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Abstract: The paper deals with the dynamical behavior of a discrete-time ratio-dependent
predator–prey system. The predator dependence is one of the main concerns of the system. The
stability analysis of this 2-dimensional map was carried out analytically. Numerical simulation was
carried out to verify the analytical results. We analyzed some specific features that could arise in
discrete system. Basin of attraction was found for the endemic equilibrium state. We extended
the numerical simulation for the maximal Lyapunov exponent. The presence of positive Lyapunov
exponent indicated chaotic behavior of the map. The sensitive dependence on initial condition is one
of the criteria for a discrete system. We showed that the system is sensitive on the initial conditions.
We also carried out the analysis of diffusion and impact of noise.

Keywords: discrete ratio-dependent predator–prey model; stability; Hopf-bifurcation; Lyapunov
exponent; sensitive dependence

1. Introduction

The pioneering work of [1,2] on population biology is the threshold created in today’s explosion
of the field of population biology. The area has become vast, enriching the field of epidemiology and
medicine. The framework of the Lotka–Volterra model is the two differential equations with a simple
proportionality between the prey consumption and predation production. The proportional elements
have been many functions and the modeling has become more realistic. The proportional functions
are the functional response or trophic interaction functions. The Holling type I II III [3] are old to
represent a predator–prey system. The prey dependence [4] trophic interactions in the population
model have reigned for long time, even today [5]. Such a category of population models cannot
produce the situations of biological control. If the trophic function depends on the single variable N/P
(N, the prey, P, the predator), then the essential properties of predator dependence are rendered, called
ratio-dependence [4]. The work on this ratio-dependence model has mainly focused on continuous
models. Such a model only gives some bifurcation and limit cycle as the population evolution. But
the discrete time predator–prey models have richer dynamics than the continuous counterpart. The
discrete model can explain the basin of attraction, fractal dimension and the chaotic behavior of an
attractor and the sensitive dependence of initial conditions. Danca demonstrated that the discrete-time
predator–prey model with Holling type I functional response exhibits a chaotic behavior [6]. More
realistic results are obtained in the works of [7,8]. The discrete time ratio-dependent predator–prey
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explains the chaotic dynamics of the model system. The study sheds more light on the complex
dynamical behavior. In this chapter, we investigated the stability behavior and different features of a
discrete type ratio-dependent predator–prey system.

In this paper, we investigated the stability behavior and different features of a discrete type
ratio-dependent predator–prey system. In Section 3, we studied the local stability analysis by using
Jury’s conditions. In Section 4, we performed and presented diffusion dynamics. Section 5 deals with
noise impact on the stochastic system. In Section 6, we presented computer simulations with notable
significances as maximal Lyapunov exponents responsible for chaos of the system and existence of
orbit due to sensitivity. In Section 7, the entire compilation of analysis with results is presented as
concluding remarks.

2. The Discrete-Time Model Equations

We begin with the continuous-time predator–prey system. In most predator–prey systems, the
predator is to search for food and also compete for food, and the more realistic functional response
is a function which is dependent on both prey and predator densities. The Michaelis-Menten type
functional response introduced by [4] is given by

g(N/P) =
aN

P + ahN
, (1)

where N, P are, respectively, the prey and predator densities, a is the maximum prey consumption rate,
and h is the predator handling time. This ratio-dependent functional response is strongly supported
by numerous fields, laboratory experiments, and ecological literatures [9–12]. With this functional
response, the general type ratio-dependent predator–prey system due to [9] is

Ṅ = rN f (N)− g(N/P)P,

Ṗ = −dP + cg(N/P)P. (2)

Here, rN f (N) is the prey growth rate in the absence of predator, d is the death rate of the predator in
absence of prey. Here, we consider the logistic growth rate of the prey given by

rN f (N) = rN
(

1− N
K

)
. (3)

So, the general ratio-dependent predator–prey model becomes

Ṅ = rN
(

1− N
K

)
− aN

P + ahN
P,

Ṗ = −dP + c
aN

P + ahN
P, (4)

where r, K are, respectively, the intrinsic growth rate and environmental carrying capacity of the prey
in the absence of predator.

