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Abstract: The industrial application motivating this work is the fatigue computation of aircraft
engines’ high-pressure turbine blades. The material model involves nonlinear elastoviscoplastic
behavior laws, for which the parameters depend on the temperature. For this application,
the temperature loading is not accurately known and can reach values relatively close to the creep
temperature: important nonlinear effects occur and the solution strongly depends on the used
thermal loading. We consider a nonlinear reduced order model able to compute, in the exploitation
phase, the behavior of the blade for a new temperature field loading. The sensitivity of the solution
to the temperature makes the classical unenriched proper orthogonal decomposition method fail.
In this work, we propose a new error indicator, quantifying the error made by the reduced order
model in computational complexity independent of the size of the high-fidelity reference model.
In our framework, when the error indicator becomes larger than a given tolerance, the reduced order
model is updated using one time step solution of the high-fidelity reference model. The approach
is illustrated on a series of academic test cases and applied on a setting of industrial complexity
involving five million degrees of freedom, where the whole procedure is computed in parallel with
distributed memory.

Keywords: nonlinear reduced order model; elastoviscoplastic behavior; nonlinear structural
mechanics; proper orthogonal decomposition; empirical cubature method; error indicator

1. Introduction

The application of interest for this work is the lifetime computation of aircraft engines’
high-pressure turbine blades. Being located immediately downstream the combustion chamber,
such parts undergo extreme thermal loading, with incoming fluid temperature higher than the
material’s melting temperature. These blades are responsible for a large part of the maintenance
budget of the engine, with temperature creep rupture and high-cycle fatigue [1,2] as possible failure
causes. Various technological efforts have been spent to increase the durability of these blades as much
as possible, such as thermal barrier coatings [3], advanced superalloys [4] and complex internal cooling
channels [5,6], see Figure 1 for a representation of a high-pressure turbine blade.

Computing lifetime predictions for high-pressure turbine blades is a challenging task: meshes
involve large numbers of degrees of freedom to account for local structures such as the internal
cooling channels, the behavior laws are strongly nonlinear with many internal variables, and a large
number of cycles has to be computed. Besides, the temperature loading is poorly known in the outlet
section of the combustion chamber. Our team has proposed in [7] a nonintrusive reduced order model
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(ROM) strategy in parallel computation with distributed memory to mitigate the runtime issues:
a domain decomposition method is used to compute the first cycle, and the reduced order model
is used to speed up the computation of the following cycles, which can be considered as a reduced
order model-based temporal extrapolation. As pointed out in [7], errors are accumulated during this
temporal extrapolation. Moreover, quantifying the uncertainty on the lifetime with respect to some
statistical description of the temperature loading using an already constructed reduced order model
would introduce additional errors. In this context, error indicator-based enrichment of reduced order
models is the topic of the present work.

Figure 1. Illustration of a high-pressure turbine blade [8]. The internal channels create a protective
layer of cool air to protect the outer surface of the blade.

Error estimation for reduced model predictions is a topic that receives interest in the scientific
literature. The reduced basis method [9,10] for parametrized problems is a reduced order modeling
method that intrinsically relies on efficient a posteriori error bounds of the error between the reduced
prediction and the reference high-fidelity (HF) solution. This method consists of a greedy enrichment
of a current reduced order basis by the high-fidelity solution at the parametric value that maximizes
the error bound on a rich sampling of the parametric space. Being intensively evaluated, the error
bound must be computed in computational complexity independent of the number of degrees of
freedom of the high-fidelity reference. Initially proposed for elliptic coercive partial differential
equations [11], where the error bound is the dual norm of the residual divided by a lower bound
of the stability constant, the method has been adapted to problems of increased difficulty, with the
derivation of certified error bounds for the Boussinesq equation [12], the Burger’s equation [13], and the
Navier–Stokes equations [14]. Numerical stability of such error estimations with respect to round-off
error can be an issue in nonlinear problems, which was investigated in [15–18].

Even if it is not a requirement for their execution, error estimation is a desired feature for all the
other reduced order modeling methods. In proper generalized decomposition (PGD) methods [19],
error estimation based on the constitutive relation error method is available [20–22]. In proper
orthogonal decomposition (POD)-based reduced order modeling methods [23,24], error estimators
have been developed for linear-quadratic optimal control problems [25], the approximation of
mixte finite element problems [26], the optimal control of nonlinear parabolic partial differential
equations [27], and for the reduction of magnetostatic problems [28] and Navier–Stokes equations [29].
To reduce nonlinear problems, the POD has been coupled with reduced integration strategies
called hyperreduction, for which error estimates in constitutive relation have been proposed [30,31].
A priori sensitivity studies for POD approximations of quasi-nonlinear parabolic equations are also
available [32].
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The contribution of this work consists in the construction of a new error indicator, adapted to the
model order reduction of nonlinear structural mechanics, where we are interested in the prediction
of the dual quantities such as the cumulated plasticity or the stress tensor. These dual quantities
need a reconstruction step to be represented on the complete structure of interest, usually done using
a Gappy-POD algorithm based on the reduced solution. We illustrate that the ROM-Gappy-POD
residual of the quantities of interest is highly correlated to the error in our cases. From this observation,
we propose a calibration step, based on the data computed during the offline stage of the reduced
order modeling, to construct an error indicator adapted to the considered problem and configuration.
This error indicator is then used in enrichment strategies that improve the accuracy of the reduced
order model prediction, when nonparametrized variations of the temperature field are considered in
the online stage.

The problem of interest, the evolution of an elastoviscoplastic body under a time-dependent
loading, in presented in Section 2. Then, the a posteriori reduced order modeling of this problem is
detailed in Section 3. Section 4 presents the proposed error indicator, and the enrichment strategy
based upon it. The performances of this error indicator and its ability to improve the quality of the
reduced order model prediction via enrichment are illustrated in two numerical experiments involving
elastoviscoplastic materials in Section 5. Finally, conclusions and prospects are given in Section 6.

2. High-Fidelity Elastoviscoplastic Model

We consider the model introduced in [7], which we briefly recall below for the sake of
completeness. The structure of interest is noted Ω and its boundary ∂Ω, where ∂Ω = ∂ΩD ∪ ∂ΩN such
that ∂ΩD ∩ ∂ΩN = ∅, see Figure 2.

∂ΩN

∂ΩD

Ω

Figure 2. Schematics of the considered structure Ω.

