
Mathematical

and Computational

Applications

Article

Pool-Based Genetic Programming Using Evospace,
Local Search and Bloat Control

Perla Juárez-Smith 1, Leonardo Trujillo 1,* , Mario García-Valdez 1,
Francisco Fernández de Vega 2 and Francisco Chávez 3

1 Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana BC C.P. 22430, Mexico
2 Departamento de Tecnología de los Computadores y de las Comunicaciones, Universidad de Extremadura,

06800 Mérida, Spain
3 Departamento de Ingeniería Sistemas Informáticos y Telemáticos, Universidad de Extremadura,

06800 Mérida, Spain
* Correspondence: leonardo.trujillo@tectijuana.edu.mx; Tel.: +52-(664)-607-8400 (ext. 234)

Received: 29 July 2019; Accepted: 27 August 2019; Published: 29 August 2019
����������
�������

Abstract: This work presents a unique genetic programming (GP) approach that integrates a
numerical local search method and a bloat-control mechanism within a distributed model for
evolutionary algorithms known as EvoSpace. The first two elements provide a directed search
operator and a way to control the growth of evolved models, while the latter is meant to exploit
distributed and cloud-based computing architectures. EvoSpace is a Pool-based Evolutionary
Algorithm, and this work is the first time that such a computing model has been used to perform
a GP-based search. The proposal was extensively evaluated using real-world problems from
diverse domains, and the behavior of the search was analyzed from several different perspectives.
The results show that the proposed approach compares favorably with a standard approach,
identifying promising aspects and limitations of this initial hybrid system.

Keywords: Genetic Programming; Bloat; NEAT; Local Search; EvoSpace

1. Introduction

Genetic programming (GP) is a branch of Evolutionary Computation (EC) dedicated to the
artificial evolution of computer programs. In particular, even one of the earliest versions of GP,
proposed by Koza in the 1990s and commonly referred to as tree-based GP or standard GP [1],
continues producing strong results in difficult domains for more than 20 years later. In particular, we
focus on an approach named neat-GP-LS [2] that integrates what we consider as fundamental elements
of any state-of-the-art GP method, e.g., bloat control and local search (LS) techniques.

However, one discouraging aspect of integrating LS methods into a GP search is the increase in
algorithm complexity (execution time might increase if the total number of generations is kept constant,
but, since the algorithm converges more quickly, fewer generations are required to reach the same level
of performance). One way to minimize this issue is by porting the search process to massively parallel
architectures [3]. However, another approach is to move towards distributed EC systems (dEC) [4–6].
There are several possible benefits from this approach. First, it is much simpler to develop and use
a distributed system than developing low-level code for GPUs or FPGAs [3,7]. The need for strict
synchronization policies, for instance, is greatly reduced in a distributed framework compared to a
GPU or FPGA implementation. Second, it is possible to leverage cheaper computing power that is
already accessible, rather than investing in specialized hardware [8,9]. Finally, the robustness and
asynchronous nature of an evolutionary search can easily deal with unexpected errors or dropped
connections in a distributed environment. In this work, we use a distributed platform designed to run

Math. Comput. Appl. 2019, 24, 78; doi:10.3390/mca24030078 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
https://orcid.org/0000-0003-1812-5736
http://dx.doi.org/10.3390/mca24030078
http://www.mdpi.com/journal/mca
https://www.mdpi.com/2297-8747/24/3/78?type=check_update&version=2

Math. Comput. Appl. 2019, 24, 78 2 of 13

using heterogeneous computing resources called EvoSpace, a conceptual model for the development of
distributed pool-based algorithms [8–10]. While it has been applied in standard black-box optimization
benchmarks and collaborative-interactive evolutionary algorithms [11], it has not been studied in a
GP-based search.

In summary, this work presents a hybrid distributed GP system that integrates a recent and simple
bloat control mechanism and a LS operator for parameter optimization of GP trees. For bloat control,
neat-GP is used, a strategy that relies on speciation and fitness sharing to control code growth [12].
The LS approach is based on [13,14], where GP trees are augmented with weights for each node,
which are then optimized with a trust region optimizer [15], a strategy that has also been applied
to several real-world tasks [16,17]. This work shows that the EvoSpace model can easily exploit the
speciation process performed by neat-GP, maintaining the same level of performance as the sequential
version even though evolution is now performed in an asynchronous manner.

