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Abstract: A Pythagorean fuzzy soft set (PFSS) model is an extension of an intuitionistic fuzzy soft
set (IFSS) model to deal with vague knowledge according to different parameters. The PFSS model
is a more powerful tool for expressing uncertain information when making decisions and it relaxes
the constraint of IFSS. Hypergraphs are helpful to handle the complex relationships among objects.
Here, we apply the concept of PFSSs to hypergraphs, and present the notion of Pythagorean fuzzy
soft hypergraphs (PFSHs). Further, we illustrate some operations on PFSHs. Moreover, we describe
the regular PFSHs, perfectly regular PFSHs and perfectly irregular PFSHs. Finally, we consider the
application of PFSHs for the selection of a team of workers for business and got the appropriate result
by using score function.

Keywords: Pythagorean fuzzy soft hyperpgraphs; perfectly regular; perfectly irregular

1. Introduction

For the modeling and solution of combinative issues that appear in different areas,
including mathematics, computer science, and engineering, graph theory has become a powerful
theoretical structure but only pairwise relationships are represented by graphs. In several real-world
applications, relationships are more problematic among the objects, then graph theory fails to handle
such relationships when we consider more than two objects. Therefore, we use hypergraphs to
represent the complex relationships among the objects. In case of a set of multiarity relations,
hypergraphs are the generalization of graphs, in which a hypergraph may have more than two vertices.
Hypergraphs have many applications in different fields including biological science, computer science,
and discrete mathematics. There are a lot of complicated problems and notions in various fields such
as rewriting systems, databases and logic programming, which can be interpreted using hypergraphs
presented in [1].

The notion of classical set (CS) theory is generalized by fuzzy set (FS) theory. In CS theory,
information is either true or false but there is no information for the intermediate state. Many uncertain
problems can be handled more accurately by using FS. Zadeh introduced the FS in 1965 to solve
uncertainty problems [2]. In complex phenomena, FS theory plays an important role which is not
solved by CS theory. As an extension of FS, Atanassov [3] illuminated the intuitionistic fuzzy set (IFS)
by adding a non-membership function which satisfies the condition µ + ν ≤ 1. There are a lot of
decision making problems, where the sum of membership and non-membership degrees of an object
may be greater than 1 and square sum of its membership degree and non-membership degree is less
than or equal to 1. To handle such difficulties, Yager [4,5] introduced the concept of Pythagorean
fuzzy set (PFS) as an extension of IFS, which satisfies µ2 + ν2 ≤ 1 and it relaxes the constraint of IFS.
Multiparametric similarity measures on Pythagorean fuzzy sets were discussed by Peng et al. [6].
Peng et al. [7] studied Pythagorean fuzzy multi-criteria decision making method based on CODAS
with new score function. Fei et al. [8] worked on Pythagorean fuzzy (PF) decision making using
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soft likelihood functions. Fei et al. [9] studied multi-criteria decision making in PF environment.
For parameterized theory of uncertainty problems, Molodstov [10] gave the idea of soft set (SS) theory.
Fuzzy soft set (FSS) was defined by Maji et al. [11] and using this concept in decision making problems,
Roy and Maji [12] established many applications. Peng et al. [13] studied PFSSs and its applications.

Kaufmann [14] gave the concept of fuzzy graphs (FGs) in 1973. Some operations on FGs were
defined by Mordeson and Chang-Shyh [15] in 1994. Parvathi and Karunambigai [16] studied the
notion of intuitionistic fuzzy graphs (IFGs). Naz et al. [17] presented the view of Pythagorean fuzzy
graphs (PFGs). Some new operations of PFGs were established by Akram et al. [18]. The idea of
fuzzy soft graphs (FSGs) was established by Akram and Nawaz [19]. Shahzadi and Akram [20]
illustrated the concept of IFSGs. To overcome the uncertainty in crisp hypergraphs, the idea of
fuzzy hypergraphs (FHs) was introduced by Kaufmann [14]. Mordeson and Nair worked on FGs
as well as FHs in [21]. Chen [22] gave the notion of interval-valued FHs. Lee Kwang and Lee [23]
examined the FHs with fuzzy partition. Bipolar neutrosophic hypergraphs with applications were
presented by Akram and Luqman [24]. Hypergraphs in m-polar fuzzy environment are considered
in [25]. Thilagavathi [26] gave the idea of intuitionistic fuzzy soft hyergraphs (IFSHs). Further new
extensions of fuzzy hypergraphs are presented in [27,28]. In this paper, in Section 3, we have combined
the concepts of Pythagorean fuzzy soft sets and hypergraphs, and constructed PFSHs to deal the
complexity in relationships corresponding to different parameters. We have introduced the concept of
strong and complete PFSHs. We have discussed certain operations on PFSHs and regularity of PFSHs.
In Section 4, we have described steps of decision method. In Section 5, we have described a decision
making problem to obtain a competent team for business. In Section 6, we have concluded our results
related to our proposed model.

2. Preliminaries

Definition 1 ([17]). A PFG on a non-empty set X is a pair G = (A, B), where A is a PFS on X and B is a
PFR on X such that

µB(x1x2) ≤ min{µA(x1), µA(x2)}, νB(x1x2) ≤ max{νA(x1), νA(x2)},

and µ2
B(x1x2) + ν2

B(x1x2) ≤ 1, for all x1, x2 ∈ X.

Definition 2 ([20]). An IFSG on a non-empty set X is a tuple IG = (L̃, K̃, C) such that
1. C is a non-empty set of parameters,
2. (L̃, C) is an IFSS over X,
3. (K̃, C) is an IFSS over E ⊆ X× X,
4. (L̃(βi), K̃(βi)) is a connected IF subgraph for all βi ∈ C, i = 1, 2, . . . , m. That is,

K̃µ(βi)(x1x2) ≤ min{L̃µ(βi)(x1), L̃µ(βi)(x2)},

K̃ν(βi)(x1x2) ≤ max{L̃ν(βi)(x1), L̃ν(βi)(x2)},

such that 0 ≤ K̃µ(βi)(x1x2) + K̃ν(βi)(x1x2) ≤ 1, ∀ βi ∈ C, x1, x2 ∈ X.
The IF subgraph (L̃(βi), K̃(βi)) is denoted by T̃(βi) =

(
T̃µ(βi), T̃ν(βi)

)
.

Throughout this paper, we will use the notations as defined in Table 1.
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Table 1. Notations.

Symbol Definition

H = (L, K, C) Pythagorean fuzzy soft hypergraph

βi, i = 1, 2, . . . , m Parameters

(ξl , C), l = 1, 2, . . . , s Pythagorean fuzzy soft subsets

(K, C) Pythagorean fuzzy soft relation

T(βi) = (L(βi), K(βi)), ∀ βi ∈ C Pythagorean fuzzy subhypergraph

O(H) Order of Pythagorean fuzzy soft hypergraph

S(H) Size of Pythagorean fuzzy soft hypergraph

3. Pythagorean Fuzzy Soft Hypergraphs

Definition 3. A Pythagorean fuzzy soft hypergraph on a non-empty set X is a 3-tuple H = (L, K, C) where,
L = {(ξ1, C), (ξ2, C), . . . , (ξs, C)} is a family of Pythagorean fuzzy soft subsets over X and (K, C) is a
Pythagorean fuzzy soft relation on the Pythagorean fuzzy soft subsets (ξl , C) such that
1. µK(βi)

(el) = µK(βi)
({x1, x2, . . . , xr}) ≤ min{µξl(βi)

(x1), µξl(βi)
(x2), . . . , µξl(βi)

(xr)},
2. νK(βi)

(el) = νK(βi)
({x1, x2, . . . , xr}) ≤ max{νξl(βi)

(x1), νξl(βi)
(x2), . . . , νξl(βi)

(xr)},
for all x1, x2, . . . , xr ∈ X.
3.

⋃
βi∈C

⋃
1≤l≤s

supp(ξl(βi)) = X, i = 1, 2, . . . , m.

where (L(βi), K(βi)) is a PF subhypergraph for all βi ∈ C.

Example 1. We present directly a PFSH H = (L, K, C) on X = {a, b, c, d, f } which is shown in Figure 1,
where C = {β1, β2}.

4. (L̃(βi), K̃(βi)) is a connected IF subgraph for all βi ∈ C, i = 1, 2, · · · ,m. That is,

K̃µ(βi)(x1x2) ≤ min{L̃µ(βi)(x1), L̃µ(βi)(x2)},

K̃ν(βi)(x1x2) ≤ max{L̃ν(βi)(x1), L̃ν(βi)(x2)},

such that 0 ≤ K̃µ(βi)(x1x2) + K̃ν(βi)(x1x2) ≤ 1,∀ βi ∈ C, x1, x2 ∈ X.

The IF subgraph (L̃(βi), K̃(βi)) is denoted by T̃ (βi) =
(
T̃µ(βi), T̃ν(βi)

)
.

2 Pythagorean fuzzy soft hypergraphs

Definition 2.1. A Pythagorean fuzzy soft hypergraph on a non-empty set X is a 3-tuple H =

(L,K,C) where, L = {(ξ1, C), (ξ2, C), · · · , (ξs, C)} is a family of Pythagorean fuzzy soft subsets

over X and (K,C) is a Pythagorean fuzzy soft relation on the Pythagorean fuzzy soft subsets (ξl, C)

such that

1. µK(βi)(el) = µK(βi)({x1, x2, · · · , xr}) ≤ min{µξl(βi)(x1), µξl(βi)(x2), · · · , µξl(βi)(xr)},

2. νK(βi)(el) = νK(βi)({x1, x2, · · · , xr}) ≤ max{νξl(βi)(x1), νξl(βi)(x2), · · · , νξl(βi)(xr)},

for all x1, x2, · · · , xr ∈ X.