Prescribed zero displacements are imposed on ∂ΩD, prescribed tractions TN are imposed on
∂ΩN and volumic forces are imposed to the structure Ω, in the form of a time-dependent loading.
Assuming small deformations, the evolution of the structure Ω is governed by equations

ε(u) =
1
2

(
∇u +∇Tu

)
in Ω× [0, T] (compatibility), (1a)

div (σ) + f = 0 in Ω× [0, T] (equilibrium), (1b)

σ = σ(ε(u), y) in Ω× [0, T] (behavior law), (1c)

u = 0 in ∂ΩD × [0, T] (prescribed zero displacement), (1d)

σ · n = TN in ∂ΩN × [0, T] (prescribed traction), (1e)

u = 0, y = 0 in Ω at t = 0 (initial condition), (1f)

where σ is the Cauchy stress tensor, ε is the linear strain tensor, n is the exterior normal on ∂Ω, y denotes
the internal variables of the behavior law, and u is the displacement solution.

Consider H1
0(Ω) = {v ∈ L2(Ω)| ∂v

∂xi
∈ L2(Ω), 1 ≤ i ≤ 3 and v|∂ΩD = 0}. We introduce a finite

element basis {ϕi}1≤i≤N , such that V := Span (ϕi)1≤i≤N is a conforming approximation of
[
H1

0(Ω)
]3.
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In what follows, bold symbols are used to refer to vectors. Using the Galerkin method, problem (1a)–(1f)
leads to a system of nonlinear equations, numerically solved using the following Newton algorithm:

DF
Du

(
uk
) (

uk+1 − uk
)
= −F

(
uk
)

, (2)

where uk ∈ V is the k-th iteration of the discretized displacement field at the considered time-step and

uk =
(

uk
i

)
1≤i≤N

∈ RN is such that uk =
N

∑
i=1

uk
i ϕi,

DF
Du

(
uk
)

ij
=
∫

Ω
ε
(

ϕj
)

: K
(

ε(uk), y
)

: ε (ϕi) , 1 ≤ i, j ≤ N, (3)

where K
(

ε(uk), y
)

is the local tangent operator, and

Fi

(
uk
)
=
∫

Ω
σ
(

ε(uk), y
)

: ε (ϕi)−
∫

Ω
f · ϕi −

∫
∂ΩN

TN · ϕi, 1 ≤ i ≤ N. (4)

The Newton algorithm stops when the norm of the residual divided by the norm of the external
forces vector is smaller than a user-provided tolerance, denoted εHFM

Newton.
In Equation (2), f , TN , uk and y from Equation (4) are known quantities and contain the

time-dependency of the solution. Notice that the computation of the functions
(

uk, y
)
7→ σ

(
ε(uk), y

)
and

(
uk, y

)
7→ K

(
ε(uk), y

)
requires solving ordinary differential equations, whose complexity

depends on the behavior law modeling the considered material.
In our application, the quantities of interest are not the displacement fields u, but rather the dual

quantities stress tensor field σ and cumulated plasticity field, denoted p. The finite element software
used to generate the high-fidelity solutions u is Zebulon, which contains a domain decomposition
solver able to solve large scale problems, and the behavior laws are computed using Z-mat; both solvers
belong to the Z-set suite [33].

3. Reduced Order Modeling

Reduced order modeling techniques are usually decomposed in two stages: the offline stage,
where information from the high-fidelity model (HFM) is learned, and the online stage, where the
reduced order model is constructed and exploited. In the offline stage, computationally demanding
tasks occur, whereas the online stage is required to be efficient, in the sense that only operations in
computational complexity independent of the number N of degrees of freedom of the high-fidelity
model are allowed.

In what follows, we consider a posteriori reduced order modeling, which means that our reduced
model involves an efficient Galerkin method no longer written in the finite element basis (ϕi)1≤i≤N ,
but on a reduced order basis (ψi)1≤i≤n, with n � N, adapted to the problem at hand. To generate
this basis, the high-fidelity problem (1a)–(1f) is solved for given configurations. In the general
case, the variations between the candidate configurations are quantified using a low-dimensional
parametrization, leading to a parametrized reduced order model. In this work, we consider
nonparametrized variations between the configurations of interest, which we call variability and denote
µ. The variability contains the time step, as well as a nonparametrized description of the configuration,
which in our case is the loading referred as a label. For instance, µ = {t = 3, “computation 1”},
means that we consider the third time step of the configuration “computation 1”, for which we have
a description of the loading (center, axis and speed of rotation, temperature, and pressure fields in our
applications). We denote by Poff. the set of variabilities encountered during the offline stage.
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The reduced Newton algorithm reads

DFµ

Du

(
ûk

µ

) (
ûk+1

µ − ûk
µ

)
= −Fµ

(
ûk

µ

)
, (5)

where ûk
µ ∈ V̂ := Span (ψi)1≤i≤n is the k-th iteration of the reduced displacement field for the

considered time-step and ûk
µ =

(
ûk

µ,i

)
1≤i≤n

∈ Rn is such ûk
µ =

n

∑
i=1

ûk
µ,iψi,

DFµ

Du

(
ûk

µ

)
ij
=
∫

Ω
ε
(
ψj
)

: K
(

ε(ûk
µ), yµ

)
: ε (ψi) , 1 ≤ i, j ≤ n, (6)

and
Fµ,i

(
ûk
)
=
∫

Ω
σ
(

ε(ûk
µ), yµ

)
: ε (ψi)−

∫
Ω

fµ · ψi −
∫

∂ΩN

TN,µ · ψi, 1 ≤ i ≤ n. (7)

The reduced Newton algorithm stops when the norm of the reduced residual divided by the
norm of the reduced external forces vector is smaller than a user-provided tolerance, denoted εROM

Newton.
In Equations (5)–(7), the online variability µ consists in the considered time step, the pressure field
TN,µ, the centrifugal effects fµ, and the temperature field in the internal variables yµ.

Ensuring the efficiency of Equation (5) can be a complicated task, in particular for nonlinear
problems, that requires methodologies recently proposed in the literature. For instance, the integrals
in Equations (6) and (7) are computed in computational complexity dependent on N in the general
case. We briefly present the choices made in our previous work [7]: the offline stage is composed of
the following steps

• Data generation: this corresponds to the generation of the numerical approximation of the
solutions to Equation (1a)–(1f), using the Newton algorithm (2). Multiple temporal solutions can
be considered, for different loading conditions. The set of theses solutions {uµi}1≤i≤Nc is called
the snapshots set.

• Data compression: this corresponds to the generation of the reduced order basis, usually obtained
by looking for a hidden low-rank structure of the snapshots set. In this work, we consider the
snapshot POD, see Algorithm 1 and [23,24].

