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Abstract: The effects of weather on agriculture in recent years have become a major global concern.
Hence, an effective weather risk management tool (i.e., weather derivatives) that can hedge crop
yields against weather uncertainties is needed. However, most smallholder farmers and agricultural
stakeholders are unwilling to pay for the price of weather derivatives (WD) because of the presence
of basis risks (product-design and geographical) in the pricing models. To eliminate product-design
basis risks, a machine learning ensemble technique was used to determine the relationship between
maize yield and weather variables. The results revealed that the most significant weather variable that
affected the yield of maize was average temperature. A mean-reverting model with a time-varying
speed of mean reversion, seasonal mean, and local volatility that depended on the local average
temperature was then proposed. The model was extended to a multi-dimensional model for different
but correlated locations. Based on these average temperature models, pricing models for futures,
options on futures, and basket futures for cumulative average temperature and growing degree-days
are presented. Pricing futures on baskets reduces geographical basis risk, as buyers have the
opportunity to select the most appropriate weather stations with their desired weight preference.
With these pricing models, farmers and agricultural stakeholders can hedge their crops against the
perils of extreme weather.

Keywords: basis risk; agricultural risk management; weather derivatives; cumulative average
temperature; growing degree-days

1. Introduction

Agriculture continues to be an important sector that contributes to Ghana’s exports earnings,
inputs for most manufacturing sectors, and revenue generation for majority of the population.
The agriculture and agribusiness sector account for a significant share of the major economic activities
in Ghana and a major source of income for most smallholder farmers. It is reported to account for about
70% of the labour force and more than 25% of the gross domestic product in Africa [1]. This makes
agriculture one of the most important and largest sector in the development of the economies in Africa,
of which Ghana is a member state. However, in Ghana, the sector continues to be controlled by primary
production as a result of high weather variability and hydrological flows, especially in the Northern
savannas [2]. The Northern savannas of Ghana have experienced perennial extreme flooding and
droughts, both linked to extreme heat and temperatures [2]. These have contributed to crop failures
and have consequently led to extensive impacts on the economic activities of most rural farmers.
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Weather variables are difficult to mitigate, especially for smallholder farmers in most developing
and under-developed countries, and have great effects on the farming activities of these farmers. For
this reason, an effective and reliable risk management tool, weather derivative (WD), is needed to
hedge farmers and stakeholders from the peril of weather uncertainties. By linking the payoffs to a
fairly measured weather index (e.g., temperature, rainfall, humidity, and sunshine), a WD reduces
or eliminates the disadvantages of traditional insurance, such as moral hazards and information
asymmetry. Turvey [3] examined the pricing of weather derivatives in Ontario and contended that
weather derivatives and weather insurance can be used as a form of agricultural risk management
tools. Zong and Ender [4] developed a novel type of weather derivatives contract called a climatic
zone-based growth degree-day contract. Their aim was to mitigate weather risk in the agricultural
sector of mainland China by introducing new types of temperature indices. Even though several
weather risk management tools have been recently introduced into the WD market for smallholder
farmers in most countries around the world, their purchases have been lower than expected. Among
the reasons causing the low purchase of WD and the unwillingness of farmers to pay for WD in most
communities are the lack of capacity to design and determine the value of this insurance product
and, most importantly, high basis risk (product-design and geographical) in the contract design and
implementation [5]. Basis risk in WD market is defined as the difference between the actual loss
and the actual payout of WD [6]. Using a different index rather than the actual index that affects a
specific crop yield at a location can lead to a larger gap between the real exposure and the payoff
(product-design basis risk). Product design basis risk can be mitigated if the appropriate weather
observation is used to construct the index for WD. Hence, a complete evaluation of the relationship
between historical weather and crop yield data is significant for an effective and reliable design of
WD. Forecasting of crop yields and feature importance of different weather indices for crop yields
are, therefore, principal components for an effective rate-making process in the insurance/derivatives
market. Another form of basis risk–geographical basis risk occurs when there is a deviation of weather
conditions at the measurement station of the weather derivative and the weather conditions at the
location of the buyer [7]. Spicka and Hnilica [8] evaluated the effectiveness of weather derivatives
as a revenue risk management tool by considering crop growing conditions in the Czech Republic.
The authors concluded that high basis risk can significantly misrepresent the payoff of the contract.
Musshoff et al. [9], in their research, concluded that hedging effectiveness for the agricultural sector
using weather derivatives is controlled by the contract design. They categorized basis risk into
local and geographical basis risk, and asserted that basis risk has a greater influence on the hedging
effectiveness of weather derivatives.

In this study, geographical basis risk is mitigated by pricing futures on a temperature basket
rather than a single index contract. This requires the determination of the correlation between the
locations under study.

In the literature of weather derivative pricing, different methods have been proposed for pricing
temperature-based weather derivatives. Among these methods are the indifference pricing approach,
actuarial pricing methods, the equilibrium model approach, and incomplete market pricing models.
The indifference pricing approach is a valuation method for weather derivatives which is founded
on the arguments of expected utility. It is also referred to as the incomplete market pricing model,
reservation price, or private valuation. This approach for pricing has been used in most traditional
financial derivatives where the market is incomplete (see [10–12]). In the weather derivative market,
Davis [13] used the marginal utility approach or “shadow price” method of mathematical economics
to price weather derivatives. The basis for their pricing approach was centered on the concept that
investors in the weather derivative market are not representative but experience distinct risks that
are linked to the effect of weather on their business. Brockett et al. [14] used the indifference pricing
approach to value weather derivative futures and options. The relationships between the indifference
pricing and actuarial pricing approaches for weather derivatives were studied in a mean-variance
context, where they provided instances that the actuarial pricing method does not give a distinct
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valuation for weather derivatives. From the concept of utility maximization, Barrieu and Karoui [15]
calculated the optimal profile (and its value) of derivatives written on an illiquid asset; for example,
the weather or a catastrophic event. Cao and Wei [16] generalized the equilibrium model of [17] by
incorporating weather as a basic variable in the economy. Based on this, they proposed an equilibrium
valuation framework for temperature-based weather derivatives. Using a model that captured the
daily temperature dynamics of five cities in the United States of America (Atlanta, Chicago, Dallas,
New York, and Philadelphia), they performed numerical analysis for forward and option contracts on
heating degree-days (HDDs) and cooling degree-days (CDDs). Their analysis revealed that the market
price of risk is mostly trivial when linked to the temperature variable, particularly when the aggregate
dividend process is mean-reverting. They showed that unrealistic assumptions in historical simulation
methods result in inaccurate pricing of temperature-based weather derivatives. As stated by [18],
the weather derivative market is a typical example of an incomplete market. Hence, pricing models
based on incomplete markets are the most applicable valuation method for weather derivatives. These
models consider the hedgeable and unhedgeable components of risk. The price of a weather derivative
is usually dependent on different weather indices, such as HDD, CDD, Pacific Rim (PRIM), cumulative
average temperature (CAT), and growing degree-days (GDD). Different authors [18,19] have used the
HDD and CDD indices as the major indices for pricing weather derivatives for the energy industry.

The contributions made in this study are: (1) We are able to empirically determine the main
underlying weather variable (average temperature) that affects the yield of the selected crop using
machine learning ensemble techniques and feature selection through crop yield forecasting, rather
than the usual assumption of using temperature as the underlying without proper empirical studies.
This will eliminate product-design basis risk during pricing of the weather derivatives. (2) Previous
studies have either used a piecewise constant volatility function or a seasonal volatility (e.g., [18,20,21]).
However, our proposed model includes a local volatility which is able to capture the local variations
of the daily average temperature. (3) Futures, options on futures, and basket futures (futures for
multi-dimensional locations) on CAT and GDD are priced using the constructed daily average
temperature model. These pricing models for CAT and GDD are the first of their kind in the
literature. (4) The basket futures pricing will help in mitigating geographical basis risks in the weather
derivative market.

