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Abstract: The synchronization of neurons is fundamental for the functioning of the brain since its lack
or excess may be related to neurological disorders, such as autism, Parkinson’s and neuropathies such
as epilepsy. In this way, the study of synchronization, as well as its suppression in coupled neurons
systems, consists of an important multidisciplinary research field where there are still questions to be
answered. Here, through mathematical modeling and numerical approach, we simulated a neural
network composed of 5000 bursting neurons in a scale-free connection scheme where non-trivial
synchronization phenomenon is observed. We proposed two different protocols to the suppression
of phase synchronization, which is related to deep brain stimulation and delayed feedback control.
Through an optimization process, it is possible to suppression the abnormal synchronization in the
neural network.
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1. Introduction

For years, the study of synchronization has been important since this phenomenon has been
observed in many different biological systems, e.g., firefly communities, pacemaker cells of the
heart, and crickets that chirp in unison [1–5]. In addition, the complexity seen in the brain
is directly related to the distinct activation patterns of the neurons, which can be understood
as a synchronization phenomenon. Particularly, the synchronization of neurons is important
since anomalous synchronization can disrupt the brain functioning, generating disorders, such as
Parkinson’s disease (PD) and autism [6–10].

A possible neurosurgical treatment for PD is called deep brain stimulation (DBS), which consists
of the insertion of an electric probe that emits electromagnetic signals in a target brain area [9,11,12]. A
more recently developed technique is the noninvasive DBS, which consists of temporally interfering
electric fields [12] generated outside of the cranium. Despite its long history of use, it is still unclear how
DBS works [9,10]. Some studies indicate that high-frequency DBS replaces pathological low-frequency
network oscillations in the rat model of Parkinson’s disease with a regularized pattern of neuronal
firing [13], and there is evidence that the DBS releases the activity patterns of groups of cells in the
subthalamic nucleus that present abnormal synchronization due to PD, which destroys neurons in
basal ganglia [14]. Depending on the frequency of the signal, it allows suppressing the symptoms of
Parkinson’s disease [13,15].

A healthy human brain consists of∼ 1011 interconnected neurons through∼ 1015 synapses [16,17].
In the theoretical point of view, a possible way to study coupled neurons is given by the computational
simulation of complex networks, where each site of the network corresponds to a neuron and its
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connections are represented by the edges of the network [18]. In this scenario, distinct topologies or
connection architectures have been successfully used to simulate the interconnections of the human
brain, such as small-world, scale-free and random topologies [18–23].

In this study, we simulated a neural network composed of N = 5000 neurons in a scale-free
topology, where each neuron was modeled by a Hodgkin–Huxley-type model [24–26]. This model is
characterized by the insertion of two temperature sensitive parameters, and two additional slow ionic
currents to the original ideas of Hodgkin and Huxley [27], which can be understood as the contribution
of calcium ion channels [28].

It is observed in the literature that a neural network under a small-world topology can display
abnormal phase synchronization for weak coupling regime since the phase synchronization regime in
this region is characterized by a non-monotonic evolution of synchronization levels as a function of the
coupling between neurons [29–31]. In fact, this kind of behavior has also been observed in non-identical
coupled Rösller oscillators [32]. Recently, the mechanism behind the abnormal synchronization in a
neural network composed of bursting neurons is explored and the relationship between the individual
neuron behavior and the network synchronization helps to understand the phenomenon [33,34]. In
[33], it is shown that the occurring of abnormal synchronization is related to the periodic inter-burst
interval of the uncoupled neuron. Besides that, in [34], it is observed that the abnormal synchronization
occurs due to an interplay between the periodic individual behavior and the influence of coupling
strength, which is strong enough to induce the network to phase synchronization without destroying
the influence of individual periodic behavior.