• Operator compression: this step enables the efficient construction of (5), usually by replacing
the computationally demanding integral evaluations by adapted approximation evaluated in
computational complexity independent of N. In this work, we consider the empirical cubature
method (ECM, see [34]), a method close to the energy conserving sampling and weighting (ECSW,
see [35–37]) proposed earlier. Consider the vector of reduced internal forces appearing in (7):

F̂int
µ,i :=

∫
Ω σ

(
ε(ûµ), yµ

)
(x) : ε (ψi) (x)dx ≈ ∑e∈E ∑ne

k=1 ωkσ
(
ε(ûµ), yµ

)
(xk) : ε (ψi) (xk), 1 ≤ i ≤ n, (8)

where the right-hand side is the high-fidelity quadrature formula used for numerical evaluation.
In (8), the stress tensor σ

(
ε(ûµ), yµ

)
for the considered reduced solution ûµ at variability µ and

internal variables yµ is seen as a function of space, and E denotes the set of elements of the
mesh, ne denotes the number of integration points for the element e, ωk and xk are the integration
weights and points of the considered element. The ECM consists of replacing this high-fidelity
quadrature (8) by an approximation adapted to the snapshots {uµi}1≤i≤Nc and the reduced order
basis {ψi}1≤i≤n, and involving a small number of integration points:

F̂int
µ,i (t) ≈

d

∑
k′=1

ω̂k′σ
(
ε(ûµ), yµ

)
(x̂k′) : ε (ψi) (x̂k′), 1 ≤ i ≤ n, (9)

where d� ∑
e∈E

ne, the reduced integration points x̂k′ , 1 ≤ k′ ≤ d, are taken among the integration

points of the high-fidelity quadrature (8) and the reduced integration weights ω̂k′ are positive.
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We now briefly present how this reduced quadrature formula is obtained and we refer to [7,34]
for more details. We denote hq := σ

(
ε(uµ(q//n)+1), y

)
: ε
(

ψ(q%n)+1

)
∈ L2(Ω), where // and %

are respectively the quotient and the remainder of the Euclidean division, Z is a subset of [1; NG]

of size d, with NG the number of integration points, and JZ ∈ RnNc×d and g ∈ NnNc are such that
for all 1 ≤ q ≤ nNc and all 1 ≤ k′ ≤ d,

JZ =

(
hq(xZk′

)

)
1≤q≤nNc , 1≤k′≤d

, g =

(∫
Ω

hq

)
1≤q≤nNc

, (10)

where Zk′ denotes the k′-th element of Z and where we recall that n is the number
of snapshot POD modes. Let ω̂ ∈ R+d. From the introduced notation, (JZ ω̂)q =

d

∑
k′=1

ω̂k′σ
(

ε(uµ(q//n)+1), y
)
(xZk′

) : ε
(

ψ(q%n)+1

)
(xZk′

), 1 ≤ q ≤ nNc, which is a candidate

approximation for
∫

Ω
σ
(

ε(uµ(q//n)+1), y
)

: ε
(

ψ(q%n)+1

)
= gq, 1 ≤ q ≤ nNc. The best reduced

quadrature formula of length d for the reduced internal forces vector is obtained as (c.f. [34],
Equation (23))

(ω̂,Z) = arg min
ω̂′>0,Z ′⊂[1;NG ]

∥∥JZ ′ ω̂
′ − g

∥∥
2 , (11)

where ‖·‖2 stands for the Euclidean norm. Taking the length of the reduced quadrature formula
in the objective function yields a NP-hard optimization problem, see ([35], Section 5.3), citing [38].
To produce a reduced quadrature formula in a controlled return time, we consider a nonnegative
orthogonal matching pursuit algorithm, see ([39], Algorithm 1) and Algorithm 2 below, a variant
of the matching pursuit algorithm [40] tailored to the nonnegative requirement.

A reduced quadrature is also used to accelerate the integral computation in (6). The remaining

integral computations in (5) are
∫

Ω
fµ · ψi and

∫
∂ΩN

TN,µ · ψi. They do not depend on the current

solution, but only on the loading of the online variability µ, which is no longer efficient for
nonparametrized variabilities. However, in our context of large scale nonlinear mechanics,
these integrals are computed very fast with respect to the ones requiring behavior law resolutions,
see Remark 1.

Algorithm 1: Data compression by snapshot proper orthogonal decomposition (POD).
Input: tolerance εPOD, snapshots set {uµi}1≤i≤Nc

Output: reduced order basis {ψi}1≤i≤n

1 Compute the correlation matrix Ci,j =
∫

Ω
uµi · uµj , 1 ≤ i, j ≤ Nc

2 Compute the n largest eigenvalues λi, 1 ≤ i ≤ n, and associated orthonormal eigenvectors ξi,
1 ≤ i ≤ n, of C such that n = max (n1, n2), where n1 and n2 are respectively the smallest

integers such that
n1

∑
i=1

λi ≥
(

1− ε2
POD

) Nc

∑
i=1

λi and λn2 ≤ ε2
PODλ0

3 Compute the reduced order basis ψi(x) =
1√

λi Nc

Nc

∑
j=1

uµj(x)ξi,j, 1 ≤ i ≤ n
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Algorithm 2: Nonnegative orthogonal matching pursuit.
Input: J, b, tolerance εOp.comp.
Output: ω̂k, x̂k, 1 ≤ k ≤ d

1 Initialization: Z = ∅, k′ = 0, ω̂ = 0 and r0 = g while ‖rk′‖2 > ε ‖g‖2 do

2 Z ← Z ∪max index
(

JT
[1:NG ]

rk′

)
3 ω̂← arg

ω̂′>0
min ‖g − JZ ω̂′‖2

2

4 rk′+1 ← g − JZ ω̂

5 k′ ← k′ + 1
6 end
7 d← k′

8 x̂k := xZk , 1 ≤ k ≤ d

For the primal quantity displacement u, we can identify the solution of the reduced problem

ûk
µ ∈ Rn with the reconstruction on the complete domain Ω: ûk

µ =
n

∑
i=1

ûk
µ,iψi. For the dual quantities,

such identification does not exist. However, the behavior law has already been evaluated at the
integration point of the reduced quadrature x̂k, 1 ≤ k ≤ d. Since the evaluations are computed
during the resolution of the reduced problem, we denote them by hats. For instance for the cumulated
plasticity, p̂µ ∈ Rd is such that p̂µ,k is computed by the online evaluation of the behavior law solver
at the reduced integration points x̂k, 1 ≤ k ≤ d. To recover the cumulated plasticity on the complete
structure Ω, a ROM-Gappy-POD procedure is used to reconstruct the fields on the complete domain,
see Algorithms 3 and 4 and [41] for the original presentation of the Gappy-POD. In step 2 of Algorithm 3,
EIM denotes the empirical interpolation method [42,43] and the set of integration point whose indices
have been selected is still denoted {x̂k}1≤k≤mp , where np ≤ mp ≤ np + d. The dual quantities predicted
by the reduced order model and reconstructed on the complete structure are denoted with tildes,
for instance p̃µ for the cumulated plasticity.