2. Crop Yield–Weather Model and Feature Importance for Weather Derivatives

Different factors, such as condition of the soil, the variety of seedling, and type and amount of
fertilizer applied to the soil affect the yield and productivity of crops. These factors can be controlled
by the farmer and industry players. Weather variables, especially surface temperature, rainfall, and
humidity, are the principal drivers of the differences in crop yields [22]. These weather variables
directly affect the moisture content of the soil and the level of nutrients in the soil. The effect of
the uncertainties in the pattern of weather, both between and within planting seasons, can affect
the crop production and yield significantly. This has significantly affected the yield of most crops,
causing economic and food security risks in most developing and under-developed countries. Maize
is the most widely cultivated staple crop in the Northern savanna, and is the major source of income
for about 45% of households there [23]. For this reason, the yield of maize was used as a proxy to
determine the effect of the selected weather variables on crop yield. This weather variable can, then,
be used as the underlying for weather derivatives pricing.

2.1. Machine Learning Ensemble Technique for Weather-Crop Yield Model

Machine learning (ML) is used in regression and classification to solve most of the problems that
arise as a result of nonlinearity in the features and the response variable. In this study, ML ensemble
classification algorithms are used to predict the possibility of an improved crop yield harvest or crop
yield loss (a two-class (binary) problem). The choice of an optimal ML algorithm for prediction is a
major factor to consider in any forecasting problem. In our case, the chosen ML technique should be
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able to predict whether there will be an increase or decrease in crop yields for a period of years with a
small margin of error. The target variable for the ensemble classifier is whether there will be a loss or
increase in crop yields for the year-ahead harvest; that is,

• If the long-term average crop yield (Ȳ) is smaller than or equal to the present years crop yield
(Yt), then there is an increase in crop yield; else:
• If the long-term average crop yield (Ȳ) is greater than the present years crop yield (Yt), then

there is a decrease or loss in crop yield.

We assign labels to this classification: “0" for a decrease/loss in crop yields and “1” for an increase
in crop yields,

y =

{
1 if Ȳ ≤ Yt,

0 if Ȳ > Yt.
(1)

Humidity, sunlight, rainfall, minimum temperature (minT), maximum temperature (maxT), and
average temperature (aveT) are the features (X) used in predicting the target variable (Y). Now, suppose
a set of features X = {xi ∈ Rn} with associated labels Y = {yi ∈ Y, yi ∈ (0, 1)}, are given for a training
data set T = {(xi, yi)}. In this way, we solve the supervised classification problem where the learning
model N depends on D.

The yearly datasets (2000–2016) for maize yield Bole, Tamale, and Yendi were taken from the
Statistics, Research, and Information Directorate (SRID) of the Ministry of Food and Agriculture,
Ghana. Daily historical data for sunlight, humidity, rainfall, maximum and minimum temperature
from 2000–2016 were obtained from the Ghana Meteorological Agency, Ghana. K-nearest neighbors
(KNN) algorithm was used to compute the missing data points in the dataset. The yearly data points
were calculated from the daily data of the selected weather variables using the arithmetic average.
The yearly average temperature was computed from the arithmetic average of the yearly maximum
and minimum temperature. Data for the weather variables was also taken from Bole, Tamale, and
Yendi. These towns are part of the Northern Savanna and they are considered to be the food basket of
Ghana. Due to the sensitivity of the ML algorithms used and the unequal weight of the data sets, the
sample data sets were set into an identical scale–the min-max normalization scale in the interval [0, 1].
The sample data sets were divided into training (80%) and testing (20%) data sets. The training data
set was used to build the classification ensemble algorithm and the testing data was used to validate
the constructed ensemble model. The "accuracy"(accuracy is an evaluation metric used in classification
and regression problems) of the training model is fined tuned using grid search. The training model
was used to predict the crop yield signal (an increase crop yield or a decrease in crop yields). Using
accuracy and the receiver operating characteristics curve (ROC) or area under the curve (AUC), the
predictions on the testing data set were evaluated.

2.2. Model Evaluation and Feature Importance

Stacking is an ensemble learning technique that combines multiple classification or regression
models through a meta-classifier/meta-regressor to a single predictive model to reduce bias (boosting),
variance (bagging), and improve the accuracy of predictions (stacking). Using the training data set,
the base level classifiers were trained. The meta-model was trained on the outputs of the base level
algorithm as features. Stacking ensemble learning algorithms are heterogenous because the base level
classifiers are made of different classification algorithms. In this study, Adapted boosting (AdaBoost)
and artificial neural network (ANN), were used as the base classifier and gradient boosting machine
(GBM) was used as the meta-classifier. Stacking ensemble algorithm is outlined in Algorithm 1.
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Algorithm 1: Algorithm of Stacking Ensemble
Input: D : {(xi, yi)} | xi ∈ X, yi ∈ Y
Output: An ensemble classifier H

1 Step 1. Learn base-level classifiers
2 for t← 1 to N do
3 Learn a base classifier ht based on T, ht = Ht(T)
4 end for
5 Step 2. Construct new data set from T, T′ = φ

6 for i← 1 to n do
7 Construct a new data set that contains {xnew

i , yi}
where {xnew

i , yi} = {ht(xi) for t = 1 to N}
8 end for
9 Step 3. Learn a second-level classifier

10 Learn a new classifier hnew based on the newly constructed data set.
11 Return H(x) = hnew(h1(x), h2(x), · · · , hN(x))

The performance of the evaluation metrics of the proposed stacking ensemble classifier is
presented in Table 1. The table gives the performance of the ensemble classifier on the testing data set.
For binary classification, an AUC value of 50% or less is as good as randomly selecting the labels. An
AUC value closer to 1 and an accuracy value closer to 100% indicate the superiority of the proposed
model. In general, the classification model was very optimal in predicting the class of the target
variable (crop yield) using the selected features (weather variables).

Table 1. Performance of evaluation metrics of the proposed stacking ensemble classification.

Bole Tamale Yendi

Accuracy 0.8319 0.8207 0.8895

AUC 0.8104 0.7991 0.8334

From the feature importance in Table 2, average temperature, rainfall, and maximum temperature
were the three most important features in the classification model used in predicting the yield of
maize at Bole. In Tamale, the three most important variables that contributed to predicting the yield
of maize were average temperature, minimum temperature, and rainfall. With importance values of
0.3017, 0.3006, and 0.2875, rainfall, average temperature, and maximum temperature were the three
variables that had most effect in predicting maize yield at Yendi. Generally, from these results, average
temperature can be considered as the most important underlying weather variable that affects the
yield of maize in the Northern region of Ghana.

Table 2. Performance of evaluation metrics of the proposed stacking ensemble classification.

Feature

Bole Tamale Yendi

Importance
Value Rank Importance

Value Rank Importance
Value Rank

minT 0.0908 4 0.2001 2 0.2452 4
maxT 0.2017 3 0.1402 4 0.2875 3
aveT 0.3042 1 0.2075 1 0.3006 2

Rainfall 0.2552 2 0.1905 3 0.3017 1
Sunlight 0.0646 5 0.0625 6 0.2501 5

Humidity 0.0579 6 0.0983 5 0.2466 6
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3. Temperature-Based Weather Derivatives

Even though the literature on weather derivatives has evolved rapidly over the past few decades,
a consensus theoretical framework for evaluating weather derivatives has not been reached. This can
be attributed to the fact that the underlying factors of WD are not tradable in the financial market
and, hence, traditional pricing approaches cannot be used for the valuation of this product. Further,
weather indices do not correlate strongly with the prices of other financial products in the financial
market and, as a result, the underlying indices cannot be substituted for a linked exchange security.

