𝑗∈𝑆 }𝑛
𝑗=1 ≤ 𝑏𝑖  ∀𝑖 ∈ 𝑀. (9) 
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Where, at most, Γ𝑖 of the parameters in the 𝑖-th constraint are “budgeted” for the uncertainty to 

guarantee robustness for the solution. The parameter Γ𝑖 ∈ [0, |𝐽𝑖|]  determines the quality of the 

solutions of the model. Γ𝑖 = 0 implies no robust solution is sought for the model. A solution is very 

conservative (i.e., not a quality solution) when all the parameters take their worst-case values and 

lead to a solution much worse than the nominal solution or even infeasibility, i.e., if Γ𝑖 = |𝐽𝑖|. In this 

case, the robust solution is equivalent to the strict robustness proposed in [31]. Values of Γ𝑖 ∈ (0, |𝐽𝑖|) 

lead to less conservative solutions. Nothwithstanding, the robust solution is always feasible, i.e., 

given that not all the parameters will assume their worst-case values, and up to ⌊Γ𝑖⌋ of the parameters 

are allowed to change. On the other hand, if more than ⌊Γ𝑖⌋ of the uncertain parameters change, the 

robust solution will still be feasible with a probability bounded by an exponential term. Note here 

that the robust concept in [12] is built on the principles similar to those in [25], where the model has 

an analogous probability of constraint violation. It can be shown that the cardinality constrained 

approach used in [12] is similar to strict robustness using the convex hull of the cardinality-

constrained uncertainty set wherefore the approach can lead to conservative solutions [32].  

2.2.3. Light Robustness  

A more relaxed condition for robustness that allows the user to control the quality of the 

solutions was given in [8]. The robust concept introduced, known as light robustness, relies on a 

solution in which the objective function value is not much different from the objective function value 

of the nominal problem. The light robustness approach is structured in two stages to ensure a less 

conservative robust solution. The first stage considers a solution for the nominal problems (7) and 

(8). Subsequently, the constraints are relaxed for local violations that are absorbed by slack variables 

𝛾𝑖 , acting as measures of infeasibility for each constraint 𝑖 ∈ 𝑀 of the nominal problem. Hence, 

Constraint (9) becomes: 

∑ 𝑎𝑖𝑗𝑥𝑗 + max
{𝑆𝑖|𝑆𝑖⊆𝐽𝑖,|𝑆|=Γ𝑖 } 

 {∑ �̂�𝑖𝑗|𝑥𝑖|𝑗∈𝑆 }𝑛
𝑗=1 + 𝛾𝑖 ≤ 𝑏𝑖  ∀𝑖 ∈ 𝑀. (10) 

The second stage minimizes all the possible infeasibilities 𝛾𝑖 in the objective function: 

Min ∑ 𝑤𝑖𝛾𝑖

𝑖∈𝑀

 (11) 

where 𝑤𝑖  are the weights for the possibly different scales of constraints. Since the goal of the light 

robustness is to guarantee a balance between the quality (optimality) and the feasibility (robustness) 

of the solution, an additional constraint: 

∑ 𝑐𝑗𝑥𝑗

𝑛

𝑗=1
≤ (1 + 𝜌)𝑧∗ (12) 

imposing a maximum worsening of the optimal solution of the nominal problem is added. The 

parameter 𝜌 is fundamental in the trade-off between the quality (optimality) and the feasibility of 

the solution; 𝜌 = 0 corresponds to the nominal problem where robustness is only considered to 

break ties among equivalent optimal solutions, whereas 𝜌 = ∞ implies that the nominal objective 

function is not considered at all. 

It should be clear now that the light robust models (10)–(12) rely on the robust approach of [12]. 

On the other hand, the model can be formulated without it. Fischetti and Monaci [8] justified this with 

some heuristic methods. In an earlier application, Fischetti et al. [33] showed that light robustness, 

among others, is most suitable for railway timetabling problems where delays are encountered and 

a certain “quality and most reliable” solution is required for constraint violation. This has also been 

the case for some applications in similar contexts, for example, the timetabling information for public 

transport in [10], the robust airport runway scheduling problem in [34], and the potential line 

planning of public transport in [35]. Light robustness has also found usefulness in RO applications 

such as the master surgery scheduling problem in [36] and the multi-period multi-product aggregate 

production planning in [37]. Schöbel [11] in recent times extended the idea of [8] to the notion of 
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generalized light robustness wherein optimization problems with arbitrary uncertainty sets can be 

applied.  

2.3. The RGP Approach 

The RGP methodology combines RO and GP techniques to solve decision problems with a 

multiplicity of objectives in an uncertain environment. Here, any of the RO concepts mentioned above 

can be used with any variants of the GP. In the RGP, the goals of the DM that are marked by uncertain 

aspiration levels are confined to an uncertainty set and optimized with respect to their feasible 

realization in an uncertainty set to obtain a robust solution. Before proposing a new robust concept 

for the RGP modeling, in the subsections that follow, we provide a review of the models in [1,2], 

highlighting their limitations. 

2.3.1. Kuchta’s RGP Approach 

Kuchta [19] introduced the robust approach to the GP technique in a single objective LP, where 

she assumed that uncertain variations pertain only to the cost coefficients in the original objective 

function of the LP. This approach translates uncertainty analysis to the goal constraints in which the 

nominal cost values, 𝑐𝑡𝑗, are assumed to vary within the interval [𝑐𝑡𝑗 − 𝛿𝑡𝑗, 𝑐𝑡𝑗 + 𝛿𝑡𝑗], where 𝛿𝑡𝑗 is a 

possible deviation from the nominal cost value that accounts for the negative influence in the 

attainment of goals. Kuchta [19] adopted a robust methodology based on the interval-based 

uncertainty sets with cardinality-constraints developed in [12]. She supposed that each cost 

coefficient is subject to deviation and hence introduced the concept of 𝐾 robust solution; 𝐾 = (𝑘𝑡)𝑡=1
𝑇  

where 𝑘𝑡 , 𝑡 = 1, … , 𝑇 is any integer such that the level of robustness of the RGP model or the optimal 

value of the total deviation is determined by the DM using the parameter 𝑘𝑡. 