The ROM-Gappy-POD reconstruction is well-posed, since the linear system considered in the
online stage of Algorithm 4 is invertible, see ([7], Proposition 1).

An interesting feature of our framework is the ability for it to be used sequentially or in
parallel with distributed memory. Independently of the high-fidelity solver, the solutions can be
partitioned between some subdomains and the reduced order framework can treat the data in
parallel. The MPI communications are limited to the computation of the scalar products in line
1 of Algorithm 1 for the offline stage, and the scalar products in (6) and (7) in the online stage.
Furthermore, these scalar products are well adapted to parallel processing: each process computes
its independently contribution on its respective subdomain, and the interprocess communication is
limited to an all-to-all transfer of a scalar. All the remaining operations in our framework are treated in
parallel with no communication, in particular in the operator compression step, reduced quadrature
formulae are constructed independently. A natural use for the parallel framework is in coherence
with domain decomposition solvers (potentially from commercial codes), which conveniently produce
solutions partitioned in subdomains. Actually in our framework, the three steps of the offline stage
(data generation, data compression and operator compression), the online stage, the post-treatment
and the visualization are all treated in parallel with distributed memory, see [7] for more details.
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Algorithm 3: Dual quantity reconstruction of the cumulated plasticity p: offline stage of the
reduced order model (ROM)-Gappy-POD.

Input: tolerance εGappy−POD, cumulated plasticity snapshots set {pµi}1≤i≤Nc , indices of the
integration points of the reduced quadrature formula

Output: indices for online material law computation, ROM-Gappy-POD matrix
1 Apply the snapshot POD (Algorithm 1) on the high-fidelity snapshots {pµi}1≤i≤Nc to obtain

the vectors ψ
p
i , 1 ≤ i ≤ np, orthonormal with respect to the L2(Ω)-inner product

2 Apply the EIM to the collection of vectors ψ
p
i , 1 ≤ i ≤ np, to select np distinct indices and

complete (without repeat) this set of indices by the indices of the integration points of the
reduced quadrature formula

3 Construct the matrix M ∈ Nnp×np
such that Mi,j = ∑mp

k=1 ψ
p
i (x̂k)ψ

p
j (x̂k) (Gappy scalar product

of the POD modes)

Algorithm 4: Dual quantity reconstruction of the cumulated plasticity p: online stage of
the ROM-Gappy-POD.

Input: online variability µ, indices for online material law computation, ROM-Gappy-POD
matrix

Output: reconstructed value for p on the complete domain Ω
1 Construct bµ ∈ Rnp

, where bµ,i = ∑mp

k=1 ψ
p
i (x̂k) p̂µ,k, and p̂µ ∈ Rmp

is such that p̂µ,k is the online
prediction of p at variability µ and integration point x̂k (from the online evaluation of the
behavior law solver)

2 Solve the (small) linear system: Mzµ = bµ

3 Compute the reconstructed value for p on the complete subdomain Ω as p̃µ := ∑np

i=1 zµ,iψ
p
i

4. A Heuristic Error Indicator

We look for an efficient error indicator in this context of general nonlinearities and
nonparametrized variabilities. In model order reduction techniques, error estimation is an important
feature, that becomes interesting under the condition that it can be computed in complexity
independent of the number of degrees of freedom N of the high-fidelity model.

4.1. First Results on Errors and Residuals

We recall some notations introduced so far: bold symbols refer to vectors (pµ is the vector of
components the value of the HF cumulated plasiticity field at reduced integration points), hats refer
to quantities computed by the reduced order model (ûµ is the reduced displacement and p̂µ is the
vector of components the value of the reduced cumulated plasticity at the reduced quadrature points),
whereas tildes refer to dual quantities reconstructed by Gappy-POD (for instance p̃). Bold and tilde
symbols, for instance p̃µ, refer to the vectors of components the reconstructed dual quantities on the
reduced integration points: p̃µ,k = p̃µ(x̂k), 1 ≤ k ≤ mp. Notice that in the general case, p̃µ 6= p̂µ: this
discrepancy is at the base of our proposed error indicator. A table of notations is provided at the end
of the document.

A quantification for the prediction relative error is defined as

Ep
µ :=


‖pµ− p̃µ‖L2(Ω)

‖pµ‖L2(Ω)
if‖pµ‖L2(Ω) 6= 0

‖pµ− p̃µ‖L2(Ω)

max
µ∈Poff.

‖pµ‖L2(Ω)
otherwise,

, (12)



Math. Comput. Appl. 2019, 24, 41 9 of 28

where we recall that pµ and p̃µ are respectively the high-fidelity and reduced predictions for the
cumulated plasticity field at the variability µ, and Poff. is the set of variabilities encountered during
the offline stage.

Define the ROM-Gappy-POD residual as

E p
µ :=


‖p̃µ−p̂µ‖2
‖p̂µ‖2

if‖p̂µ‖2 6= 0
‖p̃µ−p̂µ‖2
max

µ∈Poff.
‖p̂µ‖2

otherwise,
, (13)

where ‖ · ‖2 denotes the Euclidean norm. Notice that the relative error Ep
µ involves fields and L2-norms

whereas the ROM-Gappy-POD residual E p
µ involves vectors of dual quantities in the set of reduced

integration points and Euclidean norms. In (13), ‖p̃µ − p̂µ‖2 is the error between the online evaluation
of the cumulated plasticity by the behavior law solver: p̂µ, and the reconstructed prediction at the
reduced integration points x̂k: p̃µ, 1 ≤ k ≤ mp. Let B ∈ Rmp×np

such that Bk,i = ψ
p
i (x̂k), 1 ≤ k ≤ mp,

1 ≤ i ≤ np; by definition, p̃µ,k =
np

∑
i=1

zµ,iψ
p
i (x̂k) =

(
Bzµ

)
k, 1 ≤ k ≤ mp. From Algorithm 3, M = BT B

and from Algorithm 4, bµ = BT p̂µ, so that zµ =
(

BT B
)−1 BT p̂µ, which is the solution of the following

unconstrained least-square optimization: zµ := arg
z′∈Rn

min‖Bz′ − p̂µ‖2
2. Hence, in (13), ‖p̃µ − p̂µ‖2 is

the norm of the residual of the considered least-square optimization.
Suppose K := {pµ, for all possible variabilities µ} is a compact subset of L2(Ω) and define the