3.1. Previous Temperature Dynamics Models

Alaton et al. [18] proposed the following mean-reverting model for the dynamics of temperature
variations:

dT(t) = dS(t) + β(T(t)− S(t))dt + σ(t)dB(t), (2)

where T(t) represents the daily average temperature, S(t) is the deterministic seasonal component, B(t)
is a Brownian motion, β is a constant mean-reversion rate, and σ(t) is the volatility. They assumed that
the volatility is a piecewise constant function which characterizes the monthly variation in volatility.
From the proposed model of [18], Benth and Benth [20] suggested the following mean-reverting model
for the time-dynamics of Norwegian daily average temperature:

dT(t) = dS(t) + β(T(t)− S(t))dt + σ(t)dL(t). (3)

As indicated by [20], the only innovation from Equation (2) is the introduction of a Lévy noise, L(t),
instead of the Brownian motion B(t). They used the generalized hyperbolic distribution, which is a
special class of Lévy process, to capture the skewness and (semi-) heavy tails of their temperature data.
However, to allow analytical pricing using the temperature dynamics model, Benth and Benth [21]
later proposed to use a Brownian motion, instead of the Lévy process, in Equation (3). Clearly,
References [18,20,21] used a constant mean-reversion rate, a volatility which is piecewise constant
function, and they did not consider multi-dimensional locations in their models.

The introduction of a time-varying speed of mean-reversion, a local volatility that is able to capture
the local variations of the daily average temperature at the selected locations, and a multi-dimensional
daily average temperature model for multi-locations gave rise to the innovations in our proposed
model and pricing. Our proposed models capture all the stylized facts of the selected locations and, to
the best of our knowledge, it is the first of its kind in the literature.

3.2. Daily Average Temperature Data

The daily average temperature data (degree Celsius) for Bole and Tamale in the Northern savanna
of Ghana, over a measurement period from 01/01/1992 to 31/08/2017, were taken from the Ghana
Meteorological Service. The data consisted of the daily maximum and minimum temperatures.
Missing data points were computed using KNN. The daily average temperature was computed from
the arithmetic average of the daily minimum and maximum temperatures. For consistency in days
(365 days) per year, February 29 was removed from the dataset for each leap year. As a result, the total
daily average temperature had 9368 data points.

The seasonal and seasonally-adjusted (de-seasonalized) plot of the daily average temperature
data for Bole and Tamale are presented in Figures 1 and 2, respectively. The spatial correlation between
Bole and Tamale was estimated, in order to develop a basket temperature for weather derivatives.
The de-seasonalized daily average temperature (as suggested by [24]) was used to estimate the
correlation matrix between the two towns (Bole and Tamale). From Table 3, it is clear that the average
temperature correlation between the selected locations was very high. This indicates that a maize farm
at Bole will encounter the same weather-related risk as a maize farm in Tamale or Yendi, and vice versa.
Hence, a weather station in any of these locations can be used for the contract without introducing
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geographical basis risk in the contract. A farmer with two or more farms at these locations can buy a
single temperature basket derivatives contract.

Figure 1. Seasonal and de-seasonalized daily average temperature of Bole.

Figure 2. Seasonal and de-seasonalized daily average temperature of Tamale.
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Table 3. Correlation matrix of the de-seasonalized daily average temperature.

Bole Tamale Yendi

Bole 1 0.8733 0.8547
Tamale 0.8733 1 0.8998
Yendi 0.8547 0.8998 1

3.3. Stochastic Dynamics of Daily Average Temperature

Motivated by [18,20,25], we propose a new average temperature dynamics model which is able
to capture major stylized facts of daily average temperature, such as locality features, seasonality,
mean-reversion, and volatility. These stylized facts were consistent with the daily average temperature
of the chosen location for this study. The proposed one-dimensional model was extended to a
multi-dimensional temperature model to cover the selected locations under study. For convenience
and analytical tractability, we assumed that the residuals of the daily average temperature were
independently and identically distributed (i.i.d.) standard normal. The proposed daily average
temperature model is given as

dT(t) = dS(t) + β(t)
(
T(t)− S(t)

)
dt + σT(t)dB(t), (4)

where T(t) represents the daily average temperature, S(t) is the deterministic seasonal component,
β(t) is the time-varying speed of mean-reversion, and σT(t) is the daily average temperature volatility
through time.

Following [18], the seasonality component is defined as

S(t) = A + Bt + C sin
(

2πt
365

+ ϑ

)
, (5)

which is made up of a seasonal component (C sin 2πt/365 + ϑ) and a trend component (A + Bt),
where A and B denote the constant and the coefficient of the linearity of the seasonal trend, respectively;
C denotes the daily average temperature amplitude, ϑ; and t is the time, measured in days.

Equation (5) can be transformed to

S(t) = a + bt + c sin
(

2πt
365

)
+ d cos

(
2πt
365

)
. (6)

By comparing (5) to (6), the relationship of the parameters is given below

A = a; B = b; C =
√

c2 + d2; ϑ = arctan
(

d
c

)
.

The numerical values of the constant in Equation (6) are estimated by fitting the function to the
historical daily average temperature data using the method of least squares. The seasonal component
for Bole and Tamale are given in the following function, respectively,

S(t) = 22.15 + (4.57 · 10−5)t + 1.98 sin
(

2πt
365
− 67.71

)
,

S(t) = 18.38 + (7.03 · 10−5)t + 2.06 sin
(

2πt
365
− 72.89

)
.

(7)

Using additive seasonal decomposition by moving averages, the daily average temperature was
decomposed into a seasonal, linear, and a random (residual) component as shown in Figures 3–5
respectively. The trend component (Figure 4) was smoother than the actual daily average temperature
data plot (Figures 1 and 2, seasonalized) and captured the main movement of the daily average
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temperature data without the minor variations. The estimated seasonal component of the daily
average temperature is presented in Figure 6.

Figure 3. Seasonal trend of the daily average temperature for Bole and Tamale.

Figure 4. Linear trend of the daily average temperature for Bole and Tamale.
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Figure 5. Residuals of the daily average temperature for Bole and Tamale.

Figure 6. Estimated seasonal figure of the daily average temperature for Bole and Tamale.

3.4. Temperature-Based Weather Derivative Pricing

Theorem 1 (Girsanov Theorem). Let Bt be a Brownian motion on a probability space (Ω,F ,P) and λ =

{λt : 0 ≤ t ≤ T} be an adaptive process satisfying the Novikov condition

E
[

exp
(

1
2

∫ t

0
λ2

udu
)]

< ∞. (8)

Let Z(t) = exp
(∫ t

0
λudBu −

1
2

∫ t

0
λ2

udu
)

.
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Then, Q ∼ P can be determined by the Radon–Nikodym derivative

dQ
dP | Ft = Z(T). (9)

Then, the random process

Wt = Bt −
∫ t

0
λsds,

dWt = dBt − λtdt,
(10)

is a standard Brownian motion under the measure Qλ.

Remark 1. The Novikov condition in the Girsanov theorem ensures that Z is positive martingale whenever
E(Z) = 1. This is referred to as the Radon–Nikodym derivative.