Here, we extend the study of abnormal synchronization to the scale-free connection architecture,
since the topology plays an important role in the dynamics of systems [35–37]. Scale-free topology is
different from the small-world one since the scale-free scheme presents a high degree of heterogeneity
where neurons with a high connectivity degree are connected with neurons with low connectivity
degree [37,38]. Thus, we study the existence of abnormal synchronization in a scale-free neural network
and its suppression by the application of a disturbance in the network neurons. This perturbation is
characterized by the application of a pulsed external current, which can be described as a theoretical
interpretation of the DBS treatment.

We considered another suppression strategy that consists of the reapplication of a fraction of the
signal generated by the neurons, which is called delayed-feedback-control (DFC). It was first applied
experimentally in vitro in a spontaneously bursting neural network [39,40] and is frequently used in
neural stimulation treatments [41,42].

To quantify synchronization of the network, we used the order parameter proposed by Kuramoto
[43], which is able to capture information about phase synchronization of the system using data of
each neuron. In this sense, we show that the suppression methods proposed are able to suppress the
anomalous synchronization without affecting the regular synchronized states, which occur for large
values of the coupling.

The paper is organized as follows. In Section 2, we introduce the details of the connection scheme
and the used neuronal model. In Section 3, we introduce the quantification of PS by using of the
Kuramoto order parameter. In Section 4, details of the perturbation methods imposed into the system,
as well as the results obtained with each perturbation are discussed. Our conclusions are in the last
section.

2. Neural Model and Connection Scheme

We studied the dynamical behavior of a neural network composed of 5000 neurons connected in
a scale-free topology. In this case, the number of connections per node presents a statistical power-law
dependence P(n) ∼ n−κ [44,45]. The values of the scaling exponent are within 2 ≤ κ ≤ 2.2 and the
average connection 〈n〉 ≈ 4 [21,41,46], where P(n)dn is the probability to find a node with a degree in
the interval from n to n + dn.
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Scale-free networks can be obtained by the Barabasi–Albert procedure through a sequence of
steps starting from an initial lattice with a small number N0 of nodes randomly connected [44,45]. At
each step, a new node is inserted in the network, which is randomly connected to n ≥ 2 nodes. The
process is repeated until the network reaches the desired number of nodes. In this work, we used
N = 5000 nodes. To generate a scale-free network, we used the Python library NetworkX [47], which
have us κ ≈ 2.2.

To simulate the individual neuron dynamics, we used a Hodgkin–Huxley-type model [25,26],
where the adaptation takes into account the addition of two slow ionic fluxes. Mathematically, the
neuronal model used in this work describes the temporal dynamics of the neuron membrane potential
as a function of the ionic fluxes. This adaptation also includes temperature sensitive parameters. The
temporal evolution of the membrane potential Vi is described by

C dVi
dt

= −Ji,Na − Ji,K − Ji,sd − Ji,sa − Ji,L + Ji,coup, (1)

where C is the specific membrane capacitance of neurons measured in µF/cm2; Vi is measured in
mV; Ji,Na, Ji,K, and Ji,L are the sodium, potassium and non-gated channels fluxes of the original
Hodgkin–Huxley model [27], respectively, which are measured in µA/cm2; and Ji,sd and Ji,sa are the
two slow ionic fluxes added by Braun et al. to this model and the are associate to calcium flux [28].

The electrical fluxes related to the ion and leak channels are given by conductance-based
expressions [25]

Ji,Na = ρgNaαi,Na(Vi − ENa), (2)

Ji,K = ρgKαi,K(Vi − EK), (3)

Ji,sd = ρgsdαi,sd(Vi − Esd), (4)

Ji,sa = ρgsaαi,sa(Vi − Esa), (5)

Ji,L = gL(Vi − EL), (6)

where gNa, gK, gsd, gsa, and gL are the maximum (specific) conductances measured in mS/cm2, and
ENa, EK, Esd, Esa, and EL denote the reversal Nernst potentials for each ionic current measured in mV.
The term ρ refers to a temperature dependence of the model and it is described by