Kolmogorov n-width by dn(K)L2(Ω) := inf
dim(W)=n

d(K, W)L2(Ω), where d(K, W)L2(Ω) := sup
v∈K

inf
w∈W

‖v−

w‖L2(Ω), with W a finite-dimensional subspace of L2(Ω). The Kolmogorov n-width is an object from
approximation theory; a presentation and discussion in a reduced order modeling context can be found

in [44]. Denote also Πµ :=
((

pµ, ψ
p
i

)
L2(Ω)

)
1≤i≤np

∈ Rnp
, where we recall that

{
ψ

p
i

}
1≤i≤np

are the

Gappy-POD modes obtained by Algorithm 3 and where (·, ·)L2(Ω) denotes the L2(Ω) inner-product. All
the dual quantities being computed by the high-fidelity solver at the NG integration points, they have
finite values at these points. Unlike the primal displacement field, the dual quantities are not directly
expressed in a finite element basis, but through their values on the integration points. For pratical
manipulations, we express the dual quantity fields as a constant on each polyhedron obtained as
a Voronoi diagram in each element of the mesh, with seeds the integration points; the constants
corresponding to the value of the dual quantity on the corresponding integration point.

We first control the numerator in the relative error Ep
µ with respect to the numerator in the

ROM-Gappy-POD residual E p
µ in Proposition 1.

Proposition 1. There exist two positive constants C1 and C2 independent of µ (but dependent on np) such that∥∥pµ − p̃µ

∥∥2
L2(Ω)

≤ C1‖Bzµ − p̂µ‖2
2 + C1‖pµ − p̂µ‖2

2 + C2d(K, Span{ψp
i }1≤i≤np)2

L2(Ω). (14)
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Proof. There holds

∥∥pµ − p̃µ

∥∥2
L2(Ω)

≤ 2

∥∥∥∥∥ np

∑
i=1

((
pµ, ψ

p
i
)

L2(Ω)
− zµ,i

)
ψ

p
i

∥∥∥∥∥
2

L2(Ω)

+ 2

∥∥∥∥∥pµ −
np

∑
i=1

(
pµ, ψ

p
i
)

L2(Ω)
ψ

p
i

∥∥∥∥∥
2

L2(Ω)

(15a)

= 2
np

∑
i=1

((
pµ, ψ

p
i
)

L2(Ω)
− zµ,i

)2
+ 2 inf

w∈Span{ψp
i }1≤i≤np

∥∥pµ − w
∥∥2

L2(Ω)
(15b)

≤ 2
np

∑
i=1

(
Πµ,i − zµ,i

)2
+ 2 sup

v∈K
inf

w∈Span{ψp
i }1≤i≤np

‖v− w‖2
L2(Ω) (15c)

= 2
∥∥∥M−1 M

(
Πµ − zµ

)∥∥∥2

2
+ 2d(K, Span{ψp

i }1≤i≤np )2
L2(Ω)

(15d)

= 2
∥∥∥M−1BT (BΠµ − pµ + pµ − p̂µ + p̂µ − Bzµ

)∥∥∥2

2
+ 2d(K, Span{ψp

i }1≤i≤np )2
L2(Ω)

(15e)

≤ 6
∥∥∥M−1BT

∥∥∥2

2

(
‖BΠµ − pµ‖2

2 + ‖pµ − p̂µ‖2
2 + ‖Bzµ − p̂µ‖2

2

)
+ 2d(K, Span{ψp

i }1≤i≤np )2
L2(Ω)

(15f)

≤ C1‖Bzµ − p̂µ‖2
2 + C1‖pµ − p̂µ‖2

2 + C2d(K, Span{ψp
i }1≤i≤np )2

L2(Ω)
, (15g)

where the triangular inequality and the Jensen inequality on the square function have been applied
in (15a), and between (15e) and (15f). In (15g), the term ‖BΠµ − pµ‖2

2 has been incorporated in the
term C2d(K, Span{ψp

i }1≤i≤np)2
L2(Ω)

. This can be done since

‖BΠµ − pµ‖2
2 =

mp

∑
k=1

(
pµ(x̂k)−

np

∑
i=1

(
pµ, ψ

p
i

)
L2(Ω)

ψ
p
i (x̂k)

)2

≤ 1
min

1≤k′≤mp
νk′

Ng

∑
k=1

νk

(
pµ(xk)−

np

∑
i=1

(
pµ, ψ

p
i

)
L2(Ω)

ψ
p
i (xk)

)2

=
1

min
1≤k′≤mp

νk′

∫
Ω

(
pµ(x)−

np

∑
i=1

(
pµ, ψ

p
i

)
L2(Ω)

ψ
p
i (x)

)2

dx

≤ 1
min

1≤k′≤mp
νk′

d(K, Span{ψp
i }1≤i≤np)2

L2(Ω),

(16)

where νk denotes the volume of the cell of the Voronoi diagram associated with integration point x̂k.

We now control the numerator in the ROM-Gappy-POD residual E p
µ with respect to the numerator

in the relative error Ep
µ in Proposition 1, leading to Corollary 1, which provides a sense a consistency:

without any error in the reduced prediction, the ROM-Gappy-POD residual E p
µ is zero.

Proposition 2. There exist two positive constants K1 and K2 independent of µ such that

‖p̃µ − p̂µ‖2
2 ≤ K1

∥∥pµ − p̃µ

∥∥2
L2(Ω)

+ K2‖pµ − p̂µ‖2
2. (17)

Proof. There holds

‖p̃µ − p̂µ‖2
2 ≤ 2 ‖Bzµ − pµ‖2

2 + 2 ‖pµ − p̂µ‖2
2

≤ 2
min

1≤k′≤mp
νk′

mp

∑
k=1

νk

(
pµ(x̂k)−

np

∑
i=1

zµ,iψ
p
i (x̂k)

)2

+ 2 ‖pµ − p̂µ‖2
2

≤ 2
min

1≤k′≤mp
νk′

∫
Ω

(
pµ(x)−

np

∑
i=1

zµ,iψ
p
i (x)

)2

dx + 2 ‖pµ − p̂µ‖2
2

=K1
∥∥pµ − p̃µ

∥∥2
L2(Ω)

+ K2‖pµ − p̂µ‖2
2.