Remark 2. λ is refered to as the market price of risk (MPR). As there is no real weather derivative market in
Africa from which the prices can be obtained, λ is assumed to be a constant. For a constant λ, Equation (10) can
be re-defined as

dWt = dBt − λdt. (11)

Lemma 1. If the daily average temperature follows the proposed model in Equation (4), then the explicit solution
is given by

Tt = St + (T0 − S0)e
∫ t

0 βsds + e
∫ t

0 βsds
∫ t

0
σTue

∫ t
0 βsdsdBu. (12)

Proof. We have that
dTt = dSt + βt(Tt − St)dt + σTtdBt

dT̃t = βtT̃t + σTtdBt, (13)

where T̃ = Tt − St. Using the transformation below, dT̃t can be evaluated,

F(T̃t, t) = T̃te−
∫ t

0 βsds

∂F
∂T̃t

= e−
∫ t

0 βsds;
∂2F
∂T̃2

t
= 0;

∂F
∂t

= −βtT̃te−
∫ t

0 βsds.

Applying Itô’s Lemma and Equation (13),

dFt = σTte−
∫ t

0 βsdsdBt. (14)

Integrating Equation (14) over the interval [0, t],

Ft = F0 +
∫ t

0
σTue−

∫ u
0 βsdsdBu

T̃te−
∫ t

0 βsds = T̃0 +
∫ t

0
σTue−

∫ u
0 βsdsdBu

T̃t = T̃0e
∫ t

0 βsds + e
∫ t

0 βsds
∫ t

0
σTue−

∫ u
0 βsdsdBu

Tt = St + (T0 − S0)e
∫ t

0 βsds + e
∫ t

0 βsds
∫ t

0
σTue−

∫ u
0 βsdsdBu.
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Lemma 2. Under the risk-neutral measure Q, the explicit solution of the daily average temperature model is
given by

Tt = St + (T0 − S0)e
∫ t

0 βsds +
∫ t

0
σλTue

∫ t
u βsdsdu +

∫ t

0
σTue

∫ t
u βsdsdWu. (15)

Proof. By substituting Equation (11) into Equation (13) and following the steps of the proof of
Lemma 12, the lemma can be derived.

3.4.1. CAT Futures and Options on Futures

Suppose that, for a contract period [t1, t2], the temperature dynamics follow the TML model.
Then, there is a price dynamic of futures written on a CAT index with t ≤ t1 < t2. The futures price of
CAT is given by

0 = e−r(t2−t)EQ

[∫ t2

t1

Txdx− FCAT(t, t1, t2) | Ft

]
. (16)

As the future price F(t, t1, t2) is Ft adapted under the measure Q,

FCAT(t, t1, t2) = EQ

[∫ t2

t1

Txdx | Ft

]
. (17)

Proposition 1. Suppose the daily average temperature follows Model (4). Then, the price of CAT-futures at
time t ≤ t1 ≤ t2 for the contract period [t1, t2] is given by:

FCAT(t, t1, t2) =
∫ t2

t1

Sxdx +
∫ t2

t1

(Tt − St)e
∫ x

t βsdsdx + L1,

where L1 =
∫ t1

t

∫ t2
t1

e
∫ x

0 βsdsσλTue
∫ 0

u βsdsdxdu +
∫ t1

t2

∫ t2
t1

e
∫ x

0 βsdsσλTue
∫ 0

u βsdsdxdu.

Proof. From Equation (17),

FCAT(t, t1, t2) = EQ

[ ∫ t2

t1

Txdx | Ft

]
.

From Lemma 2 and for any time x ≥ t

Tx = Sx + (Tt − St)e
∫ x

t βsds +
∫ x

t
σλTue

∫ x
u βsdsdu +

∫ x

t
σTue

∫ x
u βsdsdWu

FCAT(t, t1, t2) = EQ

[ ∫ t2

t1

(
Sx + (Tt − St)e

∫ x
t βsds +

∫ x

t
σλTue

∫ x
u βsdsdu +

∫ x

t
σTue

∫ x
u βsdsdWu

)
dx
∣∣∣∣Ft

]
=
∫ t2

t1

Sxdx +
∫ t2

t1

(Tt − St)e
∫ x

t βsdsdx +
∫ t2

t1

∫ x

t
σλTue

∫ x
u βsdsdudx

=
∫ t2

t1

Sxdx +
∫ t2

t1

(Tt − St)e
∫ x

t βsdsdx + L1,

where

L1 =
∫ t2

t1

∫ x

t
σλTue

∫ x
u βsdsdudx

=
∫ t2

t1

∫ t2

t
1[t,x](u)σλTue

∫ x
u βsdsdudx

=
∫ t2

t

∫ t2

t1

1[t,x](u)σλTue
∫ x

u βsdsdxdu

=
∫ t1

t

∫ t2

t1

1[t,x](u)σλTue
∫ x

u βsdsdxdu +
∫ t2

t1

∫ t2

t1

1[t,x](u)σλTue
∫ x

u βsdsdxdu

=
∫ t1

t

∫ t2

t1

e
∫ x

0 βsdsσλTue
∫ 0

u βsdsdxdu +
∫ t2

u

∫ t2

t1

e
∫ x

0 βsdsσλTue
∫ 0

u βsdsdxdu.
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Proposition 2. At time t1 ≤ t ≤ t2, the in-period (in the contract) valuation of the CAT futures is given by

FCAT(t, t1, t2) =
∫ t

t1

Txdx +
∫ t2

t
Sxdx +

∫ t2

t
(Tt − St)e

∫ x
t βsdsdx +

∫ t2

u

∫ t2

t
e
∫ x

0 βsdsσλTue
∫ 0

u βsdsdxdu.

Proof. From the CAT futures price in Equation (17),

FCAT(t, t1, t2) = EQ

[ ∫ t2

t1

Txdx | Ft

]
= EQ

[( ∫ t

t1

Txdx +
∫ t2

t
Txdx

)∣∣∣∣Ft

]
=
∫ t

t1

Txdx +EQ

[ ∫ t2

t
Txdx | Ft

]
=
∫ t

t1

Txdx + FCAT(t, t, t2).

From Proposition 1,

FCAT(t, t1, t2) =
∫ t

t1

Txdx +
∫ t2

t
Sxdx +

∫ t2

t
(Tt − St)e

∫ x
t βsdsdx +

∫ t2

u

∫ t2

t
e
∫ x

0 βsdsσλTue
∫ 0

u βsdsdxdu.

Lemma 3. The dynamics of the CAT futures under the equivalent probability measure Q and measured over
the contract period [t1, t2] is given by

dFCAT(t, t1, t2) = ΣCAT(t, t1, t2, Tt)dWt,

where

ΣCAT(t, t1, t2, Tt) = σTt

∫ t2

t1

e
∫ x

t βsdsdx.

Proof. We have that
dFCAT(t, t1, t2)

dTt
=
∫ t2

t1

e
∫ x

t βsdsdx

dFCAT(t, t1, t2) =
∫ t2

t1

e
∫ x

t βsdsdxdTt

dFCAT(t, t1, t2) = σTt

∫ t2

t1

e
∫ x

t βsdsdxdWt.

Proposition 3. The call option price at exercise time tn and strike price C is given by

CCAT(t, tn, t1, t2) = e−r(tn−t)
((

FCAT(t, t1, t2)− C
)
Φ(∆(t, tn, t1, t2, Tt)) + Σt,tn φ(∆(t, tn, t1, t2, Tt))

)
,

where

∆(t, tn, t1, t2, Tt) =
FCAT(t, t1, t2)− C√

Σ2
t,tn

; Σ2
t,tn =

∫ tn

t
Σ2

CAT(s, t1, t2, Tt)ds,
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Φ is the cumulative standard normal distribution function, φ is the standard normal density function, and
φ(·) = Φ′(·).