The 𝐾 robust methodology introduced in [12] is the following min-type model: 

Min ∑ 𝑑𝑡
+

𝑇

𝑡=1
 

s.t. 
(13) 

∑ 𝑐𝑡𝑗𝑥𝑗

𝑛

𝑗=1
+ ∑ 𝑝𝑡𝑗

𝑗∈𝐺𝑡

+ 𝑘𝑡𝑧𝑡 + 𝑑𝑡
− − 𝑑𝑡

+ = 𝑔𝑡  ∀𝑡 ∈ 𝑇 (14) 

𝑧𝑡 + 𝑝𝑡𝑗 ≥ 𝛿𝑡𝑗𝑥𝑗  ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐽𝑡 (15) 

𝑨𝒙 ≤ 𝒃 (16) 

𝑥𝑗 , 𝑑𝑡
−, 𝑑𝑡

+ ≥ 0 ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝑁 (17) 

𝑧𝑡 , 𝑝𝑡𝑗 ≥ 0  ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐽𝑡 (18) 

where 𝑧𝑡  and 𝑝𝑡𝑗 , 𝑗 ∈ 𝐽𝑡  are robust variables obtained through the dual formulation of constraint 

second term in the left-hand side of Constraint (9), and 𝐽𝑡 is the index for the uncertain goals of the 

DM. Let 𝓀𝑡 = ∑ |𝐽𝑡|𝑇
𝑡=1  represent the total number of uncertain data in the goal constraints. The robust 

model (13)–(18) is pessimistic, as it searches for the worst-optimal value of the total deviation from 

the goals. The parameter 𝑘𝑡 indicates how many of the coefficients in the 𝑡-th constraint are allowed 

to be changed and determines how conservative the solution can be. The objective function (13) is 

specific on minimizing the sum of positive deviations from goals 𝑡 ∈ 𝑇. Constraint (14) computes the 

respective positive and negative deviations from each goal 𝑡 ∈ 𝑇  for a given solution 𝑥𝑗 . It also 

contains the protection function ∑ 𝑝𝑡𝑗𝑗∈𝐺𝑡
+ 𝑘𝑡𝑧𝑡 with robustness parameter 𝑘𝑡 to the uncertain cost, 

which is bounded for each combination of decision variables and goals via Constraint (15). 

Constraints (17) and (18) impose nonnegativity on all decision variables. The model involves 𝑡 + 𝑡𝓀𝑡 

constraints and is computationally tractable irrespective of the number of coefficients subject to 

deviation.  
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2.3.2. Hanks et al‘s RGP Approach 

Recently, Hanks et al. [13] broadened the scope of the RGP construct by proposing models that 

extend the robust methodology of [19] to different uncertainty sets. They proposed three RGP 

models. The first two models relate to cardinality-constrained robustness via norm-based uncertainty 

sets using the 𝐿1 -norm and the 𝐿2 -norm, see [38]. Particularly, considering that the robust 

counterpart of the 𝐿1 -norm, ∑ |𝛿𝑡𝑗𝑥𝑗|𝑛
𝑗=1 , ∀𝑡 ∈ 𝑇  accounts for data uncertainty given some 

deviational value 𝛿𝑡𝑗, in [13], the authors proposed the following 𝐿1-norm-based RGP model: 

Min ∑ 𝑑𝑡
+

𝑇

𝑡=1
 

s.t. 
(19) 

∑ 𝑐𝑡𝑗𝑥𝑗

𝑛

𝑗=1
+ 𝑝𝑡 + 𝑑𝑡

− − 𝑑𝑡
+ = 𝑔𝑡  ∀𝑡 ∈ 𝑇 (20) 

𝑝𝑡 ≥ ∑|𝛿𝑡𝑗𝑥𝑗|

𝑗∈𝑆𝑡

+ |𝑓𝑡𝛿𝑡𝑞𝑥𝑡𝑞|  ∀ 𝑆𝑡 ∈ 𝐽𝑡 , |𝑆𝑡| = 𝑘𝑡 , 𝑞 ∈ 𝐽𝑡\𝑆𝑡 , 𝑡 ∈ 𝑇 (21) 

𝑨𝒙 ≤ 𝒃 (22) 

𝑥𝑗 , 𝑑𝑡
−, 𝑑𝑡

+ ≥ 0 ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝑁 (23) 

where 𝑆𝑡 is the set of indices of all coefficients subject to deviation in goal 𝑡 = 1, … , 𝑇 where 𝑆𝑡 ⊂

𝑁 and 𝑓𝑡 = 𝑘𝑡 − ⌊𝑘𝑡⌋, is the remainder value when 𝑘𝑖 is non-integer. Hanks [13] showed that model 

(19)–(23) is equivalent to model (13)–(18). This is apparent since the robustness of both models is 

obtained through cardinality-constraints via interval uncertainty. On the contrary, while model (19)–