The remainder of this work is organized as follows. Section 2 presents relevant background and
related research. Section 3 describes how the proposed system is ported to a distributed framework.
A summary and conclusions are outlined in Section 4.

2. Background

This section described the neat-GP algorithm and a method to integrate LS in GP. In addition,
a brief overview of EvoSpace model is provided.

2.1. neat-GP

The neat-GP algorithm [12] is based on the operator equalization [18] family of bloat control
methods, in particular the Flat-OE [19] algorithms and the NeuroEvolution of Augmenting Topologies
algorithm (NEAT) [20].

The main features of neat-GP are the following: The initial population only contains shallow trees
(3 levels), while most GP algorithms initialize the search with small- and medium-sized trees (depth of
3–6 levels).

In neat-GP, individuals are grouped together into species (the terms species and speciation are used
in a technical sense, following their use in NEAT, and are not meant to imply that they closely resemble
their biological namesakes) based on their size and shape. With the following measure we can group
individuals: given a tree T, let nT represent the size of the tree (number of nodes) and dT its depth
(number of levels). Moreover, let Si,j represent the shared structure between both trees starting from
the root node (upper region of the trees), which is also a tree, as seen in Figure 1. Then, the dissimilarity
between two trees Ti and Tj is given by

δT
(
Ti, Tj

)
= β

Ni,j−2nsi,j
Ni,j−2 + (1− β)

Di,j−2dsi,j
Di,j−2 , (1)

where Ni,j = nTi + nTj , Di,j = dTi + dTj , and β ∈ [0, 1]; a degenerate case arises when both trees have a
single node (only the root node), in this case δT = 0.

Sij

Ti Tj

sin

xx

/

*

*

cos x

+

-

Figure 1. Example of the shared structure Si,j between two trees Ti and Tj ([2], with permission
from Springer).

Math. Comput. Appl. 2019, 24, 78 3 of 13

When a new individual Ti is generated, it is compared with a single random individual Tj
from each species in sequence. Starting with a random ordering of the species, if δT(Ti, Tj) < h,
with threshold h an algorithm parameter, then Ti is assigned to the species to which Tj belongs and
no more comparisons are done. If the previous conditions is never met, then a new species is created
for Ti.

Fitness sharing is used in each species, such that individuals that belong to large species are
penalized while individuals that belong to smaller ones are less so. For a minimization problem,
neat-GP uses a simple penalization given by

f
′
(Ti) = |Su| f (Ti), (2)

where f (Ti) is the raw fitness of the tree, f ′(Ti) is the penalized or adjusted fitness, Su is the species
to which Ti belongs, and |Su| is the number of individuals in species Su. The best individual of each
species will be an exception; the fitness of this solution will not be penalized to preserve elite solutions
within the population. The penalization only becomes important in the parent selection step, which is
done based on the adjusted fitness, and it is done deterministically by sorting the population based
on the adjusted fitness, making the process more elitist than traditional GP. Thus, highly penalized
individuals might not produce offspring. However, if the best solution in a species is good enough,
it can still survive and produce offspring since it is not affected by the penalization process.

2.2. Local Search in Genetic Programming

Particularly, we focus on symbolic regression problems, where the goal is to search for the
symbolic expression KO : Rp → R that best fits a particular training set T = {(x1, y1), . . . , (xn, yn)} of
n input/output pairs with xi ∈ Rp and yi ∈ R defined as

(KO, θO)← arg min
K∈G;θ∈Rm

f (K(xi, θ), yi) with i = 1, . . . , n , (3)

where G is the solution or syntactic space defined by the primitive set P of functions and terminals;
f is the fitness function that is based on the difference between a program’s output K(xi, θ) and the
desired output yi; and θ is a particular parametrization of the symbolic expression K, assuming m
real-valued parameters. The goal of the LS method is to optimize the parameters of each GP solution.

As described in [13,14], an additional search operator is integrated into the search process, a local
optimizer that tunes the implicit parameters of GP trees. In this way, subtree mutation and crossover
are used to explore syntax space while LS is used to optimize the evolved solutions in parameter space.