3.
⋃

βi∈C

⋃
1≤l≤s

supp(ξl(βi)) = X, i = 1, 2, · · · ,m.

where (L(βi),K(βi)) is a PF subhypergraph for all βi ∈ C.

Example 2.2. Consider a PFSH H = (L,K,C) on X = {a, b, c, d, f}, where C = {β1, β2}.
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Figure 2.1: PFSH H = {T (β1), T (β2)}

Definition 2.3. Let H1 = (L1,K1, C1) and H2 = (L2,K2, C2) be two PFSHs. Then H2 is a PFS

subhypergraph of H1 if

3

Figure 1. Pythagorean fuzzy soft hypergraph (PFSH) H = {T(β1), T(β2)}.

Definition 4. Let H1 = (L1, K1, C1) and H2 = (L2, K2, C2) be two PFSHs. Then H2 is a PFS subhypergraph
of H1 if

1. C2 ⊆ C1,
2. T2(βi) is a partial PF subhypergraph of T1(βi) for all βi ∈ C2.

Example 2. Consider two PFSHs H1 and H2 on X = {a, b, c, d, f } as shown in Figures 2 and 3, where
C1 = {β1, β2} and C2 = {β1}.



Math. Comput. Appl. 2019, 24, 100 4 of 21

1. C2 ⊆ C1,

2. T2(βi) is a partial PF subhypergraph of T1(βi) for all βi ∈ C2.

Example 2.4. Consider two PFSHs H1 and H2 on X = {a, b, c, d, f}, where C1 = {β1, β2} and

C2 = {β1}.
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Clearly, C2 ⊆ C1 and T2(βi) is a partial PF subhypergraph of T1(βi) for all βi ∈ C2. Hence H2

is a PFS subhypergraph of H1.

Theorem 2.5. Let H1 = (L,K,C1) and H2 = (L,K,C2) be two PFSHs. Then H2 is a PFS

subhypergraph of H1 iff L2(βi) ⊆ L1(βi) and K2(βi) ⊆ K1(βi) for all βi ∈ C2.
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Figure 2. PFSH H1 = {T1(β1), T1(β2)}.

1. C2 ⊆ C1,

2. T2(βi) is a partial PF subhypergraph of T1(βi) for all βi ∈ C2.

Example 2.4. Consider two PFSHs H1 and H2 on X = {a, b, c, d, f}, where C1 = {β1, β2} and

C2 = {β1}.
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Clearly, C2 ⊆ C1 and T2(βi) is a partial PF subhypergraph of T1(βi) for all βi ∈ C2. Hence H2

is a PFS subhypergraph of H1.

Theorem 2.5. Let H1 = (L,K,C1) and H2 = (L,K,C2) be two PFSHs. Then H2 is a PFS

subhypergraph of H1 iff L2(βi) ⊆ L1(βi) and K2(βi) ⊆ K1(βi) for all βi ∈ C2.

4

Figure 3. PFSH H2 = {T2(β1)}.

Clearly, C2 ⊆ C1 and T2(βi) is a partial PF subhypergraph of T1(βi) for all βi ∈ C2. Hence H2 is a PFS
subhypergraph of H1.

Theorem 1. Let H1 = (L, K, C1) and H2 = (L, K, C2) be two PFSHs. Then H2 is a PFS subhypergraph of
H1 iff L2(βi) ⊆ L1(βi) and K2(βi) ⊆ K1(βi) for all βi ∈ C2.

Proof. Suppose that H2 is a PFS subhypergraph of H1. Then C2 ⊆ C1 and T2(βi) is a partial PF
subhypergraph of T1(βi) for all βi ∈ C2. Clearly, L2(βi) ⊆ L1(βi) and K2(βi) ⊆ K1(βi) for all βi ∈ C2.

Conversely, suppose that L2(βi) ⊆ L1(βi) and K2(βi) ⊆ K1(βi), for all βi ∈ C2. Since H2 is a PFS
hypergraph, T2(βi) is a PF subhypergraph for all βi ∈ O2. Thus T2(βi) is a partial PF subhypergraph
of T1(βi) for all βi ∈ O2. Hence H2 is a PFS subgraph of H1.

Definition 5. The PFSH H2 = (L2, K2, C2) is called spanning PFS subhypergraph of H1 = ( Ĩ1, J̃1, O1) if
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1. C2 ⊆ C1,
2. µL2(βi)

(x) = µL1(βi)
(x), νL2(βi)

(x) = νL1(βi)
(x),

for all βi ∈ C2, x ∈ X. There is no any restriction for arc weights.

Definition 6. The order of a PFSH is
O(H) =

(
∑

βi∈C
( ∑

x∈X
∧µξl(βi)

(x)), ∑
βi∈C

( ∑
x∈X
∨νξl(βi)

(x))
)
.

Definition 7. The size of a PFSH is
S(H) =

(
∑

βi∈C
( ∑

el⊂X
µK(βi)

(el), ∑
βi∈C

( ∑
el⊂X

νK(βi)
(el))

)
.

Example 3. Consider a PFSH H = (L, K, C) on X = {a, b, c, d} as shown in Figure 4, where C = {β1, β2}.

Proof. Suppose that H2 is a PFS subhypergraph of H1. Then C2 ⊆ C1 and T2(βi) is a partial

PF subhypergraph of T1(βi) for all βi ∈ C2. Clearly, L2(βi) ⊆ L1(βi) and K2(βi) ⊆ K1(βi) for all

βi ∈ C2.

Conversely, suppose that L2(βi) ⊆ L1(βi) and K2(βi) ⊆ K1(βi), for all βi ∈ C2. Since H2 is

a PFS hypergraph, T2(βi) is a PF subhypergraph for all βi ∈ O2. Thus T2(βi) is a partial PF

subhypergraph of T1(βi) for all βi ∈ O2. Hence H2 is a PFS subgraph of H1.

Definition 2.6. The PFSH H2 = (L2,K2, C2) is called spanning PFS subhypergraph of H1 =

(Ĩ1, J̃1, O1) if

1. C2 ⊆ C1,

2. µL2(βi)(x) = µL1(βi)(x), νL2(βi)(x) = νL1(βi)(x),

for all βi ∈ C2, x ∈ X. There is no any restriction for arc weights.

Definition 2.7. The order of a PFSH is

O(H) =
( ∑
βi∈C

(
∑
x∈X

∧µξl(βi)(x)),
∑

βi∈C
(
∑
x∈X

∨νξl(βi)(x))
)
.

Definition 2.8. The size of a PFSH is

S(H) =
( ∑
βi∈C

(
∑

el⊂X

µK(βi)(el),
∑

βi∈C
(
∑

el⊂X

νK(βi)(el))
)
.

Example 2.9. Consider a PFSH H = (L,K,C) on X = {a, b, c, d}, where C = {β1, β2}.
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Figure 4. PFSH H = {T(β1), T(β2)}.

Then the order of PFSH is

O(H) =
(
(0.8 + 0.9 + 0.7 + 0.4) + (0.8 + 0.7 + 0.6 + 0.7), (0.3 + 0.2 + 0.6 + 0.3)

+(0.5 + 0.3 + 0.6 + 0.6)
)

= (5.6, 3.4).

The size of PFSH is

S(H) =
(
(0.4 + 0.7) + (0.6 + 0.6), (0.6 + 0.3) + (0.6 + 0.6)

)

= (1.3, 2.1).

Definition 8. A PFSH H is a strong PFSH if T(βi) is a strong PFH for all βi ∈ C. That is,
µK(βi)

(el) = µK(βi)
({x1, x2, . . . , xr}) = min{µξl(βi)

(x1), µξl(βi)
(x2), . . . , µξl(βi)

(xr)},
νK(βi)

(el) = νK(βi)
({x1, x2, . . . , xr}) = max{µξl(βi)

(x1), µξl(βi)
(x2), . . . , µξl(βi)

(xr)},
for all el = {x1, x2, . . . , xr} ∈ E.

Example 4. Consider a PFSH H = (L, K, C) on X = {a, b, c, d, f }, where C = {β1}. It is cleared from
Figure 5 that H is a strong PFSH.
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Then the order of PFSH is

O(H) =
(
(0.8 + 0.9 + 0.7 + 0.4) + (0.8 + 0.7 + 0.6 + 0.7), (0.3 + 0.2 + 0.6 + 0.3)

+(0.5 + 0.3 + 0.6 + 0.6)
)

= (5.6, 3.4).

The size of PFSH is

S(H) =
(
(0.4 + 0.7) + (0.6 + 0.6), (0.6 + 0.3) + (0.6 + 0.6)

)

= (1.3, 2.1).

Definition 2.10. A PFSH H is a strong PFSH if T (βi) is a strong PFH for all βi ∈ C. That is,

µK(βi)(el) = µK(βi)({x1, x2, · · · , xr}) = min{µξl(βi)(x1), µξl(βi)(x2), · · · , µξl(βi)(xr)},

νK(βi)(el) = νK(βi)({x1, x2, · · · , xr}) = max{µξl(βi)(x1), µξl(βi)(x2), · · · , µξl(βi)(xr)},

for all el = {x1, x2, · · · , xr} ∈ E.