(23) imposes a total penalty of ∑ 𝑝𝑡𝑗𝑗∈𝐺𝑡
+ 𝑘𝑡𝑧𝑡  for the variability in each goal, model (19)–(23) 

identifies a total goal-specific penalty 𝑝𝑡  through every combination of 𝛿𝑡𝑗𝑥𝑗 in some given 𝑘𝑡, as 

indicated in Constraint (21). Observe that Constraint (21) applies 𝐿1-norm uncertainty sets to the 

possible set of coefficient subject to parametric uncertainty (i.e., 𝑆𝑡 ∈ 𝐽𝑡 , |𝑆𝑡| = 𝑘𝑡 , 𝑞 ∈ 𝐽𝑡\𝑆𝑡 , 𝑡 ∈ 𝑇). The 

penalty difference is observed in Constraints (14) and (20) of the two models through a combination 

of ∑ |𝛿𝑡𝑗𝑥𝑗|𝑗∈𝑆𝑡
+ |𝑓𝑡𝛿𝑡𝑞𝑥𝑡𝑞| of the latter. Moreover, it is important to note that  model (19)–(23) has 

higher complexity compared to model (13)–(18), given that the former uses 𝑡 + 𝓀𝑡 ∑ (𝓀𝑡 − 𝑘𝑡) (
𝓀𝑡

𝑘𝑡
)𝑇

𝑡=1  

constraints to obtain the same optimal solution as the latter. The second model of [13] relates to the 

RGP using the 𝐿2 -norm. The model is obtained by replacing Constraint (21) with the following 

constraint: 

𝑝𝑡 ≥ √∑(𝛿𝑡𝑗𝑥𝑗)
2

𝑗∈𝑆𝑡

+ (𝑓𝑡𝛿𝑡𝑞𝑥𝑡𝑞)
2

  ∀ 𝑆𝑡 ∈ 𝐽𝑡 , |𝑆𝑡| = 𝑘𝑡 , 𝑞 ∈ 𝐽𝑡\𝑆𝑡 , 𝑡 ∈ 𝑇 (24) 

through which the model becomes a second-order cone programming. Unlike Constraint (21), the 

penalty 𝑝𝑡 , 𝑡 ∈ 𝑇 is induced via the greatest lower bound over every combination of possible subsets 

of variables taking on uncertainty for each goal.  

The third model proposed in [13] considers strict robustness using an ellipsoidal uncertainty set 

of [24]. The RGP model is presented as follows: 

Min ∑ 𝑑𝑡
+

𝑇

𝑡=1
 

s.t. 
(25) 

∑ 𝑐𝑡𝑗𝑥𝑗

𝑛

𝑗=1
+ 𝜃𝑡 (√∑ 𝛿𝑡𝑗

2 𝑥𝑗
2

𝑛

𝑗=1
) + 𝑑𝑡

− − 𝑑𝑡
+ = 𝑔𝑡  ∀𝑡 ∈ 𝑇 (26) 

𝑨𝒙 ≤ 𝒃 (27) 
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0 ≤ 𝜃𝑡 ≤ √𝓀𝑡  ∀𝑡 ∈ 𝑇 (28) 

𝑥𝑗 , 𝑑𝑡
−, 𝑑𝑡

+ ≥ 0 ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝑁 (29) 

Similar to the RGP models (19)–(23) and (13)–(18), the RGP model (25)–(29) controls the 

deviation using the robustness parameter 𝜃𝑡 , as specified in Constraint (26) and bounded via 

Constraint (28) as in [24]. Specifically, Constraint (26) computes the positive and the negative 

deviations from each goal with the strict assumption that every coefficient 𝑐𝑡𝑗 will deviate from its 

respective nominal value. Although varying 𝜃𝑡  allows for less-than maximum and more-than 

maximum deviations, model (25)–(29) assumes that each coefficient subject to deviation takes on the 

maximum value in the uncertainty set, thus, the strict robustness approach adopted for this model 

can be very conservative for the DM defined goals [10]. 

3. The Proposed Light RGP 

A critical view of the theoretical RGP model proposed in [19] indicates that, although the budget 

uncertainty concept of [12] presumes that not all the goals will simultaneously take their worst-case 

values, the optimal solution can be worse. Unfortunately, the RGP models of [13], which intended to 

extend the robust framework of [19], rather tends to be too conservative and pessimistic to the 

achievement of the specific goals of the decision-maker due to the strict robustness concepts used. 

Strict RGP models hedge against all scenarios of uncertain goals in the uncertainty set but at a higher 

price, namely, the optimal objective value in the robust goal often increases drastically. In other 

words, the quality of the optimal goal is highly affected in that the DM has to give up so much 

optimality in the nominal problem in order to ensure robustness [25]. It is worth mentioning that 

recent advances in the RO literature have shifted to solutions that are not too conservative and the 

price paid for robustness is not so high [24,28].  

For this reason, this section considers a different RGP model that is much less conservative, and 

the quality of the robust goals is assured. The concept follows the light robustness proposed in [8] and 

generalized in [11] for uncertain programs with arbitrary uncertainty sets. Here in known as light 

robust goal programming (LRGP). The objective of the LRGP is to balance the quality of the solution 

with respect to the total goal deviations and the robustness of the solution with respect to the 

uncertain goals. The LRGP models differ from previous works in light of the following contributions:  

 Contrary to the conservative models provided in the literature (c.f., [13,16,19,21,22]), we present 

LRGP models generalized to two arbitrary sets—the budget of uncertainty and the ellipsoidal 

uncertainty set. The model formulation made with these uncertainty sets provides robust 

solutions among those which are "not too far" from optimality for the nominal GP model.  

 We generalize the RGP to include modeling uncertainties in the hard constraint of the GP model. 