ρ = ρ
(T−T0)/τ0
0 , (7)

where T, T0 and τ0 and ρ0 are constants of the model.
The temporal evolution of the activation functions αi,Na, αi,K,αi,sd, and αi,sa are described by

dαi,Na

dt
=

φ

τNa
(αi,Na,∞ − αi,Na), (8)

dαi,K

dt
=

φ

τK
(αi,K,∞ − αi,K), (9)

dαi,sd

dt
=

φ

τsd
(αi,sd,∞ − αi,sd), (10)

dαi,sa

dt
=

φ

τsa
(−η Ji,sd − γαi,sa), (11)

where τNa, τK, τsd, and τsa are constants [25]. The parameter η works to increase calcium ion
concentration following Ji,sa, while γ accounts for active the elimination of intracellular calcium [28]. φ

is another temperature dependence of the model, given by

φ = φ
(T−T0)/τ0
0 . (12)
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The functions αi,Na,∞, αi,K,∞, and αi,sd,∞ are described by

αi,Na,∞ =
1

1 + exp[−sNa(Vi −V0Na)]
, (13)

αi,K,∞ =
1

1 + exp[−sK(Vi −V0K)]
, (14)

αi,sd,∞ =
1

1 + exp[−ssd(Vi −V0sd)]
, (15)

where sNa, sK, ssd, V0Na, V0K, and V0sd are constants whose values are given in Table 1 following Braun
et al. [25].

The coupling term Ji,coup, in Equation (1), is an excitatory chemical synapse, since the synapse
does not occur directly. In this way, the ith postsynaptic neuron receives signals from presynaptic
ones [48]

Ji,coup =
ε

〈n〉
N

∑
j=1

ei,jrj(Vsyn −Vi), (16)

where ε is the coupling parameter that controls the coupling intensity. 〈n〉 is the normalization factor,
defined as the average of connections number, which is 〈n〉 ≈ 4. Vsyn is the synaptic reversal potential,
set here as 20 mV, which assures that the contribution coming from the coupling is positive for all
instant of time, characterizing an excitatory synapse. ei,j represents the elements of the adjacency
matrix, which is a scale-free type. In this case, if the ith and jth neurons are connected, ei,j = 1;
otherwise, ei,j = 0.

Added to the kinetic variable of the model, ri refers to the fraction of bound receptors available to
receive a connection. We used the equation of ri proposed by Destexhe et al. [48],

dri
dt

=

(
1
τr
− 1

τd

)
1− ri

1 + exp[−s0(Vi −V0)]
− ri

τd
, (17)

where s0 is a unitary constant measured in (1/mV), V0 = −20 mV, and τr = 0.5 ms and τd = 8 ms are
constants associated to the rises and decays of the synaptic transition, respectively.

To integrate the set of coupled equations composing the model, we used Adams’
predictor-corrector method [49] with an absolute tolerance less than 10−8. Figure 1a depicts the
typical membrane potential for a neuron, using the fixed set of parameter values shown in Table 1. As
observed, the neuron depicts bursting dynamics characterized by a sequence of spikes followed by a
resting time [50]. We refer to this dynamics as bursting regime and, throughout the coupling interval
used here, the suppression process ensured that this regime is not lost, which makes possible the phase
association and synchronization evaluation for all interval of coupling and suppression strength.
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Figure 1. (a) Evolution of the dynamic behavior of the membrane potential Vi for the
Hodgkin–Huxley-type model using the constants defined in Table 1. (b) The recovery variable
Ui ≡ 1/αi,sa computed for each neuron, where the maximum of Ui corresponds to the beginning
of each burst.

Table 1. Parameter values of the neuronal model according to Braun et al. [25].