The number of independent parameters can be reduced by using the dimensionless quantities for
prey N, predator P and time t as follows: N = Kx, P = Kahy, and t = t

′
/r. Then, the system becomes

dx
dt

= x(1− x)− α
xy

x + y
,

dy
dt

= −βy + γ
xy

x + y
, (5)

where α = a/r, β = d/r, and γ = c/rh. It is available in any standard literature. Thus, α is the
consumption ability, β is the death rate of the predator, and γ is the predator growing ability.
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The model system (5) is the standard ratio-dependent predator–prey model studied by many
authors [5]. In this work, we consider the discrete-time predator–prey model analogous to its
continuous counterpart (5). In the continuous time model (5), we replace the derivatives with the
divided differences

dx
dt

=
x(t + ∆t)− x(t)

∆t
,

dy
dt

=
y(t + ∆t)− y(t)

∆t
, (6)

and then, taking ∆t = 1, the above system of equations reduces to

xn+1 = xn + xn(1− xn)− α
xnyn

xn + yn
,

yn+1 = yn − βyn + γ
xnyn

xn + yn
, (7)

where xn = x(t), yn = y(t). In this study, the system of Equation (7) represents the main equations
of interest. Thus, the continuous system which represents a flow of two predator and prey is now a
2-dimensional map of two species from the discrete time n to n + 1. If this map is denoted by T, then
T(xn, yn) = (xn+1, yn+1) governed by the set of Equation (7). This map will determine the population
evolution from the initial state t = 0 to a state t = n, so that (xn, yn) = Tn(x0, y0). This evolution will
move through different complex dynamical phenomena.

3. Steady State Analysis

We studied the stability behavior of the two-dimensional map governed by the set in Equation (7).
The fixed points of the map are given by T(xn, yn) = (xn, yn). So, we have the following three fixed
points: (i) Extinction of both predator and prey population: E0 = (0, 0), (ii) extinction of predator
population: EA = (1, 0), and (iii) the coexistence of both the population predator and prey: EI(xI , yI),
where xI = 1− α

γ (γ− β) and yI =
γ−β

β xI .
The first two fixed points, E0 and EA, are always biologically feasible. The feasibility of the fixed

point EI demands α < γ
γ−β with β < γ.

To study the stability behavior of the system near the fixed points, we linearize the model
equations about the fixed points. If (Xn, Yn) be the small perturbations corresponding to the fixed
point (x∗, y∗), then xn = x∗ + Xn and yn = y∗ + Yn. The linearized system of the above system of
equations is (

Xn+1

Yn+1

)
= J(E(x∗, y∗))

(
Xn

Yn

)
, (8)

where J(E(x∗, y∗)) =

 2(1− x∗)− αy2
∗

(x∗+y∗)2 − αx2
∗

(x∗+y∗)2

γy2
∗

(x∗+y∗)2 1− β + γx2
∗

(x∗+y∗)2

.

We seek a solution of the form (
Xn

Yn

)
=

(
A
B

)
λn (9)

to Equation (8), where A and B are arbitrary constants. So, the characteristic equation will determine
the value of λ which, in turn, will help in giving the dynamical behavior of the fixed point. The
characteristic equation of the system of Equation (8) is

f (λ) ≡ λ2 − Pλ + Q = 0, (10)

where P = TraceJ(E(x∗, y∗)), and Q = |J(E(x∗, y∗))|. Let λ1 and λ2 be characteristic roots of
Equation (10) and also suppose that f (−1) > 0. Then, the equilibrium point E(x∗, y∗) is

(i) stable if |λ1| < 1, |λ2| < 1, that is, if f (1) > 0 and Q < 1.



Math. Comput. Appl. 2019, 24, 103 4 of 19

(ii) unstable if |λ1| > 1, |λ2| > 1, that is, if f (1) > 0 and Q > 1.
(iii) saddle if |λ1| < 1, |λ2| > 1 (or |λ1| > 1, |λ2| < 1), that is, if f (1) < 0. We now analyze the

stability behavior at several fixed points.

3.1. Dynamical Behavior of E0

As the functional response is not defined at (0, 0), the fixed point E0(0, 0) is most complicated
for the ratio-dependent model system. We choose a neighboring point (ε, ε) in the first quadrant
corresponding to the fixed point E0(0, 0). Then, the Jacobian matrix J(E0) is given by

J(E0) = limε→0+

 2(1− ε)− αε2

(ε+ε)2 − αε2

(ε+ε)2

γε2

(ε+ε)2 1− β + γε2

(ε+ε)2

 =

(
2− α

4 − α
4

γ
4 1− β + γ

4

)
.