Example 2.11. Consider a PFSH H = (L,K,C) on X = {a, b, c, d, f}, where C = {β1}.
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Figure 2.5: Strong PFSH H = {T (β1)}

Clearly, H is a strong PFSH.

6

Figure 5. Strong PFSH H = {T(β1)}.

Definition 9. A PFSH H is a complete PFSH if T(βi) is a strong PFH for all βi ∈ C. That is,
µK(βi)

(el) = µK(βi)
({x1, x2, . . . , xr}) = min{µξl(βi)

(x1), µξl(βi)
(x2), . . . , µξl(βi)

(xr)},
νK(βi)

(el) = νK(βi)
({x1, x2, . . . , xr}) = max{µξl(βi)

(x1), µξl(βi)
(x2), . . . , µξl(βi)

(xr)},
for all x1, x2, . . . , xr ∈ X.

Example 5. Consider a PFSH H = (L, K, C) on X = {a, b, c, d}, where C = {β1}. It is cleared from Figure 6
that H is a complete PFSH.

Definition 2.12. A PFSH H is a complete PFSH if T (βi) is a strong PFH for all βi ∈ C. That is,

µK(βi)(el) = µK(βi)({x1, x2, · · · , xr}) = min{µξl(βi)(x1), µξl(βi)(x2), · · · , µξl(βi)(xr)},

νK(βi)(el) = νK(βi)({x1, x2, · · · , xr}) = max{µξl(βi)(x1), µξl(βi)(x2), · · · , µξl(βi)(xr)},

for all x1, x2, · · · , xr ∈ X.

Example 2.13. Consider a PFSH H = (L,K,C) on X = {a, b, c, d}, where C = {β1}.
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Figure 2.6: Complete PFSH H = {T (β1)}

We now discuss some operations on PFSHs.

Definition 2.14. Let H1 = (L1,K1, C1) and H2 = (L2,K2, C2) be two PFSHs on X1 and X2,

respectively. Then union of H1 and H2, denoted by H1 ∪ H2, is a PFSH (L,K,C1 ∪ C2), where

(L,C1 ∪ C2) = {(ξ1, C1 ∪ C2), (ξ2, C1 ∪ C2), · · · , (ξs, C1 ∪ C2)} is a family of PFS subsets over

X = X1 ∪ X2 and (K,C1 ∪ C2) is a PFS relation on the PFS subsets (ξl, C1 ∪ C2) and T (βi) =

(L(βi),K(βi)) is a PFH for all βi ∈ C1 ∪ C2 defined by

T (βi) =





T1(βi) if βi ∈ C1 − C2,

T2(βi) if βi ∈ C2 − C1,

T1(βi) ∪ T2(βi) if βi ∈ C1 ∩ C2,

where T1(βi) ∪ T2(βi) denotes the union of two PFHs for all βi ∈ C1 ∩ C2.

Example 2.15. Consider two PFSHs H1 = (L1,K1, C1) and H2 = (L2,K2, C2) on X1 = {a, b, c, d}
and X2 = {a, b, c, f}, respectively as shown in Figs. 2.7 and 2.8, where C1 = {β1} and C2 = {β1, β2}.

7

Figure 6. Complete PFSH H = {T(β1)}.

We now discuss some operations on PFSHs.

Definition 10. Let H1 = (L1, K1, C1) and H2 = (L2, K2, C2) be two PFSHs on X1 and X2, respectively.
Then union of H1 and H2, denoted by H1 ∪ H2, is a PFSH (L, K, C1 ∪ C2), where (L, C1 ∪ C2) = {(ξ1, C1 ∪
C2), (ξ2, C1 ∪ C2), . . . , (ξs, C1 ∪ C2)} is a family of PFS subsets over X = X1 ∪ X2 and (K, C1 ∪ C2) is a PFS
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relation on the PFS subsets (ξl , C1 ∪ C2) and T(βi) = (L(βi), K(βi)) is a PFH for all βi ∈ C1 ∪ C2 defined by

T(βi) =





T1(βi) i f βi ∈ C1 − C2,
T2(βi) i f βi ∈ C2 − C1,
T1(βi) ∪ T2(βi) i f βi ∈ C1 ∩ C2,

where T1(βi) ∪ T2(βi) denotes the union of two PFHs for all βi ∈ C1 ∩ C2.

Example 6. Consider two PFSHs H1 = (L1, K1, C1) and H2 = (L2, K2, C2) on X1 = {a, b, c, d} and
X2 = {a, b, c, f }, respectively as shown in Figures 7 and 8, where C1 = {β1} and C2 = {β1, β2}.
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Figure 2.7: PFSH H1 = {T1(β1)}
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Figure 2.8: PFSH H2 = {T2(β1), T2(β2)}

Union of H1 and H2 is given in Fig. 2.9.
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Figure 7. PFSH H1 = {T1(β1)}.
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Figure 2.7: PFSH H1 = {T1(β1)}
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Figure 2.8: PFSH H2 = {T2(β1), T2(β2)}

Union of H1 and H2 is given in Fig. 2.9.
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Figure 8. PFSH H2 = {T2(β1), T2(β2)}.

The union of H1 and H2 is given in Figure 9.
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Figure 2.9: PFSH H = H1 ∪H2

Theorem 2.16. Let H1 and H2 be two PFSHs such that C1 ∩ C2 6= ∅. Then their union H1 ∪H2

is a PFSH.

Proof. The union of H1 and H2 is defined by H1 ∪H2 = (T,C), where C = C1 ∪ C2 and

T (βi) =





T1(βi) if βi ∈ C1 − C2,

T2(βi) if βi ∈ C2 − C1,

T1(βi) ∪ T2(βi) if βi ∈ C1 ∩ C2.

Since H1 is a PFSH then T1(βi) is a PFH for all βi ∈ C1. Since H2 is also a PFSH then T2(βi) is

also a PFH for all βi ∈ C2. Since union of two PFHs is a PFH, T1(βi) ∪ T2(βi) is a PFH for all

βi ∈ C1 ∩ C2. Therefore, T (βi) is a PFH for all βi ∈ C. Thus H1 ∪H2 = (T,C) is a PFSH.

Definition 2.17. Let H1 = (L1,K1, C1) and H2 = (L2,K2, C2) be two PFSHs on X1 and X2,

respectively. Then Cartesian product of H1 and H2 is a PFSH H = H1 ⋉ H2 = (L,K,C1 × C2),

where L1 and L2 are Pythagorean fuzzy subsets of X1 and X2 and K1 and K2 are Pythagorean

fuzzy subsets of E1 and E2 and (L(βi, βj),K(βi, βj)) is a PFH for all (βi, βj) ∈ C1 × C2. That is,

1. Lµ(βi, βj)(x1, x2) = min{ L1µ(βi)(x1), L2µ(βj)(x2)},
Lν(βi, βj)(x1, x2) = max{L1ν(βi)(x1), L2ν(βj)(x2)},∀ (x1, x2) ∈ X,

2. Kµ(βi, βj)({x1} × e2) = min{L1µ(βi)(x1),K2µ(βj)(e2)},
Kν(βi, βj)({x1} × e2) = max{L1ν(βi)(x1),K2ν(βj)(e2)},∀ x1 ∈ X1, e2 ∈ E2,

3. Kµ(βi, βj)(e1 × {x2}) = min{K1µ(βi)(e1), L2µ(βj)(x2)},
Kν(βi, βj)(e1 × {x2}) = max{K1ν(βi)(e1), L2ν(βj)(x2)},∀ x2 ∈ X2, e1 ∈ E1.
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Figure 9. PFSH H = H1 ∪ H2.

Theorem 2. Let H1 and H2 be two PFSHs such that C1 ∩ C2 6= ∅. Then their union H1 ∪ H2 is a PFSH.
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Proof. The union of H1 and H2 is defined by H1 ∪ H2 = (T, C), where C = C1 ∪ C2 and

T(βi) =





T1(βi) i f βi ∈ C1 − C2,
T2(βi) i f βi ∈ C2 − C1,
T1(βi) ∪ T2(βi) i f βi ∈ C1 ∩ C2.

Since H1 is a PFSH then T1(βi) is a PFH for all βi ∈ C1. Since H2 is also a PFSH then T2(βi) is also a
PFH for all βi ∈ C2. Since union of two PFHs is a PFH, T1(βi) ∪ T2(βi) is a PFH for all βi ∈ C1 ∩ C2.
Therefore, T(βi) is a PFH for all βi ∈ C. Thus H1 ∪ H2 = (T, C) is a PFSH.

Definition 11. Let H1 = (L1, K1, C1) and H2 = (L2, K2, C2) be two PFSHs on X1 and X2, respectively. Then
Cartesian product of H1 and H2 is a PFSH H = H1 n H2 = (L, K, C1×C2), where L1 and L2 are Pythagorean
fuzzy subsets of X1 and X2 and K1 and K2 are Pythagorean fuzzy subsets of E1 and E2 and (L(βi, β j), K(βi, β j))

is a PFH for all (βi, β j) ∈ C1 × C2. That is,

1. Lµ(βi, β j)(x1, x2) = min{Ł1µ(βi)(x1), L2µ(β j)(x2)},
Lν(βi, β j)(x1, x2) = max{L1ν(βi)(x1), L2ν(β j)(x2)}, ∀ (x1, x2) ∈ X,

2. Kµ(βi, β j)({x1} × e2) = min{L1µ(βi)(x1), K2µ(β j)(e2)},
Kν(βi, β j)({x1} × e2) = max{L1ν(βi)(x1), K2ν(β j)(e2)}, ∀ x1 ∈ X1, e2 ∈ E2,

3. Kµ(βi, β j)(e1 × {x2}) = min{K1µ(βi)(e1), L2µ(β j)(x2)},
Kν(βi, β j)(e1 × {x2}) = max{K1ν(βi)(e1), L2ν(β j)(x2)}, ∀ x2 ∈ X2, e1 ∈ E1.