Membrane Capacitance C = 1.0 µF/cm2

Characteristic Times (ms) τNa = 0.05 τK = 2.0 τsd = 10 τsa = 20

Maximum Conductances (mS/cm2)
gNa = 1.5 gK = 2.0 gsd = 0.25 gsa = 0.4
gL = 0.1

Reversal Potentials (mV) ENa = 50 EK = −90 Esd = 50 Esa = −90
EL = −60 V0Na = −25 V0K = −25 V0sd = −40

Other Parameters
ρ0 = 1.3 φ0 = 3.0 T0 = 25 ◦C τ0 = 10 ◦C

sNa = 0.25 (1/mV) η = 0.012 µA γ = 0.17 sK = 0.25 (1/mV)
ssd = 0.09 (1/mV) T = 13 ◦C

3. Phase Synchronization Quantifier

To quantify phase synchronization in the bursting regime, we associated a geometric phase to
the sequence of bursts for each neuron. Figure 1b shows the auxiliary variable Ui ≡ 1/αi,sa computed
using Equation (11), where each maximum of Ui corresponds to the beginning of a burst of the ith
neuron [51]. If tk,i is the beginning time of the kth burst of the ith neuron, the duration of the burst
would be tk+1,i − tk,i, with k = 0, 1, 2 . . . and i = 1, 2, . . . , N, consequently the phase would vary from
2πk to 2π(k + 1), and it is defined for specific time t as [52]

θi(t) = 2πki + 2π
t− tk,i

tk+1,i − tk,i
, tk,i ≤ t < tk+1,i. (18)

Considering the geometric phase variable θi as defined in Equation (18), to quantify PS, we used
the modulus of the Kuramoto order parameter R(t) [53]

R(t) =

∣∣∣∣∣ 1
N

N

∑
i=1

eiθi(t)

∣∣∣∣∣ , (19)

where R(t) gives us a number between 0 (completely unsynchronized) and 1 (completely phase
synchronized).

The order parameter oscillates in time for not fully synchronized neurons [43] and its temporal
mean value is defined as

〈R〉 = 1
M

M

∑
j=1

R(t′j), (20)
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being t′1 = ti, t′2 = ti + h, · · · , t′M = t f , where h = 0.01, and ti and t f are initial and final times of the
computation of R(t).

To show the synchronization behavior of the network, Figure 2 depicts 〈R〉 as a function of the
coupling parameter ε of a neural network given by Equations (1)–(17). To avoid any trend in the result,
we used random initial conditions in the following intervals: Vi ∈ [−65.0; 0.0]; αNa,i, αK,i, αsd,i, αsa,i, ri ∈
[0.1; 1.0]. Observe that, for ε > ε∗ = 0.007 (mS/cm2), the network followed a route of globally stable
phase synchronized state, since 〈R〉 approached 1 as the coupling strength was increased. For the
interval of coupling strength 0.002 < ε < 0.007, the network exhibited a local maximum of phase
synchronization (ε ≈ 0.004). This behavior was also observed in small-world network [30,31,51], which
characterized a non-monotonic evolution of the synchronization level as a function of the coupling
that could be understood as an abnormal synchronization since PS occurred for a coupling ε < ε∗. In
this way, it is known that several brain disorders, such as Parkinson’s disease and autism, are related
to abnormal neuronal synchronization [6–9], thus it is expected that the application of synchronization
suppression methods may be useful to vanish the anomalous synchronization, as observed in Figure 2.

Figure 2. The mean order parameter 〈R〉 as a function of the coupling parameter ε for a scale-free
neural network with 5000 identical neurons with randomly distributed initial conditions. The dashed
vertical line represents the critical coupling ε∗.

4. Results and Discussions

Considering a scale-free neural network composed of N = 5000 identical neurons, we used
the mean value of the Kuramoto order parameter 〈R〉 to evaluate the PS for different suppression
synchronization protocols. Here, we used a transient time given by ti = 150 s and the total simulation
time was set to t f = 250 s.

Motivated by experimental results [12,15], we made a perturbation in the network by applying an
external pulsed current λ(t) in Equation (1) of the neuronal model. Mathematically, the suppression
method can be described as

λ(t) =
λ0

2
+

∞

∑
m=1,3,···

2λ0

mπ
sin

(
2mπt

τ

)
, (21)

where λ0 is the amplitude of each pulse measured in µA/cm2, and τ is the period for which the current
is successively turned on and off and measured in seconds. Figure 3 shows the evolution of λ(t)/λ0 as
a function of t/τ.
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Figure 3. The on-off pulse evolution of λ(t)/λ0 given by Equation (21).