Then, the linearized system is

xn+1 =
(

2− α

4

)
xn −

α

4
yn

yn+1 =
γ

4
xn +

(
1− β +

γ

4

)
yn. (11)

The characteristic equation corresponding to the fixed point E0(0, 0) is

λ2 −
(

3− β− α− γ

4

)
λ +

(
2− α

4

) (
1− β +

γ

4

)
+

αγ

16
= 0. (12)

Using the above criteria for dynamical behavior we list the conditions as follows: the fixed point
E0(0, 0) is

(i) stable if (a) β < 1 and α > max
{

4− γ
β , 12− 3γ+8

β , 4(1−2β)+γ
1−β

}
, or,

(b) β > 1 and max
{

4− γ
β , 12− 3γ+8

β

}
< α <

{
4(2β−1)−γ

β−1

}
,

(ii) unstable if (a) β < 1 and max
{

4− γ
β , 12− 3γ+8

β

}
< α <

{
4(1−2β)+γ

1−β

}
, or,

(b) β > 1 and α > max
{

4− γ
β , 12− 3γ+8

β , 4(2β−1)−γ
β−1

}
,

(iii) saddle point if 12− 3γ+8
β < α < 4− γ

β .

3.2. Dynamical Behavior of EA

The Jacobian matrix of system (8) at EA(1, 0) is

J(EA) =

(
0 −α

0 1− β + γ

)
.

The corresponding linearized system is given by

xn+1 = −αyn, yn+1 = (1− β + γ) yn. (13)

So, EA is stable if β ∈ (γ, 2 + γ) or a saddle point if β does not belong to (γ, 2 + γ).

3.3. Dynamical Behavior of EI

The Jacobian matrix of System (8) corresponding to EI is

J(EI) =

 α( γ−β
γ )

(
2− γ−β

γ

)
− αβ2

γ2

(γ−β)2

γ 1− β + β2

γ

 .
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The linearized system corresponding to the interior equilibrium point is

xn+1 = α

(
γ− β

γ

)(
2− γ− β

γ

)
xn −

αβ2

γ2 yn

yn+1 =
(γ− β)2

γ
xn +

(
1− β +

β2

γ

)
yn. (14)

The characteristic equation of the above system is

λ2 −
[

α(γ−β)
γ

(
2− γ−β

γ

)
+ 1− β + β2

γ

]
λ

+ α(γ−β)
γ

[(
2− γ−β

γ

) (
1− β + β2

γ

)
+ β(γ−β)

γ2

]
= 0.

(15)

From the characteristic Equation (15), we can conclude that the fixed point EI is

(i) stable if α, β, and γ lie in the parametric space

VS =

{
(α, β, γ) :

(
1 +

α(γ− β)

γ
(2− γ− β

γ
)

)(
2− β +

β2

γ

)
+

α(γ− β)2β2

γ3 > 0, α <
γ3

D

}
.

If mathematical observations drawn here interpret the biological conclusion as if the consumption
ability is less than the predator growing ability, then the model system attains its stability, and its
dynamics explored more clearly to pick some interesting remarks:

(ii) unstable if α, β and γ lie in the parametric space

VU =

{
(α, β, γ) :

(
1 +

α(γ− β)

γ
(2− γ− β

γ
)

)(
2− β +

β2

γ

)
+

α(γ− β)2β2

γ3 > 0, α >
γ3

D

}
,

where D = (γ− β)[(β + γ)(1− β + β2

γ ) + β(γ− β)].

If mathematical observations drawn here interpret the biological conclusion as if the consumption
ability is greater than the predator growing ability, then the model system reaches unstable and, further,
there is a chance to attain its stability by additional driven forces or parameters with an appropriate
controller/adapter to exhibit its dynamics as effectively and interestingly, which is an advanced
wide study.

(iii) saddle if α > γ
γ−β which is a contradiction for the existence of EI .

If mathematical observations drawn here interpret the biological conclusion as if the difference
between the predator growing ability and its death rate is greater than the ratio of predator growing
ability to consumption ability, then the model system reaches saddle point, which is an uncertainty
where it is neither stable nor unstable and no further dynamics are exhibited by the model system.

These are the conditions that the system exhibits different dynamical behavior.

4. Diffusive Structure and Its Dynamic Forces

In this segment, we deliberated the exceptional influences of transmission of the ideal structure
of prey predator systems in environmental science, modeled by diffusion equations. Although the
dispersal system is a relatively simple model for the raid of prey species by predators in a spatial
domain, the solutions exhibit an extensive spectrum of ecologically pertinent behavior. Spatiotemporal
dynamics includes chaos and target patterns [13–15]. The study of such spatiotemporal dynamics is an
intensive area of research, and there are still many unanswered questions concerning these solution
types [15–17]. Constructing a simple structure, which consists of prey-predator system with constant
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harvesting rates and temporal affects, in this segment, we next examine the steadiness of the proposed
model under the external dynamical forces as our aim in the next segment. The actual dynamics of the
species spread is a result of the interplay between diffusion and deterministic factors. To study the
effect of diffusion of ecological population on the model system, let us consider the diffusive equation
system as

dx
dt

= x(1− x)− α
xy

x + y
+ D1xuu, (16)

dy
dt

= −βy + γ
xy

x + y
+ D2yuu, (17)

where x = x (u, t) , y = y (u, t), u is a space variable, and x(u, 0) > 0 ; y(u, 0) > 0; for u ∈ [0, R] . The
trivial fluctuation edge conditions are specified by [xu]u=0,R = 0; [yu]u=0,R = 0.