Proof. By definition, a call option price at exercise time tn and strike price C is given as

CCAT(t, tn, t1, t2) = e−r(tn−t)EQ
[

max
(

FCAT(tn, t1, t2)− C, 0
)∣∣Ft

]
.

From Lemma 3, ∫ tn

t
dFCAT(s, t1, t2) =

∫ tn

t
ΣCAT(s, t1, t2, Tt)dWs,

FCAT(tn, t1, t2) = FCAT(t, t1, t2) +
∫ tn

t
ΣCAT(s, t1, t2, Tt)dWs.

FCAT(tn, t1, t2) is normally distributed under Qλ, with expectation

Eλ[FCAT(tn, t1, t2)] = FCAT(t, t1, t2)

and variance

Varλ[FCAT(tn, t1, t2)] =
∫ tn

t
Σ2

CAT(s, t1, t2, Tt)ds = Σt,tn .

Hence,

CCAT(t, tn, t1, t2) =e−r(tn−t)EQ
[

max
(

FCAT(tn, t1, t2)− C, 0
)∣∣Ft

]
=e−r(tn−t)

∫ ∞

C
(y− C) fCAT(y)dy

=e−r(tn−t)
((

FCAT(t, t1, t2)− C
)
Φ(∆(t, tn, t1, t2, Tt)) + Σt,tn φ(∆(t, tn, t1, t2, Tt))

)
,

where ∆(t, tn, t1, t2, Tt) =
FCAT(t, t1, t2)− C√

Σ2
t,tn

.

3.4.2. GDD Futures and Options on Futures

Similar to the definition of the CAT future price, the GDD future price is given as

0 = e−r(t2−t)EQ

[∫ t2

t1

Txdx− FGDD(t, t1, t2)

∣∣∣∣Ft

]
.

Using the same idea in deriving the CAT futures price, the price of the GDD-futures can be derived as

FGDD(t, t1, t2) = EQ

[∫ t2

t1

max
(

Tx − Toptimal , 0
)

dx
∣∣∣∣Ft

]
, (18)

where Toptimal is the optimal normal temperature at which a crop will develop.

Proposition 4. Suppose the daily average temperature follows Model (4). Then, the price of GDD-futures at
time t ≤ t1 ≤ t2 for the contract period [t1, t2] is given by:

WehavethatFGDD(t, t1, t2) =
∫ t2

t1

Ψ(t, x)
[

φ
(
∆(t, x)

)
+ ∆(t, x)Φ

(
∆(t, x)

)
,
]
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where

Ψ2(t, x) =
∫ x

t
σ2T2

ue2
∫ x

u βsdsdu; ∆(t, x) =
Sx + (Tt − St)e

∫ x
t βsds +

∫ x
t σλTue

∫ x
u βsdsdu− C

Ψ(t, x)
.

Proof. By definition.

GDD =
∫ t2

t1

max(Tx − C, 0)dx,

FGDD(t, t1, t2) = EQ

[ ∫ t2

t1

max
(
Tx − C, 0

)
dx
∣∣∣∣Ft

]
.

(19)

Recall, from Lemma 2 and for any time x ≥ t,

Tx = Sx + (Tt − St)e
∫ x

t βsds +
∫ x

t
σλTue

∫ x
u βsdsdu +

∫ x

t
σTue

∫ x
u βsdsdWu, (20)

Tx = Dx = A(t, x) + B(t, x), (21)

where

D(t, x) = Sx + (Tt − St)e
∫ x

t βsds +
∫ x

t
σλTue

∫ x
u βsdsdu, and B(t, x) =

∫ x

t
σTue

∫ x
u βsdsdWu.

The distribution of Dx can be determined:
A(t, x) is deterministic and, hence,

B(t, x) ∼ N
(

0,
∫ x

t
σ2T2

ue2
∫ x

u βsdsdu
)
= N

(
0, Ψ2(t, x)

)
.

It follows, from Equation (21), that

Dx ∼ N
(

A(t, x), Ψ2(t, x)
)

.

Thus, Dx can be written, in terms of the standard normal variable Z ∼ N(0, 1), as

D(t, x) = A(t, x) +
(
Ψ2(t, x)

) 1
2 Z. (22)

Consider
Tx − C > 0.

This requires (
Ψ2(t, x)

) 1
2 Z > C− A(t, x),

Z >
C− A(t, x)(
Ψ2(t, x)

) 1
2 Z

= ∆1(t, x). (23)

From Equation (23),

C = A(t, x) + ∆(t, x)
(
Ψ2(t, x)

) 1
2 Z. (24)

From Equations (19) and (23),

EQ

[ ∫ t2

t1

max
(
Tx − C, 0

)
dx
∣∣∣∣Ft

]
=
∫ +∞

∆(t,x)

(
D(t, x)− C

)
e−

1
2 z2

√
2π

dz. (25)
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Substituting Equations (22) and (24) into Equation (25),

=
∫ +∞

∆(t,x)

(
A(t, x) +

(
Ψ2(t, x)

) 1
2 Z− A(t, x)− ∆(t, x)

(
Ψ2(t, x)

) 1
2 Z
)

e−
1
2 z2

√
2π

dz

=
∫ +∞

∆(t,x)

((
Ψ2(t, x)

) 1
2 z− ∆(t, x)

(
Ψ2(t, x)

) 1
2 z
)

e−
1
2 z2

√
2π

dz

=
(

Ψ2(t, x)
) 1

2

(∫ +∞

∆1(t,x)

ze−
1
2 z2

√
2π

dz + ∆1(t, x)Φ(−∆1(t, x))

)

=
(

Ψ2(t, x)
) 1

2

(
e−

1
2 ∆(t,x)2

√
2π

dz + ∆(t, x)Φ(∆(t, x))

)

=
(

Ψ2(t, x)
) 1

2 [
φ(∆(t, x)) + ∆(t, x)Φ(∆(t, x))

]
, ,

where

∆(t, x) = −∆1(t, x) =
G(t, x)− C

(Ψ2(t, x))
1
2

,

EQ

[ ∫ t2

t1

max
(
Tx − C, 0

)
dx
∣∣∣∣Ft

]
= Ψ(t, x)

[
φ
(
∆(t, x)

)
+ ∆(t, x)Φ

(
∆(t, x)

)]
. (26)

Substituting Equation (26) into Equation (19) gives the Proposition.

Lemma 4. The dynamics of the GDD futures under the equivalent probability measure Q measured over the
period [t1, t2] are given by

dFGDD(t, t1, t2) = ΠGDD(t, t1, t2)dWt,

where ΠGDD is called the term structure of the GDD futures volatility,

ΠGDD = σTt

∫ t2

t1

e
∫ x

t βsdsΦ
(

h(t, x, e
∫ x

t βsds(Tt − St))

Ψ(t, x)

)
ds; Ψ2(t, x) =

∫ x

t
σ2T2

ue2
∫ x

u βsdsdu;

h(t, x, e
∫ x

t βsds(Tt − St)) = Sx + (Tt − St)e
∫ x

t βsds +
∫ x

t
σλTue

∫ x
u βsdsdu− C.