Figure 4 depicts 〈R〉 as a function of the coupling ε for different values of amplitude λ0. For
amplitudes lower than λ0 < 0.05 (µA/cm2), the network still presented PS for small values of ε.
However, for λ0 ≥ 0.05, the anomalous PS was suppressed without altering the globally stable state
of synchronization for coupling value higher than the critical value ε∗ (which remains constant in
ε∗ ≈ 0.007 for λ0 < 0.2). The frequency ν = 1/τ was fixed at 140 Hz (which means τ ≈ 0.0071 s), since
experimental results show that only a high frequency currents (ν > 100 Hz [9,10,54]) could restore
normal neural behavior in Parkinson’s Disease (PD) [13].

Figure 4. 〈R〉 as functions of ε and the amplitude of the external pulsed current λ0, for a high
frequency ν = 140 Hz. For amplitudes λ0 ≥ 0.05, the method successfully suppressed the anomalous
synchronization occurring for coupling strength ε . 0.007..

The next step consisted of the study of the heterogeneity of the scale-free network because one
of the characteristics of the scale-free topology is the existence of hubs, which are characterized by
neurons with high connectivity in the network [41,44,45]. Intuitively, it is believed that the perturbation
presents greater influence when applied in the hubs since they have high connectivity in the network.
We made a change in the applied current to apply the current in select groups of neurons

λ(t, λ0, τ)→ λi(t, λ0,i, τ)

where λ0,i = λ0 if i ⊂ G or λ0,i = 0, otherwise G is a subset of neurons in the network. Here, it was
studied how the PS varied for three different subsets G. Firstly, we applied the current in the neurons
with higher connectivity degree of the network, in this case, the order of G was |G| = Nhubs. In the
second case, the pulsed current was applied in random neurons of the network, and then |G| = Nrand.
In the latter case, a neuron in the network was randomly chosen and the current was applied in that
neuron and its neighbors, which formed a package of neurons that received the application with
|G| = Npackage. Figure 5 depicts an example of a subset G with λ0,i/λ0 = 1, in this case |G| = 1000.
The Figure 5a shows a subset of random neurons and Figure 5b a subset of a package of neurons.
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Figure 5. Amplitude of the external current λ0,i for: (a) random subset of neurons; and (b) package
subset of neurons.

Figure 6 depicts the mean value of Kuramoto order parameter 〈R〉 × ε as a function of the order
of the subset |G| with λ0 = 0.1. In Figure 6a a subset of the neurons with higher connectivity in the
network with |G| = Nhubs is chosen, Figure 6b a subset of random neurons with |G| = Nrand and
Figure 6b a package of neurons with |G| = Npackage. Note that the three surfaces have the same shape.
In this case, when the order of |G| & 2000, the PS was suppressed, that is, now the network depicted a
monotonic evolution of the synchronization as ε increased.

Another strategy consisted in the application of a delayed mean field signal V̄ over the network

ξ(t) = ξ0V̄(t− tdelay), (22)

where ξ0 (similarly to λ0) is the current amplitude given by 10−4 µA/cm2, and tdelay (ms) is the delay
time between the generation of the mean field and the re-application of the signal. V̄ is the mean field
potential of the network, which is defined by

V̄(t) =
1
N

N

∑
i=1

Vi(t). (23)
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(a) (b)

(c)

Figure 6. 〈R〉 as functions of ε and the order of the subset |G|which is applied an external pulsed current
with λ0 (i ⊂ G) for three different subsets G: (a) G consists of the neurons with higher connectivity of
the network (hubs); (b) G consists of random neurons; and (c) G consists of packages of neurons.

Figure 7 depicts the V̄(t) for three different values of coupling ε. In Figure 7a, ε = 0.001, the mean
field display a small amplitude variation since the network presents an unsynchronized behavior. In
Figure 7b, ε = 0.007 and, in Figure 7c, ε = 0.020, the mean field display an oscillatory behavior, since
in this regime the neurons of the network presents a signal of partial synchronization.
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Figure 7. The evolution of the mean field V̄ in time for: (a) ε = 0.001 (unsynchronized); (b) ε = 0.007
(≈ ε∗); and (c) ε = 0.020 (synchronized).