T(βi, β j) = T1(βi) n T2(β j) = {L1(βi) n L2(β j), K1(βi) n K2(β j)}, ∀ (βi, β j) ∈ C1 × C2, is a PFH.

Theorem 3. The Cartesian product of two PFSHs is a PFSH.

Proof. Let H1 and H2 be two PFSHs. Let (T, C) = {L(βi) n L(β j), K(βi) n K(β j)} be the Cartesian
product of H1 and H2, ∀ βi ∈ C1, ∀ β j ∈ C2 for i = 1, 2, . . . , m, j = 1, 2, . . . , n. We claim that (T, C) is a
PFSH. Let x1 ∈ X1, e1 ∈ E1, suppose e1 contains p vertices, where 1 ≤ p ≤ n1 and x2 ∈ X2, e2 ∈ E2,
suppose e2 contains q vertices, where 1 ≤ q ≤ n2. Then we have
Case (i): Let x1 ∈ X1, e2 ∈ E2.

(K1µ(βi) n K2µ(β j))({x1} × e2) = min{L1µ(βi)(x1), K2µ(β j)(e2)}
≤ min{L1µ(βi)(x1), min

x2∈e2
L2µ(β j)(x2)}

= min
{

L1µ(βi)(x1), min{L2µ(β j)(x21), L2µ(β j)(x22), . . . ,

L2µ(β j)(x2q)}
}

= min
{

min{L1µ(βi)(x1), L2µ(β j)(x21)}, min{L1µ(βi)(x1),

L2µ(β j)(x22)}, . . . , min{L1µ(βi)(x1), L2µ(β j)(x2q)}
}

= min{(L1µ(βi) n L2µ(β j))(x1, x21), (L1µ(βi) n L2µ(β j))(x1, x22)

, . . . , (L1µ(βi) n L2µ(β j))(x1, x2q)}
= min

x1∈e1,x2∈e2
(L1µ(βi) n L2µ(β j))(x1, x2),
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and

(K1ν(βi) n K2ν(β j))({x1} × e2) = max{L1ν(βi)(x1), K2ν(β j)(e2)}
≤ max{L1ν(βi)(x1), max

x2∈e2
L2ν(β j)(x2)}

= max
{

L1ν(βi)(x1), max{L2ν(β j)(x21), L2ν(β j)(x22), . . . ,

L2ν(β j)(x2q)}
}

= max
{

max{L1ν(βi)(x1), L2ν(β j)(x21)}, max{L1ν(βi)(x1),

L2ν(β j)(x22)}, . . . , max{L1ν(βi)(x1), L2ν(β j)(x2q)}
}

= max{(L1ν(βi) n L2ν(β j))(x1, x21), (L1ν(βi) n L2ν(β j))(x1, x22)

, . . . , (L1ν(βi) n L2ν(β j))(x1, x2q)}
= max

x1∈X1,x2∈e2
(L1ν(βi) n L2ν(β j))(x1, x2).

Similarly, we can show that
(K1µ(βi) n K2µ(β j))(e1 × {x2}) ≤ min

x1∈e1,x2∈X2
(L1µ(βi) n L2µ(β j))(x1, x2),

(K1ν(βi) n K2ν(β j))(e1 × {x2}) ≤ max
x1∈e1,x2∈X2

(L1ν(βi) n L2ν(β j))(x1, x2).

Definition 12. Let H1 = (L1, K1, C1) and H2 = (L2, K2, C2) be two PFSHs on X1 and X2, respectively.
Then the composition product of H1 and H2 is a PFSH H = H1 � H2 = (L, K, C1 × C2), where L1 and L2

are Pythagorean fuzzy subsets of X1 and X2 and K1 and K2 are Pythagorean fuzzy subsets of E1 and E2 and
(L(βi, β j), K(βi, β j)) is a PFH for all (βi, β j) ∈ C1 × C2. That is,

1. Lµ(βi, β j)(x1, x2) = min{Ł1µ(βi)(x1), L2µ(β j)(x2)},
Lν(βi, β j)(x1, x2) = max{L1ν(βi)(x1), L2ν(β j)(x2)}, ∀ (x1, x2) ∈ X,

2. Kµ(βi, β j)({x1} × e2) = min{L1µ(βi)(x1), K2µ(β j)(e2)},
Kν(βi, β j)({x1} × e2) = max{L1ν(βi)(x1), K2ν(β j)(e2)}, ∀ x1 ∈ X1, e2 ∈ E2,

3. Kµ(βi, β j)(e1 × {x2}) = min{K1µ(βi)(e1), L2µ(β j)(x2)},
Kν(βi, β j)(e1 × {x2}) = max{K1ν(βi)(e1), L2ν(β j)(x2)}, ∀ x2 ∈ X2, e1 ∈ E1,

4. Kµ(βi, β j)((x11, x21)(x12, x22) . . . (x1p, x2q)) = min{K1µ(βi)(e1), L2µ(β j)(x21), L2µ(β j)(x22), . . . ,

L2µ(β j)(x2q)}
Kν(βi, β j)((x11, x21)(x12, x22) . . . (x1p, x2q)) = max{K1ν(βi)(e1), L2ν(β j)(x21), L2ν(β j)(x22), . . . ,

L2ν(β j)(x2q)}

T(βi, β j) = T1(βi) � T2(β j)={L1(βi) � L2(β j), K1(βi) � K2(β j)}, ∀ (βi, β j) ∈ C1 × C2, is a PFH.

Theorem 4. The composition product of two PFSHs is a PFSH.
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Proof. Case (i): Let x1 ∈ X1, e2 ∈ E2.

(K1µ(βi) � K2µ(β j))({x1} × e2) = min{L1µ(βi)(x1), K2µ(β j)(e2)}
≤ min{L1µ(βi)(x1), min

x2∈e2
L2µ(β j)(x2)}

= min
{

L1µ(βi)(x1), min{L2µ(β j)(x21), L2µ(β j)(x22), . . . ,

L2µ(β j)(x2q)}
}

= min
{

min{L1µ(βi)(x1), L2µ(β j)(x21)}, min{L1µ(βi)(x1),

L2µ(β j)(x22)}, . . . , min{L1µ(βi)(x1), L2µ(β j)(x2q)}
}

= min{(L1µ(βi) � L2µ(β j))(x1, x21), (L1µ(βi) � L2µ(β j))(x1, x22)

, . . . , (L1µ(βi) � L2µ(β j))(x1, x2q)}
= min

x1∈e1,x2∈e2
(L1µ(βi) � L2µ(β j))(x1, x2),

and

(K1ν(βi) � K2ν(β j))({x1} × e2) = max{L1ν(βi)(x1), K2ν(β j)(e2)}
≤ max{L1ν(βi)(x1), max

x2∈e2
L2ν(β j)(x2)}

= max
{

L1ν(βi)(x1), max{L2ν(β j)(x21), L2ν(β j)(x22), . . . ,

L2ν(β j)(x2q)}
}

= max
{

max{L1ν(βi)(x1), L2ν(β j)(x21)}, max{L1ν(βi)(x1),

L2ν(β j)(x22)}, . . . , max{L1ν(βi)(x1), L2ν(β j)(x2q)}
}

= max{(L1ν(βi) � L2ν(β j))(x1, x21), (L1ν(βi) � L2ν(β j))(x1, x22)

, . . . , (L1ν(βi) � L2ν(β j))(x1, x2q)}
= max

x1∈X1,x2∈e2
(L1ν(βi) � L2ν(β j))(x1, x2).

Similarly, we can show that for case (ii)
(K1µ(βi) � K2µ(β j))(e1 × {x2}) ≤ min

x1∈e1,x2∈X2
(L1µ(βi) � L2µ(β j))(x1, x2),

(K1ν(βi) � K2ν(β j))(e1 × {x2}) ≤ max
x1∈e1,x2∈X2

(L1ν(βi) � L2ν(β j))(x1, x2).

Case (iii): Let e1 ∈ E1, x21, x22, . . . , x2q ∈ X2.