Dealing with uncertain hard constraints is perhaps a novelty in RGP literature that, to the best 

of our knowledge, has not been considered before. In other words, our review of the 

methodological RGP papers indicates that, to date, coefficients susceptible to deviation are only 

the goals and not any of the other hard constraints, 𝑨𝒙 ≤ 𝒃 . The consideration of the 

uncertainties in the hard constraints is necessary to obtain complete robust solutions in problems 

where both constraint parameters and goals are imprecisely defined.  

3.1. LRGP via 𝛤-Robustness 

Consider a LRGP model using the budget of uncertainty of [12]. As remarked in [8], the original 

concept of the light robustness is heavily dependent on the robust concept of [12], where the interval-

based uncertainty set is used with the additional assumption that no more than Γ𝑖 coefficients are 

expected to change to their worst-case values in constraint 𝑖. Assume further from Section 2.3.1 that 

the uncertain constraint parameter �̃�𝑖𝑗 takes value in the interval [𝑎𝑖𝑗 − �̂�𝑖𝑗 , 𝑎𝑖𝑗 + �̂�𝑖𝑗]. Analogous to 

[19], 𝐾 robust solution, the maximum values for the budget of uncertainty are Γ𝑡 ∈ [0, |𝐽𝑡|] and Γ𝑖
′ ∈

[0, |𝐽𝑖|] where 𝓀𝑖 = ∑ |𝐽𝑖|
𝑚
𝑖=1  represents the total number of uncertain data in the hard constraints. 

Note that Γ𝑡 and Γ𝑖
′ allow the DM to control robustness via the goal and the hard constraints, as is 
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considered in the models of [8] and [12]. We introduce slack variables 𝛾𝑡 for 𝑡 = 1, … , 𝑇 and 𝛾𝑖
′ for 

𝑖 = 1, … , 𝑀 where 𝑇 and 𝑀 are set indices for the goals and the decision variables pertaining to the 

hard constraint. These variables define the robustness level with respect to parameter uncertainties 

and control the model infeasibility. Therefore, the objective of the LRGPΓ is to minimize the sum of 

𝛾𝑡 and 𝛾𝑖
′ in the following model: 

LRGPΓ = Min ∑ ∑(𝛾𝑡 + 𝛾𝑖
′)

𝑖∈𝑀𝑡∈𝑇

 

s.t. 
(30) 

∑ 𝑑𝑡
+

𝑇

𝑡=1
≤ (1 + 𝜌)𝑧∗ (31) 

∑ 𝑐𝑡𝑗𝑥𝑗

𝑛

𝑗=1
+ ∑ 𝑝𝑡𝑗

𝑗∈𝐺𝑡

+ Γ𝑡𝑧𝑡 − 𝛾𝑡 + 𝑑𝑡
− − 𝑑𝑡

+ = 𝑔𝑡  ∀𝑡 ∈ 𝑇 (32) 

∑ 𝑎𝑖𝑗𝑥𝑗 + ∑ 𝑞𝑖𝑗

𝑗∈𝐽𝑖

+ Γ𝑖
′𝑤𝑖 − 𝛾𝑖

′
𝑛

𝑗=1
≤ 𝑏𝑖  ∀𝑖 ∈ 𝑀 (33) 

𝑧𝑡 + 𝑝𝑡𝑗 ≥ 𝛿𝑡𝑗𝑥𝑗  ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐽𝑡 (34) 

𝑤𝑖 + 𝑞𝑖𝑗 ≥ 𝜎𝑖𝑗𝑥𝑗  ∀𝑖 ∈ 𝑀, ∀𝑗 ∈ 𝐽𝑖 (35) 

𝛾𝑡 , 𝛾𝑖
′ ≥ 0  ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝑀 (36) 

𝑥𝑗 , 𝑑𝑡
−, 𝑑𝑡

+ ≥ 0  ∀𝑖 ∈ 𝑀, ∀𝑗 ∈ 𝑁 (37) 

𝑧𝑡 , 𝑝𝑡𝑗 ≥ 0  ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐽𝑡 (38) 

𝑤𝑖 , 𝑞𝑖𝑗 ≥ 0  ∀𝑖 ∈ 𝑀, ∀𝑗 ∈ 𝐽𝑖 (39) 

The main differences between model (30)–(39) and the previous models given in (13)–(18), (19)–

(23), and (25)–(29) occur in the objective function (30) and Constraints (31)–(33). A degree of relaxation 

for strict robustness is made by allowing for local violation of the 𝑡-th constraint (32) and the 𝑖-th 

constraint (33), where 𝛾𝑡 and 𝛾𝑖
′ are then used to recover and deal with any possible infeasibility 

issues. Hence, the objective function is designed to control robustness and minimize possible 

infeasibility of the model to changes in the aspiration levels of the DM and other parameter 

uncertainties. Moreover, to ensure the quality of the generated solution, the generalized RGP model 

(30)–(39) requires first an optimal solution 𝑧∗ to the nominal GP problem in (1)–(4) as the reference 

scenario. Constraint (31) therefore ensures that an acceptable deviation of the generated solution from 

the nominal solution is made through the parameter 𝜌. Constraint (32) identifies a total goal penalty 

∑ 𝑝𝑡𝑗𝑗∈𝐺𝑡
+ Γ𝑡𝑧𝑡 − 𝛾𝑡 which, in contrast to the model of [19], includes the additional penalty term 𝛾𝑡, 

specifically for the violation of the cost parameter 𝑐𝑡𝑗 from its nominal value. Constraints (34) and 

(35) are a combination of bounded terms for the robust variables. Finally, Constraints (36)–(39) 

impose nonnegativity on all decision variables.  

3.2. LRGP via Ellipsoidal Uncertainty Set 

This section considers a special case of the generalized LRGP to the ellipsoidal uncertainty set. 