(a) (b)

(c)

Figure 8. 〈R〉 as functions of ε and the amplitude of the current ξ0 for different delay times tdelay: (a)
tdelay = 0; (b) tdelay = 500 ms; and (c) tdelay = 1000 ms.

In this approach, V̄ < 0, ξ0 > 0 (ξ0 < 0) characterizes an inhibitory (excitatory) current which
decreases (increases) the membrane potential Vi. The natural period of the Hodgkin–Huxley-type
neuron with the parameters in Table 1 is t0 ≈ 1, 250 ms. In Figure 8, we show how the PS varies with the
application of ξ(t) in all the neurons as a function of the amplitude ξ0 and the coupling parameter ε for
three different delay time tdelay, in panel Figure 8a, tdelay = 0, that is, the mean field affects the network
instantaneously; when −15 < ξ0 < −5, the network is characterized by a monotonic evolution of the
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synchronization the anomalous PS is suppressed; when ξ0 > −5, the anomalous regime still occurs;
and, particularly, when ξ0 > 5 the synchronization for coupling ε < ε∗ is amplified with 〈R〉 ≈ 0.95.
In Figure 8b, tdelay = 500, which is tdelay ≈ t0/2, and the mean field with delay V̄(t − t0/2) is in
anti-phase with the V̄(t), for ξ0 < −7.5 the anomalous PS is suppressed, otherwise the network still
depicts a non-monotonic evolution of the 〈R〉which characterizes abnormal synchronization. In Figure
8c, tdelay = 1000 ≈ t0, as expected; the result is similar to Figure 8a because of the oscillatory behavior
of the mean field, that is V̄(t− t0) ≈ V̄(t), the numerical value of ξ(t) is the same in both cases.

5. Conclusion

In this paper, we model a neural network composed of N = 5000 Hodgkin–Huxley-type neurons
to study the synchronization phenomena. A similar approach have been used to analyze small-world
neural networks [31,33,55]. However, the influence of topology plays an important role in the
synchronization characteristics [22,35,38]. In this way, we simulated a scale-free network since there
are great differences regarding the heterogeneity of the network in comparison to the small-world
one [37,38]. It was shown that the scale-free network displays a non-monotonic evolution of the
phase synchronization as the coupling between neurons increases. A similar scenario has been
observed in small-world networks, which is called “anomalous phase synchronization" [30,31,55],
since the traditional behavior should monotonically transition to PS [33]. Especially, Parkinson’s
disease and some episodes of seizure behavior generated by epilepsy may be associated to anomalous
synchronization.

We have proposed two methods of suppression of the anomalous synchronization behavior, both
based on treatment for neurological disorders, which consist in the application of an external current
in the neurons of the network [9,10].

The first method consists of electrical pulses imposed all over the network. It was shown that, for
an amplitude higher than a critical value λ0 > 0.05, the anomalous synchronization was suppressed. As
a second approach, we studied how the heterogeneity of the scale-free network affects the anomalous
PS. We used three different protocols applying the pulsed current in subsets of hubs,; random neurons,
and a selected package of neurons. We showed the existence of a threshold, 2000 neurons (40% of
the network), which must be disturbed to reach the suppression of anomalous PS in all cases. Such
a conclusion implies that the synchronization is related to the individual dynamics of each neuron
rather than the network topology [33].

In the second method, only a small fraction ξ0 > −0.0005 µA/cm2 (with tdelay = 0) of the delayed
signal of the mean field was applied to all neurons and the abnormal synchronization was suppressed.

Finally, we showed that the delayed signal of the mean field potential had a greater contribution
in the region where the suppression was not reached. When tdelay ≈ t0/2, it was observed that the
anomalous synchronization still persisted but with a lower intensity (〈R〉 ≈ 0.6) compared to the
non-delayed scenario (tdelay = 0).
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