Now, let us consider the ideal (16) and (17) underneath trivial fluctuations edge ailments. To
analyze the role of transmission on this ideal, we deliberate the linear ideal of the structure (16) and
(17) about the interior steady state E3(x∗, y∗) as given by

dX
dt

= −x∗X + D1(−p2X), (18)

dY
dt

= D2(−p2Y), (19)

by putting x = x∗ + X; y = y∗ + Y and assuming the solutions of Equations (16) and (17) in the form

X = α1eλt cos pu, Y = α2eλt cos pu, (20)

where p is the wave numeral of perturbation, λ is the frequency numeral, and αi, i = 1, 2, 3 are the
amplitudes. The characteristic equation of (16) and (17) using (20) is

µ2 + A1µ + B1 = 0, (21)

where A1 = x∗ + p2(D1 + D2) ; B1 = p4D1D2 + D2x∗p2.
Now, our main aim is to find the ailments for diffusive unsteadiness of model system (16) and

(17),for this, rewrite B1 as G(p2), where G(p2) = D1D2
(

p2)2
+ D2x∗p2.

The system (16) and (17) is unstable if one of the above roots of the Equation (21) is optimistic. An
essential ailment for a solution to be optimistic is that D1D2(p2)2 + D2x∗p2 > 0, which implies that

p2 > −(x∗/D1). (22)

Since the wave number p is real number, then the above statement is achievable, if x∗ > 0, which
is always achieved, because by nature x∗ is real number. The sufficient condition for optimitive of one
of the solutions of the Equation (22) is G(p2) < 0. Since G(p2) is an expression in p2 where p is the
wave number, non-zero positive quantity, the sufficient condition reduces to

∆ < (−p2), (23)

where ∆ = D1/D2. Thus, the diffusion of the prey-predator populations drive the ecological system
into unstable oscillation when (22) and (23) are satisfied. According to Routh–Hurwitz principle, the
essential and adequate ailments for local steadiness of E(x∗, y∗) are A1 > 0 ; B1 > 0.

Theorem 1. The point E(x∗, y∗) is locally asymptotically stable in the attendance of transmission if x∗ +
p2(D1 + D2) > 0 and p4D1D2 + D2x∗p2 > 0.

The above statement is followed immediately by R–H criteria.
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Theorem 2. (i) The system in the absence of spatiotemporal attributes at the inner steady state E(x∗, y∗)
attains steadiness, then the corresponding uniform steady state of the model system (16) and (17) in the presence
of spatiotemporal attributes also attains steadiness.
(ii) If the inner steady state E3(x∗, y∗) of the non-spatial heterogeneity system is unstable, then the respective
steady state of the spatiotemporal model system (16) and (17) under initial and boundary settings and attain
steadiness by increasing or decreasing the spatiotemporal attributes suitably.

Proof. Let us define the function Vl(t) =
∫ R

0 V (x, y) du, where V (x, y) is defined in Stability analysis
section. Differentiating Vl w.r.t. t along the solutions of the diffusive model (16) and (17), we get,

V′l (t) =
∫ R

0

(
Vxxt + Vyyt

)
du = IR + ID, (24)

where

IR =
∫ R

0
V′(t)dx, ID =

∫ R

0

(
D1Vxxuu + D2Vyyuu

)
du.

Using the analysis in [14], we get
ID = −D1

∫ R
0 Vxx (xu)

2 du− D2
∫ R

0 Vyy (yu)
2 du

= −D1

∫ R

0
(x∗/x2) (xu)

2 du− D2

∫ R

0
(y∗/y2) (yu)

2 du. (25)

From (24) and (25), it is observed that if IR < 0, then V
′
l (t) is negative. If IR > 0, then it is clearly

showing if there is an increase in the spatiotemporal attributes D1 and D2 adequately huge numeral,
V
′
l (t) as −ve. Henceforth are the succeeding portion of the theorem grasps.