As suggested in [21], for each individual K in the population, we add a small linear upper tree
above the root node, such that K′ = θ2 + θ1(K) where K′ represents the new program output, while θ1

and θ2 are the first two parameters from θ, as shown in Figure 2.

Figure 2. Example of the tree transformation for the LS process ([2], with permission from Springer).

Math. Comput. Appl. 2019, 24, 78 4 of 13

In this way, for all the other nodes nk in the tree K we add a weight coefficient θk ∈ R, such that
each node is now defined by n′k = θknk , where n′k is the new modified node, k ∈ {1, ..., r}, r = |Q| and
Q is the tree representation. Notice that each node has a unique parameter that can be modified to help
meet the overall optimization criteria of the non-linear expression. At the beginning of the GP run
each parameter is initialized by θk = 1. During the GP syntax search, subtrees belonging to different
individuals are swapped, added or removed (following the standard crossover/mutation rules)
together with its corresponding parameters, without affecting their values. Therefore, we consider each
tree as nonlinear expression and the local search operator must now find the best fit parameters of the
model K′. The problem can be solved using a variety of techniques, but, following the authors [13,14],
we employ the trust region algorithm [22].

One of the most important things to consider is that the local search optimizer can substantially
increase the underlying computational cost of the search, particularly when individual trees are very
large. While applying the local search strategy to all trees might produce good results [13], it is
preferable to reduce to a minimum the amount of trees to which it is applied.

2.3. Integration LS into neat-GP

The neat-GP-LS algorithm [2] is a proposal of the integration of neat-GP search with LS process.
Figure 3 represents the main stages in the neat-GP-LS algorithm process. The algorithm reveals that
combining both methods improves the quality of the solutions found, and allows the search process to
generate very compact solutions. In addition, it demonstrates that the variance in the search is quite
small and the size of the solutions are problem dependent, which means the search tends to converge
toward solutions that lie in the same regions of solution space, i.e. in the same species.

This entails that one important aspect of the neat-GP search and hence of neat-GP-LS is the use of
speciation to generate a diverse population of individuals, in terms of size and shape, demonstrating
four relevant information about speciation.

Figure 3. General flow diagram of the neat-GP-LS algorithm ([2], with permission from Springer).

First, it produces species that grow in size when they contain highly fit individuals,
particularly when they contain the best individual in the population. Second, the size and depth
of the models grow over time, but diversity is maintained with different species in the population.
Third, while solutions are diverse in their structure, many species tend to contain at least one highly fit

Math. Comput. Appl. 2019, 24, 78 5 of 13

model. Finally, the algorithm shows that it allows a species to grow in size, when it contains the best
individual; this increased exploitation seems to be justified since the LS operator tends to produce the
highest levels of improvements in that particular species.

2.4. EvoSpace

The EvoSpace model for evolutionary algorithms (EA) follows a pool-based approach [8,9],
where the search process is conducted by a collection of possibly heterogeneous processes that
cooperate using a shared memory or population pool. We refer to such algorithms as pool-based EAs
(PEAs) and highlight the fact that such systems are intrinsically parallel, distributed and asynchronous.

In EvoSpace, distributed nodes (called EvoWorkers) asynchronously interact with the pool;
their job is to take a subset of individuals from the central pool, which is called a sample, and evolve
them for a certain number of generations (or until a given termination criterion is met), and return the
new population of offspring back to the pool. The general scheme is depicted in Figure 4.

This means that EvoSpace has two main components, a set of EvoWorkers and a single instance
of an EvoStore. The EvoStore container manages a set of objects representing individuals in a EA
population. EvoWorkers pull a subset of individuals from the EvoStore making them unavailable to
other workers. Moreover, individuals are removed from the EvoStore as a random subset or sample
of the population. Once a EvoWorker has a sample to work on, it can perform a partial evolutionary
process, and then return the newly evolved subpopulation to the EvoStore where the new individuals
replace those found in the original sample; at this point, replaced or reinserted individuals can be
taken by others clients. Figure 5 shows the distributed architecture of the EvoSpace model with GP.
The figure shows that on the Server the EvoSpace manager and HTTP communication framework are
performed, while different samples of individuals from the population are sent to EvoWorkers where
evolution takes place.