Proof. Let h(t, x, e
∫ x

t βsds(Tt − St)) = Sx + (Tt − St)e
∫ x

t βsds +
∫ x

t σλTue
∫ x

u βsdsdu− C

dh
dTt

= e
∫ x

t βsds

From Proposition 4,

dFGDD
dTt

=
∫ t2

t1

Ψ(t, x)Υ′
(

h(t, x, e
∫ x

t βsds(Tt − St))

Ψ(t, x)

)
h′(t, x, e

∫ x
t βsds(Tt − St))

Ψ2(t, x)
ds

=
∫ t2

t1

Υ′
(

h(t, x, e
∫ x

t βsds(Tt − St))

Ψ(t, x)

)
h′(t, x, e

∫ x
t βsds(Tt − St))ds

=
∫ t2

t1

e
∫ x

t βsdsΦ
(

h(t, x, e
∫ x

t βsds(Tt − St))

Ψ(t, x)

)
ds

dFGDD = σTt

∫ t2

t1

e
∫ x

t βsdsΦ
(

h(t, x, e
∫ x

t βsds(Tt − St))

Ψ(t, x)

)
dsdWt

dFGDD = ΠGDD(t, t1, t2)dWt,
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where

Υ(∆(t, x)) = φ(∆(t, x)) + ∆(t, x)Φ(∆(t, x)); ∆(t, x) =
h(t, x, e

∫ x
t βsds(Tt − St))

Ψ(t, x)
;

ΠGDD = σTt

∫ t2

t1

e
∫ x

t βsdsΦ
(

h(t, x, e
∫ x

t βsds(Tt − St))

Ψ(t, x)

)
ds.

Proposition 5. For a strike price C and maturity time t ≤ tn ≤ t1, the price of a call option at time t on a
GDD futures contract is given by

CGDD(t, tn, t1, t2) = e−r(tn−t)EQ

[
max

( ∫ t2

t1

Ψ(t, x)P(t, x, tn, (Tt − St))ds− C, 0
)]

,

where

P(t, x, tn, (Tt − St)) = Υ̃
(

t, x, e
∫ x

t βsds(Tt − St) +
∫ tn

t
λσe

∫ x
u βsdsdu + Σ(x, t, tn)Y

)

Υ̃(t, x, e
∫ x

t βsds(Tt − St)) = Υ
(

h(t, x, e
∫ x

t βsds(Tt − St))

Ψ(t, x)

)
and

Σ(x, t, tn) =
∫ tn

t
σ2T2

ue
∫ x

u βsdsdu.

Proof. By definition ,

CGDD(t, tn, t1, t2) = e−r(tn−t)EQ

[ ∫ t2

t1

max
(

FGDD(tn, t1, t2)− C, 0
)
dx
∣∣∣∣Ft

]
FGDD(tn, t1, t2) =

∫ t2

t1

Ψ(t, x)Υ̃
(
t, x, e

∫ x
tn βsds(Ttn − Stn)

)
ds,

=
∫ t2

t1

Ψ(t, x)Υ̃
(

t, x, e
∫ x

tn βsds(Tt − St) +
∫ tn

t
λσTue

∫ x
u βsdsdu +

∫ tn

t
σTue

∫ x
u βsdsdWu

)
ds

CGDD(t, tn, t1, t2) = e−r(tn−t)EQ

[ ∫ t2

t1

max
( ∫ t2

t1

Ψ(t, x)Υ̃
(

t, x, e
∫ x

tn βsds(Tt − St) +
∫ tn

t
λσTue

∫ x
u βsdsdu+∫ tn

t
σTue

∫ x
u βsdsdWu

)
ds− C, 0

)
dx
∣∣∣∣Ft

]
,

where

Υ̃(t, x, e
∫ x

t βsds(Tt − St)) = Υ
(

h(t, x, e
∫ x

t βsds(Tt − St))

Ψ(t, x)

)
.

3.4.3. CAT and GDD Futures on Temperature Basket

Assuming N is the spatial locations in the basket, then (ωi)
N
i=1 will be the collection of weights

for the spatial locations (yi)
N
i=1. The basket of the daily average temperature at the N spatial locations

for a given time t is defined as:

M(t) :=
N

∑
i=1

ωiTi(t), (27)

where ∑N
i=1 ωi = 1.
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Assume the daily average temperature is spatially correlated across the random noise term and
the risk-neutral distribution of the daily average temperature for the spatial locations is normally
distributed in Model (4). Hence, the weighted sum of a normally distributed basket is also normally
distributed. From the above assumptions, a new daily average temperature model for each spatial
location yi can be proposed,

dTi(t) = dSi(t) + βi(t)
(
Ti(t)− Si(t)

)
dt + σTi(t)dBi(t). (28)

Expressing Equation (28), for locations i = 1, 2, 3 · · · , N, as an N-dimensional system leads to the
equation below,

dT(t) = dS(t) + β(t)
(
T(t)− S(t)

)
dt + σT(t)dB(t), (29)

where B(t) ∼ N(0, Ωt) and Ω is a covariance matrix. Using the linear transformation of multivariate
normal distributions property,

Y ∼ N(µ, Σ)⇒ DY ∼ N(Dµ, DΣDT).

Suppose Z ∼ N(0, It) and Y = DZ. Then, it follows that Y ∼ N(0, DDTt). Applying Cholesky
factorization to Σ, we can derive a lower triangular form for D, and Wt will be expressed as an
N-dimensional Brownian motion Vt,

B(t) = LV(t). (30)

Then, LLT = Ω, L is a lower triangular matrix with non-negative diagonal entries, LT is an upper
triangular matrix, and V(t) = (V1(t), V2(t), V3(t), · · · , VN(t))T with dVi(t)dVj(t) = δijdt. Equation (29)
can be reformulated, in terms of V(t), as

dT(t) = dS(t) + β(t)
(
T(t)− S(t)

)
dt + σT(t)LdV(t). (31)

3.4.4. Girsanov’s Theorem in RN

Let V(t) =
(
V1(t), V2(t), V3(t), · · · , VN(t)

)
be an N-dimensional Brownian motion on a

probability space (Ω,F ,P) and λ =
(
λ1(t), λ2(t), λ3(t), · · · , λN(t)

)
be an N-dimensional adapted

process on [0, T].
Define

Zλ(t) := exp
( ∫ t

0
λ(s)dV(s)− 1

2

∫ t

0
|| λ(s) ||2 ds

)
, (32)

where || λ(s) ||2= ∑N
i=1 λi(s)2.

Let

Ṽ(t) = V(t) +
∫ t

0
λ(s)ds. (33)

The component process of B̃(t) is independent under the measure Q.
Suppose that

E
∫ t

0
|| λ(s) ||2 Z(s)2ds < ∞.

Then, B̃(t) is an N-dimensional standard Brownian motion under the measure Q, defined as

dQ
dP

∣∣∣∣Ft = Z(T). (34)

Let

Zλ(t) := exp
( ∫ t

0

(
σT(t)L

)
λ(s)dV(s)− 1

2

∫ t

0
|| σT(s)L ||−2|| λ(s) ||2 ds

)
. (35)
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For a constant market price of risk at each geographical reference location in equation (35), it can
be deduced that

Wλ(t) = V(t)−
∫ t

0
(σT(s)L)−1λds, (36)

where Wλ(t) is a standard Brownian motion under the measure Q. Hence, we can define the
temperature model under the measure Q as

dT(t) = dS(t) +
[
λ + β(t)

(
T(t)− S(t)

)]
dt + σT(t)LdW(t). (37)

3.4.5. Pricing CAT and GDD Futures on Temperature Basket

Definition 1. For a a specificied contract period, t ≤ t1 < t2 and at a spatial location yi, the CAT futures price
is defined as in Equation (39):

CATM[t1, t2] :=
∫ t2

t1

M(t)

:=
N

∑
i=1

ωi

(∫ t2

t1

Ti(x)dx
)

.
(38)

From Equations (17), (38), and the linearity of expectation,

FCAT(t, t1, t2; M) =
N

∑
i=1

ωiEQ

[∫ t2

t1

Ti(x)dx | Ft

]
. (39)

Definition 2. For a a specificied contract period, t ≤ t1 < t2 and at location yi, the CAT futures price is
defined as

GDD(τ1, τ2) :=
∫ t2

t1

max
{

M(t)− C , 0
}

dx

=
∫ t2

t1

max
{ N

∑
i=1

ωiTi(x)− C , 0
}

dx.
(40)

From Equations (2), (18), and using the linearity of expectation,

FGDD(t, t1, t2; D) = EQ

( ∫ t2

t1

max
{ N

∑
i=1

ωiTi(x)− C , 0
}

dx
∣∣∣∣Ft

)

=
∫ t2

t1

EQ

(
max

{ N

∑
i=1

ωiTi(x)− C , 0
}∣∣∣∣Ft

)
dx.