5. Impact of Environmental Noise on the Model System

Ecological systems are characteristically forced by a number of drivers such as climate and natural
disturbances that are not constant in time but fluctuate. With the exception of processes dominated
by deterministic oscillations, a significant part of environmental variability is random because of the
uncertainty intrinsic in weather patterns, climate fluctuations, and episodic disturbances like earth
quakes, landslides, fires, insect outbreaks, etc. The recurrence of random drivers in bio-geophysical
processes motivates the study of how a stochastic environment may affect and determine the dynamics
of natural systems. We now begin introducing noise on the proposed model (5) to analyze the role
of random environmental fluctuations on stability. The random fluctuations make the parameters of
the model to oscillate about their average values. We consider such randomness to the model (5) by
incorporating additive white noises. The white noise perturbation included will change any parameter
ν of the model as ν + αiiψi (t), where αii is the amplitude of the noise and ψi (t) is a Gaussian white
noise process at time t, but the deterministic and stochastic models have same equilibria which will
also now fluctuate about their mean states. By considering the randomly fluctuating driving forces in
the form of additive noise to the model (5), we get the following stochastic model

dx
dt

= x(1− x)− α
xy

x + y
+ α11ψ1 (t) , (26)

dy
dt

= −βy + γ
xy

x + y
+ α22ψ2 (t) , (27)

where α11, α22 are real constants, and ψ (t) = [ψ1(t), ψ2(t)] is a two dimensional Gaussian white noise
process agreeable E [ψi (t)] = 0 ; i = 1, 2; E

[
ψi (t)ψj (t′)

]
= δijδ (t− t′) ; i, j = 1, 2, where δij is the

Kronecker symbol; δ is the delta-Dirac function.
In this analysis, we focus on the dynamics of the model (26) and (27) at the interior equilibrium

point E (x∗, y∗) only according to the method introduced by Nisbet and Gurney [18] and Carletti [19].
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Let x(t) = u1(t) + S∗ ; y(t) = u2(t) + P∗ and by considering only the consequence of linear stochastic
perturbations.

Hence, the model (26) and (27) reduces to the following linear system

u
′
1(t) = −u1(t)S∗ + α11ψ1(t), (28)

u
′
2(t) = α22ψ2(t). (29)

Taking the Fourier transform of (28) and (29), we get,

α11ψ̃1(ω) = (iω) ũ1(ω) + S∗ũ1(ω), (30)

α22ψ̃2(ω) = (iω) ũ2(ω). (31)

The matrix form of (30) and (31) is

M(ω)ũ(ω) = ψ̃(ω), (32)

where M (ω) =

(
A(ω) B(ω)

C(ω) D(ω)

)
; ũ (ω) =

[
ũ1(ω)

ũ2(ω)

]
; ψ̃ (ω) =

[
α1ψ̃1 (ω)

α2ψ̃2 (ω)

]
;

A(ω) = iω + S∗; B(ω) = 0; C(ω) = 0; D(ω) = iω. (33)

Hence, the solution of (32) is given by ũ (ω) = K(ω)ψ̃ (ω), where

K(ω) = [M (ω)]−1 . (34)

The solution components of (34) are given by

ũi (ω) =
2

∑
j=1

Kij (ω) ψ̃j (ω) ; i = 1, 2. (35)

The spectrum of ui, i = 1, 2 are given by Sui (ω) = ∑2
j=1 αj

∣∣Kij (ω)
∣∣2 ; i = 1, 2.

Hence, the intensities of fluctuations in the variable ui , i = 1, 2 are given by

σ2
ui
=

1
2π

2

∑
j=1

∫ ∞

−∞
αj
∣∣Kij(ω)

∣∣2 dω; i = 1, 2.

From (35), we obtain

σ2
u1

= 1
2π

{∫ ∞
−∞ α11

∣∣∣ D(ω)
|M(ω)|

∣∣∣2 dω +
∫ ∞
−∞ α22

∣∣∣ B(ω)
|M(ω)|

∣∣∣2 dω

}
σ2

u2
=

1
2π

{∫ ∞

−∞
α1

∣∣∣∣ A(ω)

|M(ω)|

∣∣∣∣2 dω +
∫ ∞

−∞
α2

∣∣∣∣ C(ω)

|M(ω)|

∣∣∣∣2 dω

}
,

where |M(ω)| = R(ω) + iI(ω); R (ω) = −ω2; I (ω) = ωS∗.
If we consider the noise effect on any one of the species, which is with either α11 = 0 or α22 = 0

then we have σ2
u1

= 0; σ2
u2

= 0 if α11 = 0; σ2
u1

= α11
2π

∫ ∞
−∞

(iω)2

R2(ω)+I2(ω)
dω; σ2

u2
= α11

2π

∫ ∞
−∞

(iω+S∗)2

R2(ω)+I2(ω)
dω

if α22 = 0.
The population variances point out the stability of population for smaller values of mean square

fluctuations, while the larger values of population variances indicate the instability of the populations.
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6. Computer Simulations

We want to verify the analytical results obtained in the previous section for the stability of
System (7). We numerically calculate the maximal Lyapunov exponent and show the chaotic behavior
of the system for the presence of the positive Lyapunov exponent of the system. And also we want to
analyze the sensitive dependence of the system trajectories on initial conditions.