Let 𝒰1
𝑡 = {𝑪 = 𝑷0 + ∑ 𝑢𝑙𝑷

𝑙: ‖𝑢𝑡‖2
𝑁
𝑙=1 ≤ 1, 𝑢𝑡 ∈ ℝ𝑇}  where 𝑷𝑙 = (𝑝𝑙), 𝑙 = 0, … , 𝑇 are 𝑡 × 𝑛  matrices, 

and ‖∙‖2 denotes the Euclidean norm (analogously to [11], this norm is independent of the particular 

norm chosen for generalized light robustness). The set 𝒰1
𝑡  is defined for perturbation of the DM 

goals. A finite mathematical program for the defined uncertainty set is obtained if the RGP problem 

is solved with parameter 𝑢 instead of the cost matrix 𝑐𝑡𝑗 [24]. To this end, we let 𝑹𝑡 contain all the 

𝑡-th rows of all matrices 𝑷1, … , 𝑷𝑁. Then, for 𝑐𝑡𝑗 ∈ 𝒰1
𝑡 , following [11], the goal constraint ∑ 𝑐𝑡𝑗𝑥𝑗

𝑛
𝑗=1 −

𝛾𝑡 + 𝑑𝑡
− − 𝑑𝑡

+ = 𝑔𝑡  translates to 𝑷𝑡
𝑜𝑥 + ‖𝑹𝑡𝑥‖2 − 𝛾𝑡 + 𝑑𝑡

− − 𝑑𝑡
+ = 𝑔𝑡  for all 𝑢 ∈ ℝ𝑁  with ‖𝑢𝑡‖2 ≤ 1. 

Similarly, let the 𝑚 × 𝑛  matrix 𝑆𝑙, 𝑙 = 0, … , 𝑘  in 𝒰2
𝑖 = {𝑨 = 𝑸0 + ∑ 𝜇𝑙𝑸

𝑙: ‖𝜇𝑖‖
2

𝑁
𝑙=1 ≤ 1, 𝜇𝑖 ∈ ℝ𝑁} be 

defined for the uncertain parameters in the hard constraint, where 𝑺𝑖 is the 𝑖-th rows of the matrices 
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𝑸1, … , 𝑸𝑁 . We obtain the constraint 𝑸𝑖
𝑜𝑥 + ‖𝑺𝑖𝑥‖

2
− 𝛾𝑖

′ ≤ 𝑏𝑖  for all 𝜇𝑖 ∈ ℝ𝑁  with ‖𝜇𝑖‖
2

≤ 1 . The 

generalized LRGP using the ellipsoidal set is thus equivalent to the following program: 

LRGP𝑒 = Min (‖𝛾𝑡‖ + ‖𝛾𝑖
′‖) 

s.t. (40) 

∑ 𝑑𝑡
+

𝑇

𝑡=1
≤ (1 + 𝜌)𝑧∗ (41) 

𝑷𝑡
𝑜𝑥 + ‖𝑹𝑡𝑥‖2 − 𝛾𝑡 + 𝑑𝑡

− − 𝑑𝑡
+ = 𝑔𝑡  ∀𝑡 ∈ 𝑇 (42) 

𝑸𝑖
𝑜𝑥 + ‖𝑺𝑖𝑥‖

2
− 𝛾𝑖

′ ≤ 𝑏𝑖  ∀𝑖 ∈ 𝑀 (43) 

𝛾𝑡 , 𝛾𝑖
′ ≥ 0  ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝑀 (44) 

𝑥𝑗 , 𝑑𝑡
−, 𝑑𝑡

+ ≥ 0  ∀𝑖 ∈ 𝑀, ∀𝑗 ∈ 𝑁 (45) 

Similar to model (30)–(39), Equation (40) minimizes the sum of the arbitrary norm of the 

infeasibilities of the goal and the hard constraints. Constraint (41) controls the nominal quality by the 

parameter 𝜌. Constraints (42) and (43) apply ellipsoidal uncertainty to allow a deviation of the goals 

in the 𝑡-th constraint and uncertain parameters in the 𝑖 -th constraint, respectively, wherein the 

infeasibility induced in the constraints by such deviations is controlled by 𝛾𝑡  and 𝛾𝑖
′ . Similarly, 

Constraints (44)–(45) impose nonnegativity on all decision variables.  

The computational tractability and the number of constraints involved in the LRGP models are 

next compared to the previously discussed models. This is summarized in Table 1. Clearly, the 

proposed generalized RGP models (30)–(39) and (40)–(45) are computationally tractable and easily 

implementable, which is not the case for all the models of [13]. That is, the tractability of the RGP 

models via the 𝐿1-norm and the 𝐿2-norm is nonlinear and increasingly computationally demanding. 

The computational tractability of these models is not assured as indicated in [13]; see Table 1. 

Generally, when considering the merits and the shortcomings of the RGP models discussed in this 

paper, it is interesting to note that Kuchta’s model results in the same number of constraints 

regardless of the number of coefficients subject to uncertainty. This is in contrast to Hanks’ [13] 

models using norm-based uncertainty sets, since the number of possible constraints depends on the 

conservatism level 𝑘𝑡 . However, while the latter case may be computationally efficient to the 

extremely risk-averse or the risk-seeking DM, it may not be ideal, as the complexity of the model is 

directly influenced by the 𝑘𝑡-values and can therefore be intractable, at least practically.  

Table 1. Dimensions of the robust goal programming (RGP) models. 