(18)
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Corollary 1. Suppose that the reduced solution is exact up to the considered time step at the online variability
µ: pµ = p̃µ in L2(Ω). In particular, the behavior law solver has been evaluated with the exact strain tensor
and state variables at the integration points xk, leading to p̂µ(x̂k) = pµ(x̂k), 1 ≤ k ≤ md. From Proposition 2,
‖p̃µ − p̂µ‖2 = 0, and E p

µ = 0.

4.2. A Calibrated Error Indicator

As we will illustrate in Section 5, the evaluations of the ROM-Gappy-POD residual E p
µ (13) and

the error Ep
µ (12) are very correlated in our numerical simulations. Our idea is to exploit this correlation

by training a Gaussian process regressor for the function E p
µ 7→ Ep

µ. At the end of the offline stage,
we propose to compute reduced predictions at variability values {µi}1≤i≤Nc encountered during the

data generation step, and the corresponding couples
(

Ep
µi , E

p
µi

)
, 1 ≤ i ≤ Nc. A Gaussian process

regressor is trained on these values and we define an approximation function

E p
µ 7→ Gprp(E p

µ ) (19)

for the error Ep
µ at variability µ as the mean plus three times the standard deviation of the predictive

distribution at the query point E p
µ . This is our proposed error indicator. If the dispersion around

the learning data is small for certain values E p
µ , then adding three times the standard deviation

will not change very much the prediction, whereas for values with large dispersions of the
learning data, this correction aims to provide an error indicator larger than the error. We used the
GaussianProcessRegressor python class from scikit-learn [45]. Notice that although some operations in
computational complexity dependent on N are carried-out, we are still in the offline stage, and they
are much faster than the resolutions of the large systems of nonlinear Equations (2). If the offline stage
is correctly carried-out and since E p

µ is highly correlated with the error, only small values for E p
µ are

expected to be computed. Hence, in order to train the Gaussian process regressor correctly for larger
values of the error, the reduced Newton algorithm (5) is solved with a large tolerance εROM

Newton = 0.1.
We call these operations “calibration of the error indication”, see Algorithm 5 for a description and
Figure 3 for a presentation of the workflow featuring this calibration step.

Algorithm 5: Calibration of the error indicator.
Input: outputs of the data generation, data compression and operator compression steps of

Section 3
Output: Approximation function E p

µ 7→ Gprp(E p
µ ) of the error Ep

µ

1 Initialization: X = ∅
2 for i← 1 to Nc do
3 Construct and solve the reduced problem (5) with εROM

Newton = 0.1
4 Compute the reconstructed plasticity p̃µi using Algorithm 4 and E p

µi using (13)
5 Compute the error Ep

µi using (12)

6 X ← X ∪
(
E p

µi , Ep
µi

)
7 end
8 Construct an approximation function E p

µ 7→ Gprp(E p
µ ) of the error Ep

µ using a Gaussian process
regression and the data from X
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µi

data generator HF data comp.

ω̂k, x̂k, M

reducedoffline
variability reduced

integration

modes and
solver

reduced
solution
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Gappy residual (13)
and error (12)

(Algorithm 4)Gaussian
process

regression

Equation (2)
(commercial

code)
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Algorithm 1

Algorithm 2

Algorithm 3
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i , ψσ
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µi , Ep

µi

Eσ
µi

, Eσ
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Error
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Eσ 7→ Gprσ

E p 7→ Gprp
functions

solutions

Figure 3. Workflow for the offline stage with error indicator calibration.

We recall that in model order reduction, the original hypothesis is the existence of
a low-dimensional vector space where an acceptable approximation of the high-fidelity solution lies.
The hypothesis is formalized under a rate of decrease for the Kolmogorov n-width with respect to the
dimension of this vector space. The same hypothesis is made when using the Gappy-POD to reconstruct
the dual quantities, which are expressed as a linear combination of constructed modes. For both the
primal and dual quantities, the modes are computed by searching some low-rank structure of the
high-fidelity data. The coefficients of the linear combination for reconstructing the primal quantities
are given by the solution of the reduced Newton algorithm (5). After convergence, the residual is small,
even in cases where the reduced order model exhibits large errors with respect to the high-fidelity
reference: this residual gives no information on the distance between the reduced solution and the
high-fidelty finite element space. However, in the online phase of the ROM-Gappy-POD reconstruction
in Algorithm 4, the coefficients p̂µ,k contain information from the high-fidelity behavior law solver.
Moreover, an overdetermined least-square is solved, which can provide a nonzero residual that
implicitly contains this information from the high-fidelity behavior law solver. Namely the distance
between the prediction from the behavior law and the vector space spanned by the Gappy-POD
modes (restricted to the reduced integration points): this is the term ‖Bzµ − p̂µ‖2 in (14). Hence,
the ability of the online variability to be expressed on the Gappy-POD modes is monitored through
the behavior law solver on the reduced integration points. When the ROM is solved for an online
variability not included in the offline variabilities, then the new physical solution cannot be correctly
interpolated using the POD and Gappy-POD modes. Hence, the ROM-Gappy-residual becomes large.
From Proposition 2, if ‖Bzµ− p̂µ‖2 = ‖p̃µ− p̂µ‖2 is large, then the global error

∥∥pµ − p̃µ

∥∥
L2(Ω)

and/or
the error at the reduced integration points x̂k is large, which makes ‖Bzµ − p̂µ‖2 a good candidate
for a enrichement criterion for the ROM. A limitation of the error indicator can occur if the online
variability activates strong nonlinearities on areas containing no point from the reduced integration
scheme, namely through the term C2d(K, Span{ψp

i }1≤i≤np)2
L2(Ω)

in (14).

We recall that the error indicator (19) is a regression of the function E p
µ 7→ Ep

µ. In the online phase,
we only need to evaluate E p

µ and do not require any estimation for the other terms and constants
appearing in Propositions 1 and 2.

Equipped with an efficient error indicator, we are now able to assess the quality of the
approximation made by the reduced order model in the online phase. If the error indicator is too large,
an enrichment step occurs: the high-fidelity model is used to compute a new high-fidelity snapshot,
which is used to update the POD and Gappy-POD basis, as well as the reduced integration schemes.
Notice that for the enrichment steps to be computed, the displacement field and all the state variables



Math. Comput. Appl. 2019, 24, 41 13 of 28

of the previous time step need to be reconstructed on the complete mesh Ω to provide the high-fidelity
solver with the correct material state. The workflow for the online stage with enrichment is presented
in Figure 4.