At first, we verify that the system moves to a stable state for a particular values of the parameters.
We take the parameters value α = 1.14, β = 0.21, γ = 1.10 satisfying the stability criteria listed in the
previous section. Then, the 2-dimensional map (7) exhibits a stable movement towards the endemic
equilibrium point EI(xI , yI) = (0.0776, 0.3290) (see Figure 1a).

The eigenvalues of the system are complex numbers for the same parameter value, and its absolute
value is |λ| = 0.9704 < 1. This fact also suggests that the system is stable about the endemic equilibrium
point EI . At this stage, we want to state that, for the adjoining Figure 1a, the phase-portraits are obtained
from several initial states. All the initial populations converge to a single state (point) EI , the attractor.
The basin of attractor is the set of all initial points which converge to EI . Here, the basin of attraction is
B = {(0.08, 0.30), (0.07, 0.34), (0.07, 0.28), (0.075, 0.36), (0.09, 0.34), (0.065, 0.28), (0.085, 0.38)}, and the
corresponding attractor is EI(0.0776, 0.3290).
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Figure 1. (a) Phase-portrait of the 2-dimensional map (7) with parameter values α = 1.14, β = 0.21,
γ = 1.10; (b) phase-portrait of the 2-dimensional map (7) with parameter values α = 1.2105, β = 0.21,
γ = 1.10.

If we increase the consumption ability α of the predator, the system remains stable asymptotically
to EI . There is a value of α = α̂ at which the system exhibits a stable periodic oscillation. We take
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α = 1.2105 (> α̂) when the system exhibits a periodic oscillation as illustrated in Figure 1b. We have
taken here several initial states from the basin of attraction B, and we have obtained the phase-portraits
in Figure 1b. Then the absolute value of the eigenvalue is |λ| = 1.0000. So, at α = α̂ the system has a
Hopf type bifurcation where the stable solution becomes periodic. We now tune up the consumption
ability of the predator. At α = 1.2223 the periodic oscillation losses its stability, and the phase-portrait
reduces to an invariant closed curve as illustrated in Figure 2 around EI(xI , yI) = (0.0776, 0.3290).
Then, the absolute value of the eigenvalue is |λ| = 1.0048 > 1.

Figure 2. Phase-portrait of the 2-dimensional map (7) with parameter values α = 1.2223, β = 0.21,
γ = 1.10 showing an invariant closed curve.

6.1. Order of Chaos by Lyapunov Exponent

We now calculate the maximal Lyapunov exponent of the system, which can give information on
chaotic behavior of the system of the 2-dimensional map. A positive Lyapunov exponent indicates
that the system exhibits a chaos.

We first give here the mathematical definition of the Lyapunov exponent. We consider the
2-dimensional mapping (7). A point X0 is called an n-cycle point if

Tn(X0) ≡ ToToTo...oT(X0) = X0.

The periodic point is stable if the whole orbit {X0, X1, X2, ..., Xn−1} is stable. For an n-cycle,

| dTn

dX
(X0) |=

n−1

∏
j=0
| dT

dX
(X0) | . (36)

The nth root of this quantity,

Λ =

(
n−1

∏
j=0
| dT

dX
(X0) |

)1/n

, (37)

is the geometric mean rate of stretching along the entire orbit, and this is defined as characteristic
multiplier. If for large n the logarithm of the above exists, then it is called the Lyapunov exponent
based at X0. We have calculated the maximal Lyapunov exponent, in which its positive value is the
indicator of chaos.

We calculate the maximal Lyapunov exponents for several values of α. We have observed that the
Lyapunov exponent is negative for some values of α, and it becomes positive for some other values
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of α. So, chaos occurs in the system. We have shown the different values of the maximal Lyapunov
exponent for different values of the consumption ability α of the predator in Figure 3.
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Figure 3. The maximal Lyapunov exponent of the 2-dimensional map (7) with parameter values
β = 0.21, γ = 1.10 for different values of α.