Author Robust concepts / Uncertainty set # of constraints Computational tractability Model structure 

[19] Cardinality constrained via interval 𝑡 + 𝑡𝓀𝑡  Tractable Linear 

[13] Cardinality constrained via 𝐿1 -norm 𝑡 + 𝓀𝑡 ∑(𝓀𝑡 − 𝑘𝑡) (
𝓀𝑡

𝑘𝑡
)

𝑇

𝑡=1

 Not assured Nonlinear 

√ Cardinality constrained via 𝐿2 -norm 𝑡 + 𝓀𝑡 ∑(𝓀𝑡 − 𝑘𝑡) (
𝓀𝑡

𝑘𝑡
)

𝑇

𝑡=1

 Not assured Nonlinear 

√ Strict robustness via ellipsoid 2𝑡 Tractable Nonlinear 

This paper Light robustness via Γ-robustness 𝑡(𝓀𝑡 + 1) + 𝑚(𝓀𝑡 + 1) + 1 Tractable Linear 

√ Light robustness via ellipsoid 𝑡 + 𝑚 + 1 Tractable Nonlinear 

Specifically, the RGP formulation presented in (30)–(39) is linear and deterministically feasible 

under the assumptions of [12] and the minimization of 𝛾𝑡  and 𝛾𝑖
′  if the parameters 𝑐𝑡𝑗  and 𝑎𝑖𝑗  

respectively deviate from their nominal values or whenever an optimal solution 𝑧∗ to the nominal 

scenario exists. Note that the model (30)–(39) involves constraints and variables that are polynomial 

in the size of the input. Moreover, the RGP model (40)–(45) can be solved as a second-order cone 

programming, given that ‖∙‖ in (40) is a Euclidean norm or any norm with ellipsoid as a unit block 

[3,14]. Contrasting the RGP model (25)–(29) to the proposed model (40)–(45), although the presence 

of 𝜃𝑡 in the former model controls the risk preference of the DM that could be introduced in the latter 

model, such risk is initially allowed for by constraint violation in (42) and (43), which is then 
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minimized in the objective function. In summary, the proposed models in this paper (i) generalize 

robustness to the DM goal problem under polyhedral and ellipsoidal based uncertainty set, (ii) derive 

quality robust solutions to the DM goals, (iii) are less computationally expensive and fully tractable, 

and (iv) are applicable to general multi-criteria decision problems.  

4. Computational Study 

To verify the proposed model, we consider a hypothetical example used in [13] and [19]. The 

goal with this example is to demonstrate the performance of our new model in terms of DM‘s 

conservatism compared to the models of the aforementioned authors. The problem statement of the 

example is given as follows: 

A company manufactures three divisible products. Let 𝑥𝑗 , 𝑗 = 1, 2, 3  denote the amount of the respective 

products to be manufactured in the coming period. Here is the matrix 𝑐𝑖𝑗 , 𝑖 = 1, 2, 3, 4 and 𝑗 = 1, 2, 3, where:  

a) 𝑐1𝑗  (𝑗 = 1, 2, 3) represents the most possible (normal) amount of material needed to manufacture the 

𝑗th product.  

b) 𝑐2𝑗  (𝑗 = 1, 2, 3) represents the most possible (normal) amount of human work needed to manufacture 

the 𝑗th product. 

c) 𝑐3𝑗  (𝑗 = 1, 2, 3)  represents the most possible (normal) amount of machine time needed to 

manufacture the 𝑗th product. 

d) 𝑐4𝑗  (𝑗 = 1, 2, 3) represents the most possible (normal) selling price of the 𝑗th product (multiplied by 

−1 due to minimization problem). 

Table 2 shows the nominal and the possible deviations as well as the target values for each 

product in the example. It should be noted that when uncertainty in the data is not present (implying 

the nominal value 𝑐𝑖𝑗 ), the term “the most possible (normal) amount” is considered to be the 

coefficient associated with each decision variable 𝑥𝑗 , ∀𝑗 ∈ 𝑁  for each goal 𝑖 ∈ 𝑀 . To account for 

uncertainty, Kuchta [19] assumed that the possible variations of the coefficient are 10% of the nominal 

values. Thus, mathematically, 𝛿𝑖𝑗 = 𝜑𝑐𝑖𝑗  where 𝜑 = 0.1  is the uncertainty level. Note that, in 

regards to the above example, the uncertainties considered for models (30)–(39) and (40)–(45) are 

those of deviations only and not the hard constraints. The exclusion of the hard constraints (33), (35), 

and (43) thus makes the numerical comparison with the previous RGP models more plausible.  

Table 2. Nominal values and possible deviations for each product. 

 𝑗 = 1  𝑗 = 2  𝑗 = 3  Target values 

 𝑐𝑖1 𝛿𝑖1  𝑐𝑖2 𝛿𝑖2  𝑐𝑖3 𝛿𝑖3   

𝑖 = 1 3 0.3  7 0.7  5 0.5  200 

𝑖 = 2 6 0.6  5 0.5  7 0.7  200 

𝑖 = 3 3 0.3  6 0.6  5 0.5  200 

𝑖 = 4 −28 2.8  −40 4  −32 3.2  −1500 

In this example, the different 𝑘𝑡 -values (also the same as Γ𝑡 -values) of varying scenarios 

summarized in [13] (see pp 642, Table 3) are used to understand the DM‘s view on the conservatism 

of the robust solutions. As indicated in the first column of Table 3, the scenario (0, 0, 0, 0) shows the 

problem without uncertainty, whereas the scenario (3, 3, 3, 3) shows that all the coefficients of each 

goal are affected. It also indicates all the models' behaviors at the highest level of uncertainty and the 

worst value of the problem. Allowing for constraint violations in the case of the light robustness 

model, the maximum worsening of the optimal robust solution with respect to the optimal nominal 

solution 𝑧∗ = 62.5 in Constraint (31) is considered at 10%, i.e., 𝜌 = 0.1. The results are computed 
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using the GAMS software and the CPLEX solver for the linear models and the GUROBI solver for the 

nonlinear models, as shown in Table 3–5. 