(K1µ(βi) � K2µ(β j))((x11, x21)(x12, x22) . . . (x1p, x2q)) = min{K1µ(βi)(e1), L2µ(β j)(x21), L2µ(β j)(x22),

. . . , L2µ(β j)(x2q)}
≤ min{min

x1∈e1
L1µ(x1), L2µ(x21), L2µ(x22),

. . . , L2µ(x2q)}
= min{min{L1µ(x11), L1µ(x12), . . . , L1µ(x1p)},

L2µ(x21), L2µ(x22), . . . , L2µ(x2q)}
= min{min{L1µ(x11), L2µ(x21)}, min{L1µ(x12),

L2µ(x22)}, . . . , min{L1µ(x1p), L2µ(x2q)}}
= min{(L1µ � L2µ)(x11, x21), (L1µ � L2µ)(x12, x22),

. . . , (L1µ � L2µ)(x1p, x2q)}
= min

x1∈e1,x2∈e2
(L1µ � L2µ)(x1, x2),
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and

(K1ν(βi) � K2ν(β j))((x11, x21)(x12, x22) . . . (x1p, x2q)) = max{K1ν(βi)(e1), L2ν(β j)(x21), L2ν(β j)(x22),

. . . , L2ν(β j)(x2q)}
≤ max{max

x1∈e1
L1ν(x1), L2ν(x21), L2ν(x22), . . . ,

L2ν(x2q)}
= max{max{L1ν(x11), L1ν(x12), . . . , L1ν(x1p)},

L2ν(x21), L2ν(x22), . . . , L2ν(x2q)}
= max{max{L1ν(x11), L2ν(x21)}, max{L1ν(x12),

L2ν(x22)}, . . . , max{L1ν(x1p), L2ν(x2q)}}
= max{(L1ν � L2ν)(x11, x21), (L1ν � L2ν)(x12, x22),

. . . , (L1ν � L2ν)(x1p, x2q)}
= max

x1∈e1,x2∈e2
(L1ν � L2ν)(x1, x2).

Now we define the concept of a PFS uniform hypergraph and strong and lexicographic products
of PFS uniform hypergraphs.

Definition 13. A PFSH H is called a PFS uniform hypergraph if T(βi) is a PF (di, d′i)-uniform hypergraph,
i.e, for all |supp(µK(βi)

, νK(βi)
)| = (di, d′i), ∀ βi ∈ C.

Example 7. Consider a PFSH H on X = {a, b, c, d, f }, where C = {β1}. It is cleared from Figure 10 that H
is a PFS uniform hypergraph.

and

(K1ν(βi) ⋄K2ν(βj))((x11, x21)(x12, x22) · · · (x1p, x2q)) = max{K1ν(βi)(e1), L2ν(βj)(x21), L2ν(βj)(x22),

· · · , L2ν(βj)(x2q)}
≤ max{max

x1∈e1
L1ν(x1), L2ν(x21), L2ν(x22), · · · ,

L2ν(x2q)}
= max{max{L1ν(x11), L1ν(x12), · · · , L1ν(x1p)},

L2ν(x21), L2ν(x22), · · · , L2ν(x2q)}
= max{max{L1ν(x11), L2ν(x21)},max{L1ν(x12),

L2ν(x22)}, · · · ,max{L1ν(x1p), L2ν(x2q)}}
= max{(L1ν ⋄ L2ν)(x11, x21), (L1ν ⋄ L2ν)(x12, x22),

· · · , (L1ν ⋄ L2ν)(x1p, x2q)}
= max

x1∈e1,x2∈e2
(L1ν ⋄ L2ν)(x1, x2).

Definition 2.21. A PFSH H is called PFS uniform hypergraph if T (βi) is a PF (di, d
′
i)-uniform

hypergraph, i.e, for all |supp(µK(βi), νK(βi))| = (di, d
′
i), ∀ βi ∈ C.

Example 2.22. Consider a PFSH H on X = {a, b, c, d, f}, where C = {β1}.
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Figure 2.10: PFS uniform hypergraph H = {T (β1)}

Definition 2.23. Let H1 = (L1,K1, C1) and H2 = (L2,K2, C2) be two PFS uniform hypergraphs

on X1 and X2, respectively. Then strong product of H1 and H2 is a PFS uniform hypergraph

13

Figure 10. Pythagorean fuzzy soft (PFS) uniform hypergraph H = {T(β1)}.

Definition 14. Let H1 = (L1, K1, C1) and H2 = (L2, K2, C2) be two PFS uniform hypergraphs on X1 and X2,
respectively. Then strong product of H1 and H2 is a PFS uniform hypergraph H = H1�H2 = (L, K, C1 × C2),
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where L1 and L2 are Pythagorean fuzzy subsets of X1 and X2 and K1 and K2 are Pythagorean fuzzy subsets of
E1 and E2 and (L(βi, β j), K(βi, β j)) is a PFH for all (βi, β j) ∈ C1 × C2. That is,

1. Lµ(βi, β j)(x1, x2) = min{Ł1µ(βi)(x1), L2µ(β j)(x2)},
Lν(βi, β j)(x1, x2) = max{L1ν(βi)(x1), L2ν(β j)(x2)}, ∀ (x1, x2) ∈ X,

2. Kµ(βi, β j)({x1} × e2) = min{L1µ(βi)(x1), K2µ(β j)(e2)},
Kν(βi, β j)({x1} × e2) = max{L1ν(βi)(x1), K2ν(β j)(e2)}, ∀ x1 ∈ X1, e2 ∈ E2,

3. Kµ(βi, β j)(e1 × {x2}) = min{K1µ(βi)(e1), L2µ(β j)(x2)},
Kν(βi, β j)(e1 × {x2}) = max{K1ν(βi)(e1), L2ν(β j)(x2)}, ∀ x2 ∈ X2, e1 ∈ E1,

4. Kµ(βi, β j)(e1 × e2) = min{K1µ(e1), K2µ(e2)}
Kν(βi, β j)(e1 × e2) = max{K1ν(e1), K2ν(e2)}, ∀ e1 ∈ E1, ∀ e2 ∈ E2.

T(βi, β j) = T1(βi)�T2(β j)={L1(βi)�L2(β j), K1(βi)�K2(β j)}, ∀ (βi, β j) ∈ C1 × C2, is a PFH.

Theorem 5. If H1 and H2 are the PFS uniform hypergraphs, then H1�H2 is a PFS uniform hypergraph.

Proof. Case (i): Let x1 ∈ X1, e2 ∈ E2.

(K1µ(βi)�K2µ(β j))({x1} × e2) = min{L1µ(βi)(x1), K2µ(β j)(e2)}
≤ min{L1µ(βi)(x1), min

x2∈e2
L2µ(β j)(x2)}

= min
{

L1µ(βi)(x1), min{L2µ(β j)(x21), L2µ(β j)(x22), . . . ,

L2µ(β j)(x2q)}
}

= min
{

min{L1µ(βi)(x1), L2µ(β j)(x21)}, min{L1µ(βi)(x1),

L2µ(β j)(x22)}, . . . , min{L1µ(βi)(x1), L2µ(β j)(x2q)}
}

= min{(L1µ(βi)�L2µ(β j))(x1, x21), (L1µ(βi)�L2µ(β j))(x1, x22), . . .

, (L1µ(βi)�L2µ(β j))(x1, x2q)}
= min

x1∈e1,x2∈e2
(L1µ(βi)�L2µ(β j))(x1, x2),

and

(K1ν(βi)�K2ν(β j))({x1} × e2) = max{L1ν(βi)(x1), K2ν(β j)(e2)}
≤ max{L1ν(βi)(x1), max

x2∈e2
L2ν(β j)(x2)}

= max
{

L1ν(βi)(x1), max{L2ν(β j)(x21), L2ν(β j)(x22), . . . ,

L2ν(β j)(x2q)}
}

= max
{

max{L1ν(βi)(x1), L2ν(β j)(x21)}, max{L1ν(βi)(x1),

L2ν(β j)(x22)}, . . . , max{L1ν(βi)(x1), L2ν(β j)(x2q)}
}

= max{(L1ν(βi)�L2ν(β j))(x1, x21), (L1ν(βi)�L2ν(β j))(x1, x22), . . .

, (L1ν(βi)�L2ν(β j))(x1, x2q)}
= max

x1∈X1,x2∈e2
(L1ν(βi)�L2ν(β j))(x1, x2).

Similarly, we can show that for case (ii)
(K1µ(βi)�K2µ(β j))(e1 × {x2}) ≤ min

x1∈e1,x2∈X2
(L1µ(βi)�L2µ(β j))(x1, x2),
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(K1ν(βi)�K2ν(β j))(e1 × {x2}) ≤ max
x1∈e1,x2∈X2

(L1ν(βi)�L2ν(β j))(x1, x2).

Case (iii): Let e1 ∈ E1, e2 ∈ E2.

(K1µ(βi)�K2µ(β j))(e1 × e2) = min{K1µ(e1), K2µ(e2)}
≤ min{min

x1∈e1
L1µ(x1), min

x2∈e2
L2µ(x2)}

= min
{

min{L1µ(x11), L1µ(x12), . . . , L1µ(x1r)},
min{L2µ(x21), L2µ(x22), . . . , L2µ(x2r)}

}

= min{min{L1µ(x11), L2µ(x21)}, min{L1µ(x12), L2µ(x22)}
, . . . , min{L1µ(x1r), Lµ2(x2r)}}

= min{(L1µ�L2µ)(x11, x21), (L1µ�L2µ)(x12, x22), . . . ,

(L1µ�L2µ)(x1r, x2r)}
= min

x1∈e1,x2∈e2
(L1µ�L2µ)(x1, x2),

and

(K1ν(βi)�K2ν(β j))(e1 × e2) = max{K1ν(e1), K2ν(e2)}
≤ max{max

x1∈e1
L1ν(x1), max

x2∈e2
L2ν(x2)}

= max
{

max{L1ν(x11), L1ν(x12), . . . , L1ν(x1r)},
max{L2ν(x21), L2ν(x22), . . . , L2ν(x2r)}

}

= max{max{L1ν(x11), L2ν(x21)}, max{L1ν(x12), L2ν(x22)}, . . . ,

max{L1ν(x1r), Lν2(x2r)}}
= max{(L1ν�L2ν)(x11, x21), (L1ν�L2ν)(x12, x22), . . . ,

(L1ν�L2ν)(x1r, x2r)}
= max

x1∈e1,x2∈e2
(L1ν�L2ν)(x1, x2).