6.2. Existence of Orbit Due to Sensitivity

We analyzed the sensitive dependence of the 2-dimensional map (7). We considered two
neighboring initial conditions (x0, y0) and (x0 + δ, y0) and also the initial conditions (x0, y0) and
(x0, y0 + δ), where δ is very small quantity. This consideration gives us two neighboring orbits in
which behavior after some iterations are observed.

First, we take two neighboring trajectories with initial state (0.02, 0.085) and (0.021, 0.085). We
considered a small change in the x-coordinate of quantity 0.001 only. The time series evolution of the
two initial trajectories is shown in Figure 4a for prey and Figure 4b for predator. Initially, the two
trajectories overlap, but after some iterations, they show a clear distinction. Secondly, we took two
neighboring trajectories with initial state (0.02, 0.085) and (0.02, 0.086). We considered a small change
in the y-coordinate of quantity 0.001 only. The time series evolution of the two initial trajectories is
shown in Figure 5a for prey and Figure 5b for predator. Initially, the two trajectories overlap, but after
some iterations, they show a clear distinction.

Thus, we can find a sensitive dependence on initial conditions in the 2-dimensional map. This
implies that the long term prediction about the system is not possible. Even in short term prediction of
the populations, the small error in the initial conditions can magnify and prediction becomes worthless.
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Figure 4. Cont.
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Figure 4. (a) Time series evolution of the 2-dimensional map (7) for prey x for two neighboring initial
values of x with parameter values α = 1.2201, β = 0.211, γ = 1.10; (b) time series evolution of the
2-dimensional map (7) for predator y for two neighboring initial values of x with parameter values
α = 1.2201, β = 0.211, γ = 1.10.
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Figure 5. (a) Time series evolution of the 2-dimensional map (7) for prey x for two neighboring initial
values of y with parameter values α = 1.2201, β = 0.211, γ = 1.10; (b) time series evolution of the
2-dimensional map (7) for predator y for two neighboring initial values of y with parameter values
α = 1.2201, β = 0.211, γ = 1.10.
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Furthermore, the analytical findings observed in diffusion dynamics and noise process through
numerical simulations as follows:

Example 1. For the parameters α = 1.14, β = 0.21, γ = 1.10 and diffusion coefficients are D1 = 0.00001,
D2 = 0.00002. See Figure 6.
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Figure 6. (a) Graphical representation of steadiness of prey populace against time and space for the set
of values of Example 1. (b) Graphical representation of steadiness of predator populace time and space
for the set of values of Example 1.

Example 2. For the parameters α = 1.14, β = 0.21, γ = 1.10 and diffusion coefficients are D1 = 0.001,
D2 = 0.002. See Figure 7.
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Figure 7. (a) Graphical representation of steadiness of prey populace against time and space for the set
of values of Example 2. (b) Graphical representation of steadiness of predator populace time and space
for the set of values of Example 2.

Example 3. For the parameters α = 1.14, β = 0.21, γ = 1.10 and diffusion coefficients are D1 = 1 , D2 = 2.
See Figure 8.
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Figure 8. (a) Graphical representation of steadiness of prey populace against time and space for the set
of values of Example 3. (b) Graphical representation of steadiness of predator populace against time
and space for the set of values of Example 3.

Example 4. For the parameters α = 1.14, β = 0.21, γ = 1.10. See Figure 9.
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Figure 9. (a) Graphical representation of steadiness of prey and predator populace against time for the
set of values of Example 4. (b) Phase-portrait representation of prey against predator populace for the
set of values of Example 4.

Example 5. For the parameters α = 1.2105, β = 1.21, γ = 1.20. See Figure 10.
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Figure 10. (a) Graphical representation of steadiness of prey and predator populace against time for
the set of values of Example 5. (b) Phase-portrait representation of prey against predator populace for
the set of values of Example 5.

Example 6. For the parameters α = 2.2223, β = 2.21, γ = 2.20. See Figure 11.
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Figure 11. (a) Graphical representation of steadiness of prey and predator populace against time for
the set of values of Example 6. (b) Phase-portrait representation of prey against predator populace for
the set of values of Example 6.

Example 7. For the parameters α = 1.14, β = 0.21, γ = 1.10. See Figure 12.
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Figure 12. (a) Graphical representation of steadiness of prey population against time for the set of
values of Example 7. (b) Graphical representation of steadiness of predator population against time for
the set of values of Example 7.

Example 8. For the parameters α = 1.14, β = 0.21, γ = 1.10, α11 = 1, α22 = 1. See Figure 13.
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Figure 13. The graphical representation of steadiness of populations against time for the set of values
of Example 8.