µ̂

online
variability

reduced
solver

Equation (5)
(reduced

Newton)

reduced
solution

ûµ

p̂µ, σ̂µ

Error
indicator

Eσ 7→ Gprσ

E p 7→ Gprp
functions

Error indicator
evaluation

if Gpr
(
Eµ

)
> tol

if Gpr
(
Eµ

)
≤ tol

reconstruction
(Algorithm 4)

write on disk

data generator

Equation (2)
(commercial

write on disk

HF solution at

uµ, pµ, σµ

data comp.
Algorithm 1

Algorithm 2

Algorithm 3

operator comp.

offline Gappy solutions at offline

uµi , pµi , σµi

ω̂k, x̂k, M

reduced
integration

modes and

ψi, ψ
p
i , ψσ

i

code)

precomputed HF

variabilities

online variability

Figure 4. Workflow for the online stage with enrichment.

Remark 1 (Online efficiency). The computation of the ROM-Gappy-POD residual (13) is efficient, since p̃µ

and p̂µ are already computed for the reconstruction, and mp depending only on the approximation of σ : ε and
p, it is independent of N. The evaluation of Gprp(E p

µ ) is also in computational complexity independent of N.
If the enrichment is activated during the online phase, a high-fidelity solution is computed, which is

a computationally demanding task. This is the price to add high-fidelity information in the exploitation
phase. We will see in Section 5 that without this enrichment in our applications, the considered online
variability on the temperature field strongly degrades the accuracy of the reduced order model prediction.
The nonparametrized variability also induces online pretreatments in computational complexity depending on N,

namely the precomputation of
∫

Ω
fµ · ψi and

∫
∂ΩN

TN,µ · ψi in (7), which is in practice much faster than other

integrals that require behavior law resolutions.
Notice that the online stage can be further optimized by replacing the data compression and offline

Gappy-POD steps by incremental variants, such as the incremental POD [46]. For the operator compression,
the Nonnegative Orthogonal Matching Pursuit described in Algorithm 2 is not restarted from zero, but initialized
by the current reduced quadrature scheme. Notice also that for the moment, the reduced order model is enriched
using a complete precomputed reference high-fidelity computation, so that no speedup is obtained in practice. We
still need to consider restart strategies to call the high-fidelity solver only at the time step of enrichment, from a
complete mechanical state reconstructed from the prediction of the reduced order model at the previous time step,
which will be the subject of future work.

When the framework is used in parallel, with subdomains, the calibration of the error indicator is
local to each subdomain, so that the decision of enrichment in the full domain during the online stage
can be triggered by a particular subdomain of interest.
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5. Numerical Applications

We consider two behavior laws in the numerical applications:

(elas) Isotropic thermal expansion and temperature-dependent cubic elasticity: the behavior law
is σ = A :

(
ε− εth

)
, where εth = αth (T − T0) I, with I the second-order identity tensor and

αth the thermal expansion coefficient in MPa.K−1 depending on the temperature. The elastic
stiffness tensor A does not depend on the solution u and is defined in Voigt notations by

A =



y1111 y1122 y1122 0 0 0
y1122 y1111 y1122 0 0 0
y1122 y1122 y1111 0 0 0

0 0 0 y1212 0 0
0 0 0 0 y1212 0
0 0 0 0 0 y1212


, (20)

where the temperature T is given by the thermal loading, T0 = 20 ◦C is a reference
temperature and the coefficients y1111, y1122 and y1212 (elastic coefficients in MPa) depend on
the temperature. This law does not feature any internal variable to compute.

(evp) Norton flow with nonlinear kinematic hardening: the elastic part is given by σ = A :(
ε− εth − εP

)
, where A and εth are the same as the (elas) law, εP is the plastic strain tensor.

The viscoplastic part requires solving the system of ODEs:

ε̇P = ṗ

√
3
2

s− 2
3 Cα√(

s− 2
3 Cα

)
:
(
s− 2

3 Cα
) ,

α̇ = ε̇P − ṗDα,

ṗ =

〈
fr

K

〉m
,

, (21)

where p is the cumulated plasticity, fr =
√

3
2

√(
s− 2

3 Cα
)

:
(
s− 2

3 Cα
)
− R0 defines the yield

surface, α (dimensionless) is the internal variable associated to the back-stress tensor X = 2
3 Cα

representing the center of the elastic domain in the stress space, s := σ− 1
3 Tr(σ)I (with Tr the

trace operator) is the deviatoric component of the stress tensor, and 〈·〉 denotes the positive
part operator. The yield criterion is fr ≤ 0. The hardening material coefficients C (in MPa)
and D (dimensionless), the Norton material coefficient K (in MPa.s

1
m ), the Norton exponential

material coefficient m (dimensionless), and the initial yield stress R0 (in MPa) depend on the
temperature. The internal variables considered here are εP, α and p, and the ODE’s initial
conditions are εP = 0, α = 0 and p = 0 at t = 0.

Two test cases are considered: an academic one in Section 5.1 and a high-pressure turbine blade
setting of industrial complexity in Section 5.2.

5.1. Academic Example

We consider a simple geometry in the shape of a bow tie, to enforce plastic effects on the tightest
area, see Figure 5. The structure is subjected to different variabilities of the loading (temperature,
rotation, pressure), described in Figures 5–7. The axis of rotation is located on the left of the object
along the x-axis, and the pressure field is represented in Figure 5. The rotation of the object is not
computed: only the inertia effects are modeled in the volumic force term f in (1b). Four temperature
fields are considered, two of them are represented in Figure 6 (“temperature_field_1” is a uniform
20 ◦C field, “temperature_field_2” is a 3D Gaussian with a maximum in the thin part of the object, close
to an edge, “temperature_field_3” is proportional to “temperature_field_2”, “temperature_field_4”
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obtained from “temperature_field_2” by random perturbation of 10% magnitude independently at
each point). Notice that the irregularity of “temperature_field_4” will lead to small scaled structures in
the cumulated plasticity and stress fields involving this variability. Notice also that the temperature
field are not computed during the simulation: they are loading data for the mechanical computation.
Figure 7 presents the three variabilities considered: computation 1 and computation 2 encountered
in the offline phase, and new encountered in the online phase. The pressure loading is obtained by
multiplying the pressure coefficient by the pressure field represented in Figure 5 (normals on the
boundary are directed towards the exterior) and at each time step, the temperature field is obtained by
linear interpolation between the previous and following fields in the temporal sequence. Notice that
computation 1 and computation 2 are not defined on the same temporal range.