Definition 15. Let H1 = (L1, K1, C1) and H2 = (L2, K2, C2) be two PFS uniform hypergraphs on X1 and
X2, respectively. Then lexicographic product of H1 and H2 is a PFS uniform hypergraph H = H1 � H2 =

(L, K, C1 × C2), where L1 and L2 are Pythagorean fuzzy subsets of X1 and X2 and K1 and K2 are Pythagorean
fuzzy subsets of E1 and E2 and (L(βi, β j), K(βi, β j)) is a PFH for all (βi, β j) ∈ C1 × C2. That is,

1. Lµ(βi, β j)(x1, x2) = min{Ł1µ(βi)(x1), L2µ(β j)(x2)},
Lν(βi, β j)(x1, x2) = max{L1ν(βi)(x1), L2ν(β j)(x2)}, ∀ (x1, x2) ∈ X,

2. Kµ(βi, β j)({x1} × e2) = min{L1µ(βi)(x1), K2µ(β j)(e2)},
Kν(βi, β j)({x1} × e2) = max{L1ν(βi)(x1), K2ν(β j)(e2)}, ∀ x1 ∈ X1, e2 ∈ E2,

3. Kµ(βi, β j)(e1 × e2) = min{K1µ(e1), K2µ(e2)},
Kν(βi, β j)(e1 × e2) = max{K1ν(e1), K2ν(e2)}, ∀ e1 ∈ E1, ∀ e2 ∈ E2.

T(βi, β j) = T1(βi) � T2(β j)={L1(βi) � L2(β j), K1(βi) � K2(β j)}, ∀ (βi, β j) ∈ C1 × C2, is a PFH.

Theorem 6. If H1 and H2 are the PFS uniform hypergraphs, then H1 � H2 is a PFS uniform hypergraph.

Proof. By using similar arguments as used in Theorem 5, we can prove this result.

We describe here regular and perfectly regular PFSHs.
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Definition 16. Let H be a PFSH on X. Then H is said to be regular PFSH if T(βi) is a regular PFH for all
βi ∈ C. If T(βi) is a regular PFH of degree (ri, r′i) for all βi ∈ C, then H is a regular PFSH. The degree of a
vertex x is defined as

deg(x) =
(

∑
x∈el⊂X

µK(βi)
(el), ∑

x∈el⊂X
νK(βi)

(el)
)

Example 8. Consider a PFSH H on X = {a, b, c, d, f , g}, where C = {β1}. As deg(a) = (1.1, 0.8) =

deg(b) = deg(c) = deg(d) = deg( f ) = deg(g). Hence, H = {T(β1)} is a regular PFSH as shown in
Figure 11.Example 2.28. Consider a PFSH H on X = {a, b, c, d, f, g}, where C = {β1}.

b b

b

b

b

b

(a, 0.7, 0.6)

(b, 0.6, 0.6)

(c, 0.6, 0.7)

(d, 0.7, 0.4)

(g, 0.9, 0.1)

(f, 0.8, 0.3)

(0.
6, 0

.4)

(0.6, 0.4)

(0.5, 0.4)

(0.5, 0.4)

(0.5, 0.4)

T (β1)

Figure 2.11: Regular PFSH H = {T (β1)}

As deg(a) = (1.1, 0.8) = deg(b) = deg(c) = deg(d) = deg(f) = deg(g). Hence, H = {T (β1)} is

a regular PFSH.

Definition 2.29. Let H be a PFSH on X. Then H is said to be totally regular PFSH if T (βi)

is a totally regular PFH for all βi ∈ C. If T (βi) is a totally regular PFH of degree (fi, f
′
i) for all

βi ∈ C, then H is a totally regular PFSH. As

tdeg(x) =
( ∑

x∈el⊂X

µK(βi)(el) + ∧µξl(βi)(x),
∑

x∈el⊂X

νK(βi)(el) + ∨νξl(βi)(x)
)

Example 2.30. Consider a PFSH H on X = {a, b, c, d, f}, where C = {β1}.

17

Figure 11. Regular PFSH H = {T(β1)}.

Definition 17. Let H be a PFSH on X. Then H is said to be totally regular PFSH if T(βi) is a totally regular
PFH for all βi ∈ C. If T(βi) is a totally regular PFH of degree ( fi, f ′i ) for all βi ∈ C, then H is a totally regular
PFSH. As

tdeg(x) =
(

∑
x∈el⊂X

µK(βi)
(el) + ∧µξl(βi)

(x), ∑
x∈el⊂X

νK(βi)
(el) + ∨νξl(βi)

(x)
)

Example 9. Consider a PFSH H on X = {a, b, c, d, f }, where C = {β1}. It is cleared from Figure 12 that H
is a totally regular PFSH.

b
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(0.6, 0.4)
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, 0.4

)

(0.6, 0.4)

T (β1)

Figure 2.12: Totally regular PFSH H = {T (β1)}

Theorem 2.31. Let H be a PFSH on X. If H is a regular PFSH and L is a constant function in

PFH T (βi) for all βi ∈ C. Then H is a totally regular PFSH.

Proof. Suppose that H is a regular PFSH and L is a constant function. Then (µξl(βi)(x), νξl(βi)(x)) =

(mi,m
′
i), mi,m

′
i are constant, (mi,m

′
i) ∈ [0, 1], ∀ x ∈ X, ∀ βi ∈ C and deg(x) = (ri, r

′
i) in PFHs

T (βi), ∀ βi ∈ C and ∀ x ∈ X. Since tdeg(x) = deg(x) + (∧µξl(βi)(x),∨νξl(βi)(x)). This implies

tdeg(x) = (ri, r
′
i) + (mi,m

′
i) in PFHs T (βi), ∀ βi ∈ C and ∀ x ∈ X. Hence H is a totally regular

PFSH.

Theorem 2.32. Let H be a PFSH on X. If H is a totally regular PFSH and L is a constant

function in PFH T (βi) for all βi ∈ C. Then H is a regular PFSH.

Proof. Suppose that H is a totally regular PFSH and L is a constant function. Then (µξl(βi)(x),

νξl(βi)(x)) = (mi,m
′
i), mi,m

′
i are constant, (mi,m

′
i) ∈ [0, 1], ∀ x ∈ X, ∀ βi ∈ C and tdeg(c) = (fi, f

′
i)

in T (βi), ∀ βi ∈ C and ∀ x ∈ X. Since tdeg(x) = deg(x) + (∧µξl(βi)(x),∨νξl(βi)(x)). This implies

deg(x) = tdeg(x) − (∧µξl(βi)(x),∨νξl(βi)(x)) in T (βi), ∀ βi ∈ C and ∀ x ∈ X . This implies

deg(x) = (fi, f
′
i)− (mi,m

′
i) in PFHs T (βi), ∀ βi ∈ C and ∀ x ∈ X. Hence H is a regular PFSH.

Theorem 2.33. If H is both regular and totally regular PFSH. Then L is a constant function in

T (βi), ∀ βi ∈ C.

18

Figure 12. Totally regular PFSH H = {T(β1)}.

Theorem 7. Let H be a PFSH on X. If H is a regular PFSH and L is a constant function in PFH T(βi) for all
βi ∈ C. Then H is a totally regular PFSH.
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Proof. Suppose that H is a regular PFSH and L is a constant function. Then (µξl(βi)
(x), νξl(βi)

(x)) =

(mi, m′i), mi, m′i are constant, (mi, m′i) ∈ [0, 1], ∀ x ∈ X, ∀ βi ∈ C and deg(x) = (ri, r′i) in PFHs
T(βi), ∀ βi ∈ C and ∀ x ∈ X. Since tdeg(x) = deg(x) + (∧µξl(βi)

(x),∨νξl(βi)
(x)). This implies

tdeg(x) = (ri, r′i) + (mi, m′i) in PFHs T(βi), ∀ βi ∈ C and ∀ x ∈ X. Hence H is a totally regular
PFSH.

Theorem 8. Let H be a PFSH on X. If H is a totally regular PFSH and L is a constant function in PFH T(βi)

for all βi ∈ C. Then H is a regular PFSH.

Proof. Suppose that H is a totally regular PFSH and L is a constant function. Then (µξl(βi)
(x),

νξl(βi)
(x)) = (mi, m′i), mi, m′i are constant, (mi, m′i) ∈ [0, 1], ∀ x ∈ X, ∀ βi ∈ C and tdeg(c) = ( fi, f ′i )

in T(βi), ∀ βi ∈ C and ∀ x ∈ X. Since tdeg(x) = deg(x) + (∧µξl(βi)
(x),∨νξl(βi)

(x)). This implies
deg(x) = tdeg(x)− (∧µξl(βi)

(x),∨νξl(βi)
(x)) in T(βi), ∀ βi ∈ C and ∀ x ∈ X . This implies deg(x) =

( fi, f ′i )− (mi, m′i) in PFHs T(βi), ∀ βi ∈ C and ∀ x ∈ X. Hence H is a regular PFSH.

Theorem 9. If H is both regular and totally regular PFSH. Then L is a constant function in T(βi), ∀ βi ∈ C.