Figure 4. Main components and data flow within the EvoSpace model.

Math. Comput. Appl. 2019, 24, 78 6 of 13

EvoStore

Population

EvoSpace

manager
HTTP

framework

GP

EvoWorker

GP

EvoWorker

GP

EvoWorker

GP

EvoWorker

Local

Computer

Figure 5. EvoSpace distributed architecture.

EvoSpace was conceived as a model for cloud-based evolutionary algorithms and is general
enough to be amenable to any type of population-based algorithm. Several works have shown that
this general approach can solve standard black-box optimization problems [9] and even interactive
evolution tasks [11]. It has been shown, as expected, that distributing costly fitness function evaluations
will help reduce the total run-time of the algorithm [9].

3. Distributing neat-GP-LS into the EvoSpace Model

In this work, we present the first implementation of a GP algorithm on EvoSpace.
Since neat-GP-LS already divides the population into species, it seems straightforward to exploit

this structure and distribute individuals to EvoWorkers by sending complete species to each.

3.1. The Intra-Species Distance and Re-Speciation

One aspect of neat-GP-LS that is not asynchronous is the speciation process. In the sequential and
synchronous versions, speciation occurs at specific moments during the search, as shown in Figure 3.
However, since EvoSpace is asynchronous, EvoWorkers return samples to the population pool at
different moments in time. When an EvoWorker returns a sample, it is not correct to assume that all of
the new individuals actually belong in the same species. It is possible that the species diverged during
the local evolution carried out on the EvoWorker.

To solve this issue, we track the level of homogeneity within each species, which is measured
before a species leaves the pool and when the new species returns from the EvoWorker. If a significant
change is detected, then a flag is raised that tells EvoSpace that the population should go through a new
speciation process or re-speciation. This is done by computing what is referred to as the intra-species
distance. Basically, in each species, we compute the dissimilarity measure using Equation (1),
between each tree Ti and its nearest neighbor Tj (the individual with which Equation (1) is minimum
within the species), calling this value nnTi . Then, the intra-species distance DSl for species Sl is the
average of all nnTi considering all Ti ∈ S.

The DSl values could be used in different ways to trigger a re-speciation process. In this work,
we can say that DSl is the intra-species distance before Sl is taken as a sample by an EvoWorker, and we
can define D̂Sl as the intra-species distance of species Sl computed with the population returned

Math. Comput. Appl. 2019, 24, 78 7 of 13

by the EvoWorker. If D̂Sl > DSl for any species in the population, then a re-speciation event is
triggered. Basically, this causes a synchronization event, where the EvoStore waits for all species to
return and the population goes through the speciation process once more. Figure 6 shows the basic
scheme of the proposes implementation. Compared to Figure 5, the new implementation in Figure 6
accounts for specific elements of the neat-GP algorithm. In particular, the speciation process is carried
out on the server, such that instead of sending random samples of individuals to the EvoWorkers,
complete species are sent and a local evolutionary process is carried out. In this case, the number of
EvoWorkers used depends on the number of species in the population.

EvoStore

Population

EvoSpace

manager

HTTP

framework

GP

EvoWorker

GP

EvoWorker

GP

EvoWorker

GP

EvoWorker

Local

Computer

Speciation

Specie 1

Specie 2

Specie 3

Specie n

Figure 6. Implementation of the neat-GP-LS algorithm in EvoSpace, where the samples taken by each
EvoWorker correspond to a complete species.

3.2. Experiments and Results

We analyzed and evaluated the integration of the neat-GP-LS algorithm in a PEA known as
the EvoSpace model. EvoSpace was designed for problems where fitness computation might be
expensive; in this work, we were only interested in studying the effects of implementing neat-GP-LS
as a PEA. In particular, we wanted to determine if there are any significant and substantial effects on
the convergence of the algorithm, the solutions qualities on all the population and the behavior of the
bloating phenomena.

For simplicity, the distributed framework was simulated using multiple CPU threads, such that
each EvoWorker was assigned to a specific thread. When the number of EvoWorkers exceeded the
number of threads, then several workers could share a single thread.

All experiments were carried out using real world symbolic regression problems, where the
objective is to minimize the fitness function. All problems are summarized in Table 1.