Table 3. Comparison of Kuchta (interval), Hanks et al. (𝐿2-norm), and light robust goal programming 

(LRGP) (Γ-robustness) models. 

𝑘𝑡-scenarios 
Kuchta (Interval)  Hanks et al. (𝐿2 -norm)  LRGP via Γ-robustness 

∑ 𝑑𝑡
+

𝑇

𝑡=1
 (𝑥1, 𝑥2, 𝑥3)  ∑ 𝑑𝑡

+
𝑇

𝑡=1
 (𝑥1, 𝑥2, 𝑥3)  ∑ 𝑑𝑡

+
𝑇

𝑡=1
 (𝑥1, 𝑥2, 𝑥3) 

(0, 0, 0, 0) 62.5 (20.8, 23.0, 0.0)  62.5 (20.8, 23.0, 0.0)  62.5 (20.8, 23.0, 0.0) 

(0, 0, 0, 3) 125.0 (41.7, 12.5, 0.0)  106.5 (35.5, 15.6, 0.0)  68.75 (19.6, 23.5, 0.0) 

(1, 1, 1, 1) 136.2 (28.2, 19.7, 0.0)  136.2 (28.2, 19.7, 0.0)  68.75 (26.0, 18.2, 1.3) 

(1, 1, 1, 3) 172.2 (36.9, 15.8, 0.0)  149.0 (33.7, 16.8, 0.0)  68.75 (31.3, 15.6, 0.0) 

(2, 2, 2, 2) 187.3 (56.1, 1.4, 1.0)  158.6 (34.6, 16.2,0.0)  68.75 (21.3, 20.6, 2.5) 

(3, 3, 3, 3) 187.5 (56.8, 1.9, 0.0)  158.6 (34.6, 16.2, 0.0)  68.75 (19.6, 23.5, 0.0) 

Mean 161.6 (43.9,10.3, 0.2)  141.8 (33.3, 16.9, 0.0)  68.75 (23.6, 20.3, 0.8) 

St. Dev 29.3 (12.4, 8.3, 0.5)  21.7 (2.9, 1.6, 0.0)  0.0 (5,1, 3.4, 1.1) 

Table 4. Effect of regret using LRGP via Γ-robustness. 

𝑘𝑡-scenarios Functions 
𝜌      

0.0 0.1 0.5 1.0 1.5 2.0 

(0, 0, 0, 0) 
LRGPΓ 0.00 0.00 0.00 0.00 0.00 0.00 

∑ 𝑑𝑡
+

𝑇

𝑡=1
 62.5 68.75 87.5 87.5 87.5 87.5 

(0, 0, 0, 3) 
LRGPΓ 150 149.00 145.0 140.14 135.86 131.58 

∑ 𝑑𝑡
+

𝑇

𝑡=1
 62.5 68.75 93.75 125 156.25 187.53 

(1, 1, 1, 1) 
LRGPΓ 133.95 112.24 86.30 75.54 73.01. 70.61 

∑ 𝑑𝑡
+

𝑇

𝑡=1
 62.5 68.75 93.75 125 156.25 187.53 

(1, 1, 1, 3) 
LRGPΓ 192.29 189.06 178.65 172.47 166.90 161.42 

∑ 𝑑𝑡
+

𝑇

𝑡=1
 62.5 68.75 93.75 125 156.25 187.53 

(2, 2, 2, 2) 
LRGPΓ 216.25 204.63 161.15 149.65 144.63 139.89 

∑ 𝑑𝑡
+

𝑇

𝑡=1
 62.5 68.75 93.75 125 156.25 187.53 

(3, 3, 3, 3) 
LRGPΓ 216.25 214.88 209.38 202.60 196.27 189.93 

∑ 𝑑𝑡
+

𝑇

𝑡=1
 62.5 68.75 93.75 125 156.25 187.53 
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Table 5. Comparison of Hanks et al. (ellipsoid) and LRGP (Γ-robustness) models. 

Theta values 
 Hanks et al. (ellipsoid) LRGP via ellipsoid 

 ∑ 𝑑𝑡
+

𝑇

𝑡=1
 (𝑥1, 𝑥2, 𝑥3) ∑ 𝑑𝑡

+
𝑇

𝑡=1
 (𝑥1, 𝑥2, 𝑥3) 

0.1  70.7 (23.4, 21.4, 0.0) 68.75 (33.2, 18.0, 0.0) 

0.5  105.1 (33.6, 15.4, 0.0) 68.75 (33.2, 19.1, 0.0) 

1.0  158.6 (34.6, 16.2, 0.0) 68.75 (33.5, 20.3, 0.0) 

1.5  215.4 (33.2, 17.2, 2.5) 68.75 (31.6, 20.2, 3.1) 

√3  241.3 (30.6, 16.9, 5.0) 68.75 (30.1, 19.6, 5.7) 

Mean  158.2 (31.1, 17.4, 1.5) 68.75 (32.3, 19.4, 1.8) 

St. Dev  71.8  (4.5, 2.3, 2.2) 0.0 (1.4, 0.9, 2.5) 

The second to the fourth column of Table 3 show the robust results in [19] and in [13] obtained 

through cardinality-constrained methods using either the interval-based or the 𝐿2-norm uncertainty 

sets. The last two columns show the new results from the light robustness. As a first stage feasibility 

criteria for the LRGP models, we obtain the optimal objective values of the nominal problem 𝑧∗ =

62.5. Note that we assume weights equal to 1 for the GP and all the RGP models. Moreover, we 

consider only one-sided deviation from a target value that will negatively impact the solution. The 

solution 𝑧∗ indicates the lack of consideration of uncertainty for all the RGP models and the LRGP 

models (30)–(39) and (40)–(45) when 𝜌 = 0. From Table 3, the results of the [19] interval-based model 

and the 𝐿2 -norm approach of [13] are identical at the scenario (1, 1, 1, 1) . This is due to the 

equivalency of the formulation of the two models when at least one coefficient of each goal is affected 

(Note that for all scenarios, the interval-based approach and the 𝐿1 -based approach are also 

equivalent.). It appears that the objective function value of these models increases as the number of 

coefficients allowed to take on uncertainty increases.  