Proof. Let H be both regular and totally regular PFSH. Then deg(x) = (ri, r′i) and tdeg(c) = ( fi, f ′i ) in
PF sub-hypergraphs T(βi) for all βi ∈ C and ∀ x ∈ X. This implies deg(c) + (∧µξl(βi)

(x),∨νξl(βi)
(x))

= ( fi, f ′i ) in T(βi), ∀ βi ∈ C and ∀ x ∈ X. This implies (ri, r′i) + (∧µξl(βi)
(x),∨νξl(βi)

(x)) = ( fi, f ′i )
in T(βi), ∀ βi ∈ C. This implies (∧µξl(βi)

(x),∨νξl(βi)
(x)) = ( fi, f ′i )− (ri, r′i) in T(βi), ∀ βi ∈ C and

∀ x ∈ X. Hence L is a constant in T(βi), ∀ βi ∈ C and ∀ x ∈ X.

The converse of above theorem is not true as shown in the following example.

Example 10. Consider a PFSH H as shown in Figure 13.

Proof. Let H be both regular and totally regular PFSH. Then deg(x) = (ri, r
′
i) and tdeg(c) = (fi, f

′
i)

in PF subhypergraphs T (βi) for all βi ∈ C and ∀ x ∈ X. This implies deg(c)+(∧µξl(βi)(x),∨νξl(βi)(x))

= (fi, f
′
i) in T (βi), ∀ βi ∈ C and ∀ x ∈ X. This implies (ri, r

′
i) + (∧µξl(βi)(x),∨νξl(βi)(x)) = (fi, f

′
i)

in T (βi), ∀ βi ∈ C. This implies (∧µξl(βi)(x),∨νξl(βi)(x)) = (fi, f
′
i) − (ri, r

′
i) in T (βi), ∀ βi ∈ C and

∀ x ∈ X. Hence L is a constant in T (βi), ∀ βi ∈ C and ∀ x ∈ X.

The converse of above theorem is not true as shown in the following example.

Example 2.34. Consider a PFSH H as shown in Fig. 2.13.
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Figure 2.13: PFSH H = {T (β1)}

Clearly, L is a constant function in Fig. 2.13, but not regular and totally regular PFSH.

Definition 2.35. Let H be a PFSH on X. Then H is said to be perfectly regular PFSH if T (βi)

is a regular and totally regular PFH for all βi ∈ C.

Example 2.36. Consider a PFSH H as shown in Fig. 2.14.

19

Figure 13. PFSH H = {T(β1)}.

Clearly, L is a constant function in Figure 13, but not a regular and totally regular PFSH.

Definition 18. Let H be a PFSH on X. Then H is said to be perfectly regular PFSH if T(βi) is a regular and
totally regular PFH for all βi ∈ C.

Example 11. Consider a PFSH H as shown in Figure 14.
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Figure 2.14: Perfectly regular PFSH H = {T (β1)}

We present notion of perfectly irregular PFSHs.

Definition 2.37. A PFSH H = (L,K,C) is said to be neighborly irregular PFSH if T (βi) is

neighborly irregular PFH ∀ βi ∈ C, i.e, if the degree of every pair of adjacent vertices of T (βi) are

distinct, ∀ βi ∈ C.

Definition 2.38. A PFSH H = (L,K,C) is said to be totally neighborly irregular PFSH if T (βi)

is totally neighborly irregular PFH ∀ βi ∈ C, i.e, if the total degree of every pair of adjacent vertices

of T (βi) are distinct, ∀ βi ∈ C.

Example 2.39. Consider a PFSH H as shown in Fig. 2.15.
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Figure 2.15: Neighborly irregular and totally neighborly irregular PFSH H = {T (β1)}
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Figure 14. Perfectly regular PFSH H = {T(β1)}.

We present notion of perfectly irregular PFSHs.

Definition 19. A PFSH H = (L, K, C) is said to be neighborly irregular PFSH if T(βi) is neighborly irregular
PFH ∀ βi ∈ C, i.e, if the degree of every pair of adjacent vertices of T(βi) are distinct, ∀ βi ∈ C.

Definition 20. A PFSH H = (L, K, C) is said to be totally neighborly irregular PFSH if T(βi) is totally
neighborly irregular PFH ∀ βi ∈ C, i.e., if the total degree of every pair of adjacent vertices of T(βi) are distinct,
∀ βi ∈ C.

Example 12. Consider a PFSH H as shown in Figure 15.
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Figure 2.14: Perfectly regular PFSH H = {T (β1)}

We present notion of perfectly irregular PFSHs.

Definition 2.37. A PFSH H = (L,K,C) is said to be neighborly irregular PFSH if T (βi) is

neighborly irregular PFH ∀ βi ∈ C, i.e, if the degree of every pair of adjacent vertices of T (βi) are

distinct, ∀ βi ∈ C.

Definition 2.38. A PFSH H = (L,K,C) is said to be totally neighborly irregular PFSH if T (βi)

is totally neighborly irregular PFH ∀ βi ∈ C, i.e, if the total degree of every pair of adjacent vertices

of T (βi) are distinct, ∀ βi ∈ C.

Example 2.39. Consider a PFSH H as shown in Fig. 2.15.
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Figure 2.15: Neighborly irregular and totally neighborly irregular PFSH H = {T (β1)}

20

Figure 15. Neighborly irregular and totally neighborly irregular PFSH H = {T(β1)}.

Definition 21. A PFSH H is said to be perfectly irregular if T(βi) is perfectly irregular PFH for all βi ∈ C, i.e,
1. The degrees of all vertices of T(βi) are distinct,
2. The total degrees of all vertices of T(βi) are distinct.

Example 13. Consider a PFSH H as shown in Figure 16.
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Definition 2.40. A PFSH H is said to be perfectly irregular if T (βi) is perfectly irregular PFH

for all βi ∈ C, i.e,

1. The degrees of all vertices of T (βi) are distinct,

2. The total degrees of all vertices of T (βi) are distinct.

Example 2.41. Consider a PFSH H as shown in Fig. 2.16.

T (β1)

b
b

b

b

b

(a, 0.8, 0.6)
(b, 0.8, 0.5)

(c, 0.7, 0.5)

(d, 0.8, 0.3)

(f, 0.5, 0.7)

(0.7,
0.6)

(0.5, 0.7)
(0
.7
, 0
.5

)

Figure 2.16: Perfectly irregular PFSH H = {T (β1)}

As each vertex in T (β1) has distinct degree and total degree, so T (β1) is perfectly irregular

PFH. Hence, H is perfectly irregular PFSH.

Theorem 2.42. If H be perfectly irregular PFSH, then H is necessarily neighborly irregular, totally

neighborly irregular and highly irregular PFSH.

Proof. Let H be a perfectly irregular PFSH. So every vertex of T (βi) are of different degrees. Then

every two adjacent vertices of T (βi) are of different degrees. Therefore, T (βi) is neighborly irregular

PFH. Hence H is neighborly irregular PFSH.

Since H is perfectly irregular PFSH, the total degrees of all the vertices of T (βi) are distinct.

Then every two adjacent vertices of T (βi) are of different degrees. Therefore, T (βi) is totally

neighborly irregular PFH. Hence, H is totally neighborly irregular PFSH.

Since H is perfectly irregular PFSH, the degrees of all the vertices of T (βi) are distinct. Thus

the degrees of the adjacent vertices of every vertex of T (βi) are distinct. Therefore, T (βi) is highly

irregular PFH. Hence H is highly irregular PFSH.

Example 2.43. Consider a PFSH H as shown in Fig. 2.17.
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Figure 16. Perfectly irregular PFSH H = {T(β1)}.

As each vertex in T(β1) has distinct degree and total degree, so T(β1) is perfectly irregular PFH.
Hence, H is perfectly irregular PFSH.

Theorem 10. If H is perfectly irregular PFSH, then H is necessarily neighborly irregular, totally neighborly
irregular and highly irregular PFSH.

Proof. Let H be a perfectly irregular PFSH. So every vertex of T(βi) are of different degrees. Then
every two adjacent vertices of T(βi) are of different degrees. Therefore, T(βi) is neighborly irregular
PFH. Hence H is neighborly irregular PFSH.

Since H is perfectly irregular PFSH, the total degrees of all the vertices of T(βi) are distinct. Then
every two adjacent vertices of T(βi) are of different degrees. Therefore, T(βi) is totally neighborly
irregular PFH. Hence, H is totally neighborly irregular PFSH.

Since H is perfectly irregular PFSH, the degrees of all the vertices of T(βi) are distinct. Thus the
degrees of the adjacent vertices of every vertex of T(βi) are distinct. Therefore, T(βi) is highly irregular
PFH. Hence H is highly irregular PFSH.

Example 14. Consider a PFSH H as shown in Figure 17.

b

b

b

b

b

(a, 0.8, 0.4)

(b, 0.5, 0.5)

(c, 0.7, 0.3)

(d, 0.7, 0.6)

(f, 0.7, 0.3)

(0.
5, 0

.4)

(0.5, 0.4)

(0.5, 0.6)

T (β1)

Figure 2.17: PFSH H = {T (β1)}

deg(a) = (1, 0.8), deg(b) = (1, 0.9), deg(c) = (0.5, 0.4), deg(d) = (0.5, 0.6), deg(f) = (0.5, 0.4).