When a species was sent to an EvoWorker, we performed a short local evolutionary search,
basically a standard GP search using the parameters specified in Table 2. The number of EvoWorkers
depended on the number of species in the EvoStore, and we assumed that an EvoWorker was always
available for any species in the EvoStore. In addition, the local evolution performed in an EvoWorker
iterated for 10 generations, applying the LS operator with probability of 0.50.

Math. Comput. Appl. 2019, 24, 78 8 of 13

Table 1. Symbolic regression real world problems.

Problems No.
Instances

No.
Features Description

Housing [23] 506 14 Concerns housing values in suburbs of Boston.

Concrete [24] 1030 9
The concrete compressive strength is a highly
nonlinear function of age and ingredients.

Energy Heating [25] 768 9
This study looked into assessing the heating load
requirements of buildings as a function of building parameters.

Energy Cooling [25] 768 9
This study looked into assessing the cooling load
requirements of buildings as a function of building parameters.

Tower [26] 5000 26
An industrial data set of a gas chromatography measurement
of the composition of a distillation tower.

Yacht [27] 308 7
Delft data set, used to predict the hydodynamic performance
of sailing yachts from dimensions and velocity.

Table 2. Parameters used in real world problems.

Parameter neat-GP-LS

Runs 30
Population 100
Generations 10
Training set 70%
Testing set 30%
Operators
Crossover (pc), Mutation (pm) pc=0.9, pm=0.1

Tree initialization
Ramped Half-and-Half,
maximum depth 6.

Function set +,-,x,sin,cos,log,sqrt,tan,tanh, constants
Terminal set Input variables and constants as indicated in each real-world problem.

Selection for reproduction
Eliminate the pworst = 50% worst
individuals of each species.

Elitism
Do not penalize the best individual
of each species.

Species threshold value h = 0.15 with β = 0.5
Local optimization probability Ps = 0.5

Figure 7 shows a single run of the PEA version of neat-GP-LS on the Housing, Concrete and
Energy Cooling problems. The plots show the convergence of the training and testing RMSE, as well
as the average size of the population given in number of tree nodes. The horizontal axis represents the
number of samples taken from the EvoStore. Note that the number of samples over different problems
and over different runs l varied due to the randomness of the individual population and the speciation
process, and due to the asynchronous nature of the EvoSpace model, which makes it unfeasible to
aggregate the behavior of multiple runs into a single plot. Therefore, these plots only show a single
run, but the behavior of the algorithm in these examples is in fact representative of the convergence
behavior of most runs. One notable observation is the almost identical behavior of both training and
testing MAE in all of the runs, showing that the algorithm generalizes in a consistent manner relative
to training performance. The size of the population is also quite informative. Notice that, while the
average size fluctuates in all cases, the algorithm is in general producing compact solutions. This is
particularly clear when the search process terminates and the final sample is returned to the EvoStore.

The results are summarized in Figures 8 and 9, which show a box plot comparisons between the
sequential neat-GP-LS algorithm and the PEA implementation in EvoSpace, respectively, for test RMSE
and the average size of the population. Table 3 presents the p-values of the Friedman test, where bold
values indicate that the null hypothesis is rejected at the α = 0.05 confidence level. The null hypothesis

Math. Comput. Appl. 2019, 24, 78 9 of 13

states that the medians of the two groups are the same. Notice that, on three (Concrete, Energy Heating
and Tower) out of the six problems, the EvoSpace version performed worse than the sequential
algorithm in terms of RMSE, since the null-hypothesis were rejected. Conversely, if we consider the
three problems in which the PEA version and the sequential algorithm performed equivalently based
on test RMSE (i.e., the null hypothesis is not rejected), the Housing Energy Cooling and Yacht problems,
EvoSpace produced smaller trees and thus was more effective at bloat control. Therefore, we can state
with some confidence that the modified search dynamics introduced in the distributed version of the
algorithm do alter the effectiveness of the search. On the one hand, the quality of the results seemed to
depend on the problem. On the other hand, in all cases where the EvoSpace implementation achieved
equivalent performance, it was significantly and substantially less affected by bloat, producing more
parsimonious and compact solutions.