 

Figure 1. Comparison of total goal deviations. 

On the contrary, a unique performance level is obtained for all the 𝑘𝑡 scenarios using the LRGP 

models. Here, increasing the conservatism degree leads to an increase in the infeasibility 𝛾𝑡 values. 

When 𝛾𝑡 = 0  (keeping 𝜌 constant), the total deviational goals take values between 𝑧∗  and 

(1 + 𝜌)𝑧∗ . On the other hand, increasing 𝜌 considering a fixed scenario reduces the infeasibility. 

Table 4 shows the infeasibility minimized at different 𝑘𝑡-scenarios. More important is the quality of 

the robust solution. Figure 1 shows how the different echelon of robustness differs from the nominal 

deviational goals. It can be observed that the deviation in the number of products made to achieve 

robust goals is not much sacrificed regardless of scenario when using the LRGP models. In contrast, 

the total deviations become worse in the robust models of [13] and [19] as the DM‘s conservatism in 
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the scenario increases. The methodology to obtain the DM‘s using the LRGP models out-performs 

the RGP models of [13] and [19] in all instances. 

In Table 5, the LRGP𝑒 is compared with the ellipsoid based RGP model of [13]. We use the same 

theta values on the LRGP and set 𝜌 = 0.1. The result shows that the total goal deviation is very much 

minimized and closer to the nominal goal deviation at all levels of conservatism compared to the 

result of the ellipsoid based RGP of [13]. It is also intriguing to note that the total goal deviation (68.75) 

obtained by the two LRGP models are the same (see Table 3). Figure 2 demonstrates these identical 

total goal deviations of the LRGPΓ and the LRGP𝑒 models for different values of 𝜌 for a fixed level 

of conservatism. The total goal deviations of the LRGP models are thus dependent on the value of 𝜌 

rather than the type of uncertainty set used for the robust model. As 𝜌 increases, the total goal 

deviations increase, indicating a more conservative and less quality solution. This result reechoes the 

objective of the light robustness, as emphasized in [8]. Thus, the LRGP approach achieves robustness 

for the uncertain goals of the DM by first enforcing a demanding optimality goal and a certain quality 

of robustness away from the optimality by a determined threshold level 𝜌 while at the same time 

dealing with possible infeasibility issues (through the slack variables) for allowing local violations of 

the constraints apriori.  

 

Figure 2. Total goal deviations by LRGPΓ and LRGP𝑒 models. 

On the other hand, to see the effect of different uncertainties on the LRGP models, we investigate 

the different violations of the constraints at 𝜑 = 10%, 20%, 40%, 60%, and 80%. Since there is no 

limitation in choosing the values of 𝜌, here, we select 𝜌 = 0.2. Note from Table 4 and Table 5 that 

when 𝜌 is fixed, the DM‘s total goal deviations for all the products remain the same irrespective of 

the conservatism of the DM. Figure 3 illustrates the effect of uncertainty on constraint violations and 

infeasibility between the LRGP via the Γ-robustness and the ellipsoid. In general, increasing the level 

of uncertainty or the DM‘s conservatism leads to an increase in model infeasibility. Specifically, while 

the LRGP seeks to minimize the risk of the infeasibility of robust goals, it is clear from Figure 3 that 

the infeasibility minimized with the ellipsoid based LRGP model performs better than the LRGP 

using the Γ-robustness.  
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Figure 3. Constraint violated uncertainties and infeasibilities. 

4. Conclusion  

In this paper, we addressed GP models in an uncertain environment in which the validity and 

the reliability of the GP technique are determined by—and therefore greatly influenced by—the 

accuracy of the DM goals. Although the RGP, a recent approach based on RO and GP, has been 

introduced to deal with such a situation, its methodology is not widely researched. The main 

methodology offered in the literature—interval-based, norm-based, ellipsoidal uncertainty sets 

RGP—produces solutions that are too often conservative. In this paper, we propose new RGP 

models—light RGP generalized on two arbitrary sets, i.e., the budget of uncertainty in [12] and the 

ellipsoidal uncertainty sets in [24]. Some observations regarding the use of different uncertainty sets 

for the LRGP are proposed. We also compare our new model with the RGP models developed in the 

literature and show that our model’s solution is much less conservative and is “quality” in terms of 

the DM goals in that the robust solution is "not too far" from optimality from the nominal GP model. 

Furthermore, we show that, rather than the specific uncertainty set used, the total goal deviations of 

the decision-maker are very much dependent on the robust quality threshold set as the trade-off 

between the quality (optimality) and the feasibility of the robust solution.  

Further research can focus on the applicability of the proposed models to a real-world situation 

such as the portfolio selection and the capital budgeting problem, as described respectively in [10,11] 

or the multi-criteria data envelopment analysis. Until now, the RGP has concentrated on the weighted 

GP. Therefore, an interesting future study that would be of merit would be to extend and compare 

the RGP with different GP techniques such as the pre-emptive lexicographic GP and the Chebyshev 

MINMAX GP.  
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