Example 9. For the parameters α = 1.14, β = 0.21, γ = 1.10, α11 = 5, α22 = 30. See Figure 14.
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Figure 14. The graphical representation of steadiness of populations against time for the set of values
of Example 9.

Example 10. For the parameters α = 1.14, β = 0.21, γ = 1.10, α11 = 5, α22 = 60. See Figure 15.
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Figure 15. The graph of populations against time for the set of values of Example 10.

7. Concluding Remarks

To study the discrete type ratio-dependent model, we obtained several results. We considered the
Michaelis–Menten type functional response. In finding the fixed point, we saw that the endemic fixed
point exists when the consumption ability α of the predator precedes some critical value α1 = γ/(γ− β)

with β < γ.
We saw that the origin E0(0, 0) is stable if the consumption ability α of the predator exceeds some

critical value α2 = max
{

4− γ
β , 12− 3γ+8

β , 4(1−2β)+γ
1−β

}
when the death rate β of the predator precedes 1.

When the death rate β of the predator exceeds 1, the stability criteria demands the consumption ability
α to belong in

(
max

{
4− γ

β , 12− 3γ+8
β

}
, 4(2β−1)−γ

β−1

)
. According to the mathematical analysis, the axial

fixed point EA is stable if the death rate β of the predator lies between γ and 2 + γ. Otherwise, it is a
saddle point. The endemic equilibrium state EI is stable if (α, β, γ) ∈ VS and unstable if (α, β, γ) ∈ VU .
Here, VS and VU are the regions in the positive octant of αβγ-space.

The 2-dimensional discrete map exhibits a chaotic behavior as the maximal Lyapunov exponents
are positive for some values of α. In the continuous time model, such a irregular behavior is
not possible.

The dependence of the time series of two species on the initial conditions is evident from the
numerical analysis of the model. This type of dependence is not possible in continuous-time model,
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and the population have no possibility of evolving two different final asymptotic states. For a chaotic
trajectory, the nearby trajectories begin to diverge.

The discrete-time model has totally different behavior than the continuous-time model which
presents in Figures 9–12. For a low or reasonable death rate in predator system attains stable with
attractive oscillations, which is observed in Figure 12 (with set of parameters α = 1.14, β = 0.21,
γ = 1.10). For increased death rates in predator, system dynamics and its stability is shown in
Figures 10 and 11 at various carrying capability and death rates in predator.

Analytical findings and results in diffusion process are quite interesting in graphical view.
Diffusion dynamics are explored highly in simulation. Figure 6a,b are the graphical outcomes in the
process of Diffusion with the coefficients D1 = 0.00001, D2 = 0.00002 at the interior equilibrium point.
Figure 7a,b are the graphical outcomes in the process of Diffusion with the coefficients D1 = 0.001,
D2 = 0.002 at the interior equilibrium point. Figure 8a,b are the graphical outcomes in the process of
Diffusion with the coefficients D1 = 1, D2 = 2 at the interior equilibrium point. In all these figures,
prey exhibits rich dynamics. Figure 6a,b show clearly, at very low value of diffusion coefficient, the
system attains stable rapidly. Figure 7a,b show clearly, at low value of diffusion coefficient, the system
attains stable moderately. Figure 8a,b show clearly, at high value of diffusion coefficient, the system
attains stable little lately. Diffusion process and graphical views are playing a different and attractive
role on the proposed model, as well as on any other real world complex scenario.

The additional or dynamical forces, like white noise, exhibit interesting results in the process
of stochasticity. Stochastic study on any model enhances its stability performance. The perturbation
techniques used in the stochastic process help us to strengthen the steadiness of the proposed model.
Numerical simulation helps with the rich dynamics of the stochastic study. The analytical findings in
the stochastic process are explored attractively through computer simulations in Figures 13–15. It is
very clear, in graphs at high amplitudes of prey and predator, the system is highly oscillatory, and at
low amplitudes of prey and predator (with stochastic parameters α11 = 1, α22 = 1), in Figure 13, the
system attains stablility with low oscillations. Figure 14 (with stochastic parameters α11 = 5, α22 = 30)
and Figure 15 (with stochastic parameters α11 = 5, α22 = 60) show that the system attains stablility
with high oscillations. Thus, all the analytical findings in different segments are observed, supported,
and highly elevated in numerical simulations.

Author Contributions: K.D. designed the mathematical model and did the entire analysis with compilation;
M.N.S. focused on the stochastic and diffusion analysis part; N.H.G. performed the analysis of the model with
discrete time delay and sensitive parameter analysis; the numerical simulations were carried out jointly by K.D.,
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