(a) Housing (b) Housing

(c) Concrete (d) Concrete

(e) Energy Cooling (f) Energy Cooling

Figure 7. Performance of a single run of the PEA implementation of neat-GP-LS in EvoSpace for:
Housing (a), (d); Concrete (b), (e); and Energy Cooling (d), (f). The plots in the left column show the
evolution of the training and testing RMSE. The plots in the right column show the evolution of the
average program size. All plots are ordered based on the number of samples taken from the EvoStore.

Math. Comput. Appl. 2019, 24, 78 10 of 13

Figure 8. Box plot comparison of the sequential and the EvoSpace implementation of the neat-GP-LS
algorithm on the testing RMSE.

Figure 9. Box plot comparison of the sequential and the EvoSpace implementation of the neat-GP-LS
algorithm on the average size of individuals given in number of nodes.

It is reasonable to assume that larger learning problems, in terms of number of instances and
features, are in general more difficult to solve. Moreover, difficult problems usually require more
complex or larger solutions to effectively model their structure. The three problems where RMSE
performance of the EvoSpace implementation was statistically worse (Concrete, Energy Heating and
Tower) are also three of the four largest problems used in our experiments, in terms of total number

Math. Comput. Appl. 2019, 24, 78 11 of 13

of instances and number of features (see Table 1). Since the EvoSpace search dynamics pushes the
search towards smaller program sizes, with statistical significance in five of the six problems (including
all problems in which RMSE performance was worse), a plausible explanation of the results can be
formulated. The EvoSpace implementation is controlling bloat too aggressively, severely impacting
learning in the more difficult test cases. Therefore, future variants of the implementation will need to
allow the search to explore large program sizes to evolve more accurate models.

Table 3. Friedman test p-values, comparing the sequential neat-GP-LS and the EvoSpace implementation
based on test RMSE and average size of the final population. Bold indicates that the null-hypothesis
was rejected at the α = 0.05 significance level.

test size

Problem p-value

Housing 0.2733 0.0114

Concrete 0.0010 0.0010

Energy Cooling 0.0578 0.0285

Energy Heating 0.0114 1.000

Tower 0.0285 0.0114

Yacht 0.2059 0.0114

Finally, Figure 10 analyzes the re-speciation process based on the intra-species distance. The plot
shows how DSl changes over for each of the species in the population, using a single run of the
algorithm on the Housing problem, zooming in on the first 225 samples taken by the EvoWorkers.
Each vertical line represents the difference between DSl and D̂Sl . When a line is black (shorter lines),
it means that a re-speciation event was not triggered, and when a line is red (longer lines) this means
that a re-speciation event could have been triggered by a sample. We can see that, at the beginning
of the run, speciation events are more frequent and, as the search progresses begins to converge,
these events become infrequent.

Figure 10. Analysis of the re-speciation process using the intra-species distance.

Math. Comput. Appl. 2019, 24, 78 12 of 13

4. Conclusions and Future Work

This work presents, to the authors’ knowledge, the first implementation of a GP system in a
Pool-based EA, using the EvoSpace model. The PEA approach is particularly well suited for the
speciation-based neat-GP search, allowing for a straightforward strategy to distribute the population
over the processing elements of the system (EvoWorkers). It is notable that the performance of the
PEA version was not equivalent to the sequential one, in two key respects. On the one hand, it did not
reach the same level of performance on some problems. On the other hand, on the problems where it
performed equivalently, or better, it was able to reduce solution size significantly.

Future work will center around eliminating the synchronization required by the speciation process
in the EvoSpace implementation. Another interesting extension is to consider other elements in the
speciation process besides program size and shape, such as program semantics, program behavior or
solution novelty. Moreover, we would like to integrate a wider range of parameter local search methods,
particularly gradient free methods, and to combine them with other forms of local optimizers that
work at the level of syntax or semantics. Finally, it will be important to deploy the proposed algorithms
in high-performance computing platforms, to tackle large scale big data problems, where distributing
the computational load becomes a requirement.

Author Contributions: L.T., P.J.-S. and M.G.-V. conceived and designed the experiments; P.J.-S. performed the
experiments; P.J.-S., L.T., F.F.d.V. and F.C. analyzed the data; F.F.d.V. and F.C. contributed analysis tools; P.J.-S. and
L.T. wrote the paper; and M.G.-V., F.F.d.V. and F.C. provided feedback and improved the manuscript.