(41)

Lemma 5. If the dynamics of the daily average temperature follows Equation (37), then the explicit solution for
the ith location yi is given as

Ti(t) = Si(t) +
(
Ti(0)− Si(0)

)
e
∫ t

0 βi(s)ds +
∫ t

0
λie

∫ t
u βi(s)dsdu +

∫ t

0
σiTi(u)e

∫ t
u βi(s)ds

i

∑
j=1

LijdWλ
j (u).

Proof. The proof follows directly from the proof of Lemma 12 and observing the ith location yi.
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Proposition 6. At a spatial location i, the futures contract price on basket of CAT index following the
mean-reverting regime in Equation (28) is calculated as

FCAT(t, t1, t2; M) =
N

∑
i=1

ωi

[ ∫ t2

t1

Si(x) +
∫ t2

t1

(
Ti(t)− Si(t)

)
e
∫ x

t βi(s)ds+

∫ t1

t

∫ t2

t1

e
∫ x

0 βi(s)dsλie
∫ 0

u βi(s)dsdxdu+∫ t2

u

∫ t2

t1

e
∫ x

0 βi(s)dsλie
∫ 0

u βi(s)dsdxdu
]

.

Proof. For x ≥ t in Lemma 5,

Ti(x) = Si(x)+
(
Ti(t)− Si(t)

)
e
∫ x

t βi(s)ds +
∫ x

t
λie

∫ x
u βi(s)dsdu+

∫ x

t
σiTi(u)e

∫ x
u βi(s)ds

i

∑
j=1

LijdWλ
j (u) (42)

EQ
[ ∫ t2

t1

Ti(x)dx | Ft
]
= EQ

[ ∫ t2

t1

(
Si(x) +

(
Ti(t)− Si(t)

)
e
∫ x

t βi(s)ds +
∫ x

t
λie

∫ x
u βi(s)dsdu+

∫ x

t
σiTi(u)e

∫ x
u βi(s)ds

i

∑
j=1

LijdWλ
j (u)

)
dx
∣∣Ft

]
=
∫ t2

t1

Si(x)dx +
∫ t2

t1

(
Ti(t)− Si(t)

)
e
∫ x

t βi(s)dsdx +
∫ t2

t1

∫ x

t
λie

∫ x
u βi(s)dsdudx

=
∫ t2

t1

Si(x) +
∫ t2

t1

(
Ti(t)− Si(t)

)
e
∫ x

t βi(s)ds + L1,

where

L1 =
∫ t2

t1

∫ x

t
λie

∫ x
u βi(s)dsdudx

=
∫ t2

t1

∫ t2

t
1[t,x](u)λie

∫ x
u βi(s)dsdudx

=
∫ t1

t

∫ t2

t1

e
∫ x

0 βi(s)dsλie
∫ 0

u βi(s)dsdxdu +
∫ t2

u

∫ t2

t1

e
∫ x

0 βi(s)dsλie
∫ 0

u βi(s)dsdxdu

FCAT(t, t1, t2; M) =
N

∑
i=1

ωi

[ ∫ t2

t1

Si(x) +
∫ t2

t1

(
Ti(t)− Si(t)

)
e
∫ x

t βi(s)ds+

∫ t1

t

∫ t2

t1

e
∫ x

0 βi(s)dsλie
∫ 0

u βi(s)dsdxdu+∫ t2

u

∫ t2

t1

e
∫ x

0 βi(s)dsλie
∫ 0

u βi(s)dsdxdu
]

.

Proposition 7. The GDD futures price for a contract time t ≤ t1 < t2 at a given spatial location yi for a basket
of CAT index following the normal regime is given by

FN
GDD(t, t1, t2; D) =

∫ t2

t1

(
ξ(t, x) + 2∆(t, x)

) 1
2
(
φ
(
Λ(t, x)

)
+ Λ(t, x)Φ

(
Λ(t, x)

))
dx, (43)
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where Φ is the cumulative standard normal distribution function, φ is the standard normal density function,

Λ(t, x) =
ψ(t, x)− C(

ξ(t, x) + 2∆(t, x)
) 1

2
,

ψ(t, x) =
N

∑
i=1

ωi
(

Si(x) +
(
Ti(t)− Si(t)

)
e
∫ x

t βi(s)ds +
∫ x

t
λie

∫ x
u βi(s)dsdu

)
,

ξ(t, x) =
N

∑
i=1

ω2
i

i

∑
j=1

∫ x

t
σ2

i Ti(u)2e2
∫ x

u βi(s)dsL2
ijdu, and

∆(t, x) =
N

∑
i=1

N

∑
j=i+1

ωiω j
( i

∑
q=1

LiqLjq
) ∫ x

t
σi(u)σj(u)Ti(u)Tj(u)e

∫ x
u (βi(s)+β j(s))dsdu

Proof. Let

D(x) =
N

∑
i=1

ωiT̃i
t . (44)

For convenience, we denote the deterministic and random components of Equation (42) as Ai(t, x) and
Bi(t, x), respectively. That is,

Ai(t, x) = Si(x) +
(
Ti(t)− Si(t)

)
e
∫ x

t βi(s)ds +
∫ x

t
λie

∫ x
u βi(s)dsdu,

Bi(t, x) =
∫ x

t
σiTi(u)e

∫ x
u βi(s)ds

i

∑
j=1

LijdWλ
j (u) =

i

∑
j=1

∫ x

t
σiTi(u)e

∫ x
u βi(s)dsLijdWλ

j (u).

Hence,

D(x) =
N

∑
i=1

ωi

(
Ai(t, x) + Bi(t, x)

)
. (45)

The distribution of the basket D(x) at time t wll be established. Ai(t, x) is, however, deterministic. By
Itô isometry, and at t,

∫ x

t
σiTi(u)e

∫ x
u βi(s)dsLijdWλ

j (u) ∼ N
(

0,
∫ x

t
σ2

i Ti(u)2e2
∫ x

u βi(s)dsL2
ijdu

)
.

However, the Wλ
j (u) are independent for each j. The variances can, therefore, be summed to obtain

the variance of Bi(t, x),

Bi(t, x) ∼ N
(

0,
i

∑
j=1

∫ x

t
σ2

i Ti(u)2e2
∫ x

u βi(s)dsL2
ijdu

)
= N

(
0, Ψ2(t, x)

)
.