Thus, H is neighborly irregular PFSH. Also, tdeg(a) = (1.8, 1.2), tdeg(b) = (1.5, 1.4), tdeg(c) =

(1.2, 0.7), tdeg(d) = (1.2, 1.2), tdeg(f) = (1.2, 0.7). Thus H is totally neighborly irregular PFSH.

But deg(c) = deg(f), so H is not perfectly irregular PFSH.

Similarly, we can show that there exists a PFSH H, which is highly irregular PFSH but not perfectly

irregular PFSH.

Theorem 2.44. The sufficient condition of a neighborly irregular and totally neighborly irregular

PFSH to be perfectly irregular PFSH is that if every pair of vertices of T (βi),∀ βi ∈ C are connected

through an hyperedge.

Proof. Let H be a neighborly irregular and totally neighborly irregular PFSH and every pair of

vertices of T (βi),∀ βi ∈ C are connected through an hyperedge. Since H is neighborly irregular

PFSH, so deg(x1) 6= deg(x2) for all adjacent vertices x1, x2 ∈ X,βi ∈ C · · · (1)

As every pair of vertices of T (βi) are connected through an hyperedge. This means every pair

of vertices of T (βi) are adjacent, i.e, el ∈ E, βi ∈ C · · · (2)

From (1) and (2), we have deg(c) 6= deg(d), ∀ x1, x2 ∈ X,β ∈ C. Similarly, it can be proved

that deg[c] 6= deg[d], ∀ x1, x2 ∈ X,βi ∈ C.

Therefore, the degree and total degree of all vertices of T (βi) are distinct. Hence, T (βi) is

perfectly irregular PFH, ∀ βi ∈ C. So H is perfectly irregular PFSH.

Corollary 2.45. For a perfectly irregular PFSH, L̃ need not be constant.
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Figure 17. PFSH H = {T(β1)}.

deg(a) = (1, 0.8), deg(b) = (1, 0.9), deg(c) = (0.5, 0.4), deg(d) = (0.5, 0.6), deg( f ) = (0.5, 0.4).
Thus, H is neighborly irregular PFSH. Also, tdeg(a) = (1.8, 1.2), tdeg(b) = (1.5, 1.4), tdeg(c) = (1.2, 0.7),
tdeg(d) = (1.2, 1.2), tdeg( f ) = (1.2, 0.7). Thus H is totally neighborly irregular PFSH. But deg(c) =

deg( f ), so H is not perfectly irregular PFSH.
Similarly, we can show that there exists a PFSH H, which is highly irregular PFSH but not perfectly

irregular PFSH.
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Theorem 11. The sufficient condition of a neighborly irregular and totally neighborly irregular PFSH to be
perfectly irregular PFSH is that if every pair of vertices of T(βi), ∀ βi ∈ C are connected through an hyperedge.

Proof. Let H be a neighborly irregular and totally neighborly irregular PFSH and every pair of vertices
of T(βi), ∀ βi ∈ C are connected through an hyperedge. Since H is neighborly irregular PFSH, so
deg(x1) 6= deg(x2) for all adjacent vertices x1, x2 ∈ X, βi ∈ C . . . (1)

As every pair of vertices of T(βi) are connected through a hyperedge. This means every pair of
vertices of T(βi) are adjacent, i.e, el ∈ E, βi ∈ C . . . (2)

From (1) and (2), we have deg(c) 6= deg(d), ∀ x1, x2 ∈ X, β ∈ C. Similarly, it can be proved that
deg[c] 6= deg[d], ∀ x1, x2 ∈ X, βi ∈ C.

Therefore, the degree and total degree of all vertices of T(βi) are distinct. Hence, T(βi) is perfectly
irregular PFH, ∀ βi ∈ C. So H is perfectly irregular PFSH.

Corollary 1. For a perfectly irregular PFSH, L̃ need not be constant.

4. Steps of Decision Method

We describe steps of our decision method as follows.

1. Input the set of alternatives X = {x1, x2, . . . , xr} where x1, x2, . . . , xr represent employees.
2. Make teams of different employees where E = {e1, e2, . . . , en} is the set of different teams.
3. Choose the particular attributes for the selection of team such as “personality compatibility and

warmth” and “specific skills sets”.
4. Construct the PFHs corresponding to each parameter.
5. Applying the score function Sk = (µ)2 − (ν)2 to evaluate the score values of each team

corresponding to given parameter.
6. The decision is τ = max{min Sk}.

5. Application

Selection of a team of employees for business running. In country’s economy, business has
too much importance because businesses yield goods, services, and jobs. Businesses do these things
much more expertly than individuals could on their own. Businesses are the source to get most of the
goods and services that we, as consumers, want and need. Therefore, for the success of good business,
employees are too important. For the growth and success of the company, every businessman wants
competent employees. Not all hired workers will work out, but we need to keep the number of wrong
assessments at a minimum. They are costly and time-consuming mistakes, on top of being detrimental
to the atmosphere within the company. On the contrary, the right candidate can enhance the winning
mentality across the board, boost the morale, and support forward thinking and planning processes.
Our company’s employee selection process will determine the quality of our new hires and can have an
impact both on daily operations and our company’s long-term success. Selection of wrong employees
create many problems for the progress of a good business.

The first priority of smart business owners is to select top-talent workers. After all, a company’s
productivity and profitability depend on the quality of its workers. Therefore, in the selection of
candidates, consider a mix of factors, including credentials, work experience, personality and skills.
Consider Mr. X who wants to select that team of employees for his business whose workers together
work strongly. Therefore, in the selection of employees some factors such as “personality compatibility
and warmth” and “specific skills sets” are under consideration. Let X = {x1, x2, x3, x4, x5, x6} be the
set of six employees to be considered as the universal set and C = {β1, β2} be the set of parameters
that particularizes the employee, parameters β1 and β2 stand for “personality compatibility and
warmth” and “specific skills sets”, respectively. Consider the PFSS (L, C) over X which defines the
“characteristics of employees” corresponding to the given parameters that Mr. X wants to select. (K, C)

is a PFSS over E = {e1, e2, e3} defines degree of membership and degree of non-membership of the
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relationship between employees corresponding to the selected attributes β1 and β2 as shown in Tables
2 and 3, respectively. The PFHs T(β1) and T(β2) of PFSHs H = {T(β1), T(β2)} corresponding to the
parameters “personality compatibility and warmth” and “specific skills sets”, respectively are shown
in Figure 18.
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Figure 3.1: PFSH H = {T (β1), T (β2)}

Table 1: Membership and non-membership values of teams of T (β1) for parameter β1

Membership Non-membership Teams

0.6 0.5 e1 = (x1, x2, x3)

0.5 0.4 e2 = (x1, x5, x6)

0.5 0.3 e3 = (x3, x4, x5)

Table 2: Membership and non-membership values of teams of T (β2) for parameter β2

Membership Non-membership Teams

0.5 0.3 e1 = (x1, x2, x3)

0.6 0.5 e2 = (x1, x5, x6)

0.6 0.4 e3 = (x3, x4, x5)

Applying the score function Sk = (µ)2 − (ν)2 given in [25], to find the score values of teams.
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Figure 18. PFSH H = {T(β1), T(β2)}.

Table 2. Membership and non-membership values of teams of T(β1) for parameter β1.

Membership Non-Membership Teams
0.6 0.5 e1 = (x1, x2, x3)
0.5 0.4 e2 = (x1, x5, x6)
0.5 0.3 e3 = (x3, x4, x5)

Table 3. Membership and non-membership values of teams of T(β2) for parameter β2.

Membership Non-Membership Teams
0.5 0.3 e1 = (x1, x2, x3)
0.6 0.5 e2 = (x1, x5, x6)
0.6 0.4 e3 = (x3, x4, x5)

Applying the score function Sk = (µ)2 − (ν)2 given in [29], to find the score values of teams. The
score values of each team corresponding to the parameters β1 and β2 are shown in Tables 4 and 5,
respectively.

Table 4. Score values of teams for parameter β1.

Score Values (Sk) Teams
0.11 e1 = (x1, x2, x3)
0.09 e2 = (x1, x5, x6)
0.16 e3 = (x3, x4, x5)

Table 5. Score values of teams for parameter β2.

Score Values (Sk) Teams
0.16 e1 = (x1, x2, x3)
0.11 e2 = (x1, x5, x6)
0.20 e3 = (x3, x4, x5)

Then decision is τ = max{min Sk} = max{0.11, 0.09, 0.16} = 0.16. So, Mr. X will select team e3.
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6. Conclusions

PFSSs as an extension of IFSSs are helpful to deal with parametric vague information. As an
extension of crisp graph theory, hypergraphs are considered to be the most efficient and powerful
tool to handle different practical problems when relations are complicated. By combining the concept
of PFSSs with hypergraphs, we have introduced the PFSHs. PFSHs as an extension of IFSHs are
mathematical models to solve the parametric complexity among objects and helpful in decision
making problems. In a lot of decision-making problems, the relations are more than two objects and
having vague information corresponding to different parameters, then PFSHs are more meaningful to
overcome such problems. Here, we have defined the PFSHs and studied some operations on PFSHs.
We have discussed the regular PFSHs, perfectly regular PFSHs, and perfectly irregular PFSHs. Also,
we have discussed a decision-making problem for the evaluation of a team of workers for business and
for getting best team, and we have used score function. In the future, we plan to extend our research
work to PFS-ELECTRE I, II, III, and IV methods.
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editing, M.A.
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