Acknowledgments: This work was funded by CONACYT (Mexico) project No. FC-2015-2/944 Aprendizaje
evolutivo a gran escala, and TecNM (Mexico) project no. 6826-18-p. The first author was supported by CONACYT
doctoral scholarship 332554. The authors would like to thank Spanish Ministry of Economy, Industry and
Competitiveness and European Regional Development Fund (FEDER) under projects TIN2014-56494-C4-4-P
(Ephemec) and TIN2017-85727-C4-4-P (DeepBio); and Junta de Extremadura Project IB16035 Regional Government
of Extremadura, Consejeria of Economy and Infrastructure, FEDER.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press:
Cambridge, MA, USA, 1992.

2. Juárez-Smith, P.; Trujillo, L.; García-Valdez, M.; Fernández de Vega, F.; Chávez, F. Local search in
speciation-based bloat control for genetic programming. Genet. Program. Evolvable Mach. 2019. [CrossRef]

3. Langdon, W.B. A Many Threaded CUDA Interpreter for Genetic Programming. In Proceedings of the 13th
European Conference on Genetic Programming (EuroGP 2010), 7–9 April 2010, Istanbul, Turkey; pp. 146–158.

4. Gong, Y.J.; Chen, W.N.; Zhan, Z.H.; Zhang, J.; Li, Y.; Zhang, Q.; Li, J.J. Distributed Evolutionary Algorithms
and Their Models. Appl. Soft Comput. 2015, 34, 286–300. [CrossRef]

5. Kshemkalyani, A.; Singhal, M. Distributed Computing: Principles, Algorithms, and Systems, 1st ed.;
Cambridge University Press: New York, NY, USA, 2008.

6. Gebali, F. Algorithms and Parallel Computing, 1st ed.; Wiley Publishing: Hoboken, NJ, USA, 2011.
7. Goribar-Jimenez, C.; Maldonado, Y.; Trujillo, L.; Castelli, M.; Gonçalves, I.; Vanneschi, L. Towards the

development of a complete GP system on an FPGA using geometric semantic operators. In Proceedings
of the 2017 IEEE Congress on Evolutionary Computation (CEC), San Sebastian, Spain, 5–8 June 2017;
pp. 1932–1939.

8. García-Valdez, M.; Trujillo, L.; Fernández de Vega, F.; Merelo Guervós, J.J.; Olague, G. EvoSpace: A
Distributed Evolutionary Platform Based on the Tuple Space Model. In Proceedings of the 16th European
Conference on Applications of Evolutionary Computation, Vienna, Austria, 3–5 April 2013; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 499–508.

9. García-Valdez, M.; Trujillo, L.; Merelo, J.J.; Fernández de Vega, F.; Olague, G. The EvoSpace Model for
Pool-Based Evolutionary Algorithms. J. Grid Comput. 2015, 13, 329–349. [CrossRef]

http://dx.doi.org/10.1007/s10710-019-09351-7
http://dx.doi.org/10.1016/j.asoc.2015.04.061
http://dx.doi.org/10.1007/s10723-014-9319-2

Math. Comput. Appl. 2019, 24, 78 13 of 13

10. García-Valdez, M.; Mancilla, A.; Trujillo, L.; Merelo, J.J.; de Vega, F.F. Is there a free lunch for cloud-based
evolutionary algorithms? In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun,
Mexico, 20–23 June 2013; pp. 1255–1262.

11. Trujillo, L.; García-Valdez, M.; de Vega, F.F.; Merelo, J.J. Fireworks: Evolutionary art project based on
EvoSpace-interactive. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun,
Mexico, 20–23 June 2013; pp. 2871–2878.

12. Trujillo, L.; Muñoz, L.; Galván-López, E.; Silva, S. neat Genetic Programming: Controlling bloat naturally.
Inf. Sci. 2016, 333, 21–43. [CrossRef]

13. Z-Flores, E.; Trujillo, L.; Schütze, O.; Legrand, P. Evaluating the Effects of Local Search in Genetic
Programming. In EVOLVE—A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation
V; Springer International Publishing: Cham, Switzerland, 2014; pp. 213–228.