As ∑N
i=1 ωiBi(t, x) is a sum of normally distributed random variables, it is normally distributed with

respective mean and variance:

E
( N

∑
i=1

ωiBi(t, x)
)
=

N

∑
i=1

ωiE
(

Bi(t, x)
)
= 0,
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and

Var
( N

∑
i=1

ωiBi(t, x)
)
=

N

∑
i=1

Var
(

ωiBi(t, x)
)
+ 2 ∑

i<j
Cov

(
ωi Hi, ωj H j

)
=

N

∑
i=1

ω2
i Var(Hi(t, x)) + 2 ∑

i<j
ωiωjCov

(
Hi, Hj

)
=

N

∑
i=1

ω2
i Ψ2(t, x) + 2 ∑

i<j
ωiωjCov

(
Bi, Bj

)
.

Consider Cov
(

Bi, Bj
)

for j > 1. With respect to the standard Brownian motions Wλ
1 (u), both B1 and Bj

are in the same integral form. For j > 1 and by the independence of Wλ
1 (u) and Wλ

j (u), the covariance
only exists between these two integrals. Therefore,

Cov
(

Bi, Bj

)
=
∫ x

t
σi(u)σj(u)Ti(u)Tj(u)e

∫ x
u (βi(s)+β j(s))ds

( i

∑
q=1

LiqLjq
)

du, ∀j > 1

=
( i

∑
q=1

LiqLjq
) ∫ x

t
σi(u)σj(u)Ti(u)Tj(u)e

∫ x
u (βi(s)+β j(s))dsdu, ∀j > 1.

Define Υij(t, x) :=
∫ x

t
σi(u)σj(u)Ti(u)Tj(u)e

∫ x
u (βi(s)+β j(s))dsdu,

Var
( N

∑
i=1

ωiBi(t, x)
)
=

N

∑
i=1

ω2
i Ψ2(t, x) + 2 ∑

i<j
ωiωj

( i

∑
q=1

LiqLjq

)
Υij(t, x)

=
N

∑
i=1

ω2
i Ψ2(t, x) + 2

N

∑
i=1

N

∑
j=i+1

ωiωj

( i

∑
q=1

LiqLjq

)
Υij(t, x).

From (45),

D(x) ∼ N
( N

∑
i=1

ωi Ai(t, x),
N

∑
i=1

ω2
i Ψ2(t, x) + 2

N

∑
i=1

N

∑
j=i+1

ωiωj

( i

∑
q=1

LiqLjq

)
Υij(t, x)

)
.

Let

ψ(t, x) =
N

∑
i=1

ωi Ai(t, x); ξ(t, x) =
N

∑
i=1

ω2
i Ψ2(t, x);

∆(t, x) =
N

∑
i=1

N

∑
j=i+1

ωiωj

( i

∑
q=1

LiqLjq

)
Υij(t, x).

D(x) can be written, in the form of a standard normal random variable Z ∼ N(0, 1), as

D(x) = ψ(t, x) +
(

ξ(t, x) + 2∆(t, x)
) 1

2

Z. (46)



Math. Comput. Appl. 2019, 24, 71 23 of 25

Recall Equation (41) and consider

N

∑
i=1

ωiTi(x)− C > 0,

(
ξ(t, x) + 2∆(t, x)

) 1
2

Z > C− ψ(t, x),

Z >
C− ψ(t, x)(

ξ(t, x) + 2∆(t, x)
) 1

2
:= Λ1(t, x).

From the above equation,

C = ψ(t, x) + Λ1(t, x)
(

ξ(t, x) + 2∆(t, x)
) 1

2
. (47)

It can be deduced from, Equations (41) and (47), that

EQ

(
max

{ N

∑
i=1

ωiTi(x)− C , 0
}

dx
∣∣∣∣Ft

)
=
∫ +∞

Λ1(t,x)

(
D(x)− C

) e−
1
2 z2

√
2π

dz. (48)

Then,

EQ

(
max

{ N

∑
i=1

ωiT̃i
t − K , 0

}
dx
∣∣∣∣Ft

)
=
∫ +∞

Λ1(t,x)

(
ψ(t, x) +

(
ξ(t, x) + 2∆(t, x)

) 1
2 z−

ψ(t, x)−Λ1(t, x)
(
ξ(t, x) + 2∆(t, x)

) 1
2

)
e−

1
2 z2

√
2π

dz

=
∫ +∞

Λ1(t,x)

((
ξ(t, x) + 2∆(t, x)

) 1
2 z−

Λ1(t, x)
(

ξ(t, x) + 2∆(t, x)
) 1

2
)

e−
1
2 z2

√
2π

dz

=
(

ξ(t, x) + 2∆(t, x)
) 1

2
( ∫ +∞

Λ1(t,x)

ze−
1
2 z2

√
2π

dz + Λ1(t, x)Φ
(
−Λ1(t, x)

)
=
(
ξ(t, x) + 2∆(t, x)

) 1
2

(
e−

1
2 Λ(t,x)2

√
2π

+ Λ(t, x)Φ
(
Λ(t, x)

)
=
(
ξ(t, x) + 2∆(t, x)

) 1
2
(
φ
(
Λ(t, x)

)
+ Λ(t, x)Φ

(
Λ(t, x)

))
.

Therefore,

FN
GDD(t, t1, t2; D) =

∫ t2

t1

(
ξ(t, x) + 2∆(t, x)

) 1
2
(
φ
(
Λ(t, x)

)
+ Λ(t, x)Φ

(
Λ(t, x)

))
dx,

where

Λ(t, x) = −Λ1(t, x) =
ψ(t, x)− C(

ξ(t, x) + 2∆(t, x)
) 1

2
.
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4. Discussion and Conclusion

The agricultural sector employs a large workforce in Ghana and serves as the principal source
of income for most people, especially small-holder farmers in the Northern savanna. This sector is
vulnerable to climate shocks and, hence, there is a need for a reliable and efficient insurance product
(weather derivative) for small-holder farmers and stakeholders. However, most farmers are unwilling
to buy this product as a result of high basis risks in the product design and pricing. To reduce basis
risk in weather derivative design and pricing, in this study, the historical relationship between maize
yield and some selected weather variables were determined by using machine learning ensemble
technique and feature importance. Maize yield was chosen as the proxy for crop yields, due to its
economic importance to the farmers in the Northern savanna. The feature importance gave a score
of the importance of each weather variable in building the ensemble-learning model. The results
indicated that average temperature was the most important weather variable that affected the yield
of maize. Consequently, average daily temperature was used as the underlying weather variable for
weather derivative design. In this way, product design basis risk was mitigated.

A time-varying daily average temperature model was proposed. The model was a mean-reverting
process with time-varying speed of mean-reversion, seasonal mean, and a local volatility that captured
the local variations of the daily average temperature. The model was extended to a multi-dimensional
model for different but correlated locations. For analytical tractability for the pricing models, the
residuals of the daily average temperature were assumed to be normally distributed. Our models
captured most of the stylized facts of temperature, such as mean-reversion, seasonality, volatility, and
locality features of the selected locations. Using the proposed average temmodels, closed-form pricing
formulas for futures, options on futures, basket futures for cumulative average temperature (CAT), and
growing degree-days (GDD) were presented. Since there is not yet a real WD market for the selected
locations, we assume a constant market price of risk in the pricing models.

With these efficient and reliable pricing models, basis risks will be mitigated. As a result, there
will be an increase in the willingness to pay for the contracts on the farmers’ side and trading activities
in the WD market will also increase. Using the proposed spatial-temporal pricing model, it will be cost
efficient to buy contracts for different but correlated farming locations rather than a single farming
location. Farmers and other agricultural stakeholders can control covariate risks and hedge their crops
against the perils of weather uncertainties.

In summary, basis risks (product-design and geographical) can mitigated if weather derivatives
are properly designed.
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