14. Z-Flores, E.; Trujillo, L.; Schütze, O.; Legrand, P. A Local Search Approach to Genetic Programming for Binary
Classification. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation
(GECCO ’15), 11–15 July 2015, Madrid, Spain; pp. 1151–1158.

15. Sorensen, D. Newton’s Method with a Model Trust Region Modification. SIAM J. Numer. Anal. 1982, 16.
[CrossRef]

16. Z-Flores, E.; Abatal, M.; Bassam, A.; Trujillo, L.; Juárez-Smith, P.; Hamzaoui, Y.E. Modeling the adsorption of
phenols and nitrophenols by activated carbon using genetic programming. J. Clean. Prod. 2017, 161, 860–870.
[CrossRef]

17. Enríquez-Zárate, J.; Trujillo, L.; de Lara, S.; Castelli, M.; Z-Flores, E.; Muñoz, L.; Popovič, A. Automatic
modeling of a gas turbine using genetic programming: An experimental study. Appl. Soft Comput. 2017,
50, 212–222. [CrossRef]

18. Dignum, S.; Poli, R. Operator Equalisation and Bloat Free GP. In Proceedings of the 11th European
Conference on Genetic Programming (EuroGP 2008), Naples, Italy, 26–28 March 2008; pp. 110–121.

19. Silva, S. Reassembling Operator Equalisation: A Secret Revealed. In Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computation (GECCO ’11), 12–16 July 2011, Dublin, Ireland;
pp. 1395–1402.

20. Stanley, K.O.; Miikkulainen, R. Evolving Neural Networks Through Augmenting Topologies. Evol. Comput.
2002, 10, 99–127. [CrossRef] [PubMed]

21. Kommenda, M.; Kronberger, G.; Winkler, S.M.; Affenzeller, M.; Wagner, S. Effects of constant optimization by
nonlinear least squares minimization in symbolic regression. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ’13), Amsterdam, The Netherlands, 6–10 July 2013; pp. 1121–1128.

22. Byrd, R.H.; Schnabel, R.B.; Shultz, G.A. A trust region algorithm for nonlinearly constrained optimization.
SIAM J. Numer. Anal. 1987, 24, 1152–1170. [CrossRef]

23. Quinlan, J.R. Combining Instance-Based and Model-Based Learning. In Proceedings of the Tenth International
Conference on Machine Learning, Amherst, MA, USA, 27–29 June 1993; pp. 236–243.

24. Yeh, I.C. Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr.
Res. 1998, 28, 1797 – 1808. [CrossRef]

25. Tsanas, A.; Xifara, A. Accurate quantitative estimation of energy performance of residential buildings using
statistical machine learning tools. Energy Build. 2012, 49, 560–567. [CrossRef]

26. Vladislavleva, E.J.; Smits, G.F.; den Hertog, D. Order of nonlinearity as a complexity measure for models
generated by symbolic regression via pareto genetic programming. IEEE Trans. Evol. Comput. 2009,
13, 333–349. [CrossRef]

27. Ortigosa, I.; Lopez, R.; Garcia, J. A neural networks approach to residuary resistance of sailing yachts
prediction. Proc. Int. Conf. Mar. Eng. 2007, 2007, 250.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ins.2015.11.010
http://dx.doi.org/10.1137/0719026
http://dx.doi.org/10.1016/j.jclepro.2017.05.192
http://dx.doi.org/10.1016/j.asoc.2016.11.019
http://dx.doi.org/10.1162/106365602320169811
http://www.ncbi.nlm.nih.gov/pubmed/12180173
http://dx.doi.org/10.1137/0724076
http://dx.doi.org/10.1016/S0008-8846(98)00165-3
http://dx.doi.org/10.1016/j.enbuild.2012.03.003
http://dx.doi.org/10.1109/TEVC.2008.926486
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	neat-GP
	Local Search in Genetic Programming
	Integration LS into neat-GP
	EvoSpace

	Distributing neat-GP-LS into the EvoSpace Model
	The Intra-Species Distance and Re-Speciation
	Experiments and Results

	Conclusions and Future Work
	References