Figure 5. Academic test case: mesh and pressure field represented on its surface of application; the
axis of rotation is located on the left of the object along the x-axis.

“temperature_field_2” “temperature_field_4”

Figure 6. Two different variabilities for the temperature loading (in ◦C) used in the academic test case.
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Figure 7. Considered loading variabilities for the academic test case. (left) Rotation speed ( ) and
pressure coefficient ( ) with respect to time. (right) Temporal sequence for the temperature field.

The characteristics for the academic test cases are given in Table 1.

Table 1. Characteristics for the academic test case.

number of dofs 78,120
number of (quadratic) tetrahedra 16,695

number of integration points 81,375
number of time steps computation 1: 50, computation 2: 40, new: 50

behavior law evp (Norton flow with nonlinear kinematic hardening)

The correlations between the ROM-Gappy-POD residual E (13) and the error E (12) on the dual
quantities cumulated plasticity p and first component of the stress tensor σ11 are investigated in Table 2.
The reduced solutions used for E correspond to the calibration step in the offline stage, in the second
row of Figure 3, where we recall that the reduced Newton algorithm (5) is computed with a large
tolerance εROM

Newton = 0.1 on the variabilities encountered in the data generation step. For the cumulated
plasticity field, the values before the first plastic effects are neglected. A strong correlation appears in
all the considered cases, although outliers are observed for the last time steps, where the building of
residual stresses at low loadings are more difficult to predict with the ROM.
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Table 2. Illustration of the correlation between the reduced order model (ROM)-Gappy-proper
orthogonal decomposition (POD) residual E (13) and the error E (12) on the dual quantities cumulated
plasticity p and first component of the stress tensor σ11.
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We now illustrate the quality of the error indicator (19), and its ability to increase the accuracy of
the reduced order model when used in an enrichment strategy as described in the workflow illustrated
in Figure 4. In Tables 3 and 4, we compare the error indicator (19) with the error (12) for various
offline and online variabilities respectively without and with enrichment of the reduced order model.
Although our error indicator is not a certified upper bound, we observe that thanks to the calibration
process, its values are in the vast majority larger than the exact error, except in two regimes: (i) when
the errors are very large (the calibration has been carried-out for mild errors, since we used the
references from the offline variabilities and enforced reasonable errors in line 3 of Algorithm 5), and (ii)
sometimes in the last time steps where the residual stresses build up and where we identified outliers
in the Gaussian regressor process. In Table 3, we observe that without enrichment the errors are
controlled whenever the online variability is contained in the offline variability. In the other cases,
the error becomes very large, and the ROM prediction becomes useless. In Table 4, at the times when
the ROM is enriched, both the error indicator and the error are set to zero, since the ROM prediction
is replaced by a HF solution. The ROM is enriched when the Gprp(E p) > 0.2 or Gprσ11(Eσ11) > 0.2.
We observe that for cases where the online variability is included in the offline variability, the errors are
still controlled and no enrichment occurs. In the other cases, the enrichment occurs a few times, so that
the errors remain controlled below 0.2. For the online variability new, the ROM is enriched six times
for an offline variability computation 1 and only three times for an online variability computation 1
and computation 2; in the latter case, the initial reduced order basis generates a larger base and needs
less enrichment.

We now compare the reference HF prediction of the considered online variability with the ROM
prediction without and with enrichment, in a case where this online variability is included in the offline
variability (Figure 8) and in a case where it is not included (Figure 9). In Figures 8 and 9, dual quantities
with index “ref.” refers to the HF reference at the considered offline variability, “nores.” to the ROM
without enrichment and the absence of index to the ROM with enrichment. In the first case, the ROM
predictions with and without enrichment are accurate (the magnitude of σ11 is small with respect to
the ones of σ22, so that the small differences observed in the second plot of Figure 8 are very small
with respect to the magnitude of the tensor σ). In the second case, the ROM without enrichment leads
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to large errors, whereas the enrichment allows a good accuracy. We notice that due to the particular
profile of the temperature loading “temperature_field_4” (c.f. Figure 6), the field σ11 is irregular. Even
in such an unfavorable case, only three enrichment steps by HFM solutions allows a good accuracy for
the ROM.

Table 3. Comparison of the error indicator (19) with the error (12) for various offline and online
variabilities, without enrichment of the reduced order model. The category “offline” for the columns
refers to the variabilities used in the data generation step of the offline stage, whereas the category
“online” for the rows refers to the variability considered in the online stage.
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Table 4. Comparison of the error indicator (19) with the error (12) for various offline and online
variabilities, with enrichment of the reduced order model.
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Table 4. Cont.
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Figure 8. Offline variability: computation 1 and computation 2; online variability: computation 1.
(top) Representation of dual fields for the reference high-fidelity (HF) prediction of the online variability,
the reduced order model (ROM) without enrichment, and the ROM with enrichment ((left) p at t = 50 s
and (right) σ11 at t = 25 s). (bottom) Comparison of p, σ11 and σ22 at the point identified by the green
arrow on the top-left picture.
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pref. p̃nores. p̃ σ11,ref. σ̃11,nores. σ̃11

0 20 40
0

0.0002
0.0004
0.0006
0.0008
0.001

time (s)

pref., p̃nores., p̃

0 20 40
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σ11,ref., σ̃11,nores., σ̃11

0 20 40

−200

0

200
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σ22,ref., σ̃22,nores., σ̃22

Figure 9. Offline variability: computation 1 and computation 2; online variability: new. (top)
Representation of dual fields for the reference HF prediction of the online variability, ROM without
enrichment, and ROM with enrichment ((left) p at t = 50 s and (right) σ11 at t = 25 s). (bottom)
Comparison of p, σ11, and σ22 at the point identified by the green arrow on the top-left picture.

5.2. High-Pressure Turbine Blade

We consider a simplified geometry of high-pressure turbine blade, featuring four internal cooling
channels, introduced in [7]. The lower part of the blade, referred as the foot, is modeled by an elastic
material (we are not interested in predicting the plastic effects in this zone since it does not affect
the blade’s lifetime) whereas the upper part is modeled by an elastoviscoplastic law. The HFM is
computed in parallel using Z-set [33] with an Adaptive MultiPreconditioned FETI solver [47], see
Figure 10.

evp law

elas law

sd 28

sd 47

Figure 10. (left) Structure split in 48 subdomains—the top part of the blade’s material is modeled by
an elastoviscoplastic law and the foot’s one by an elastic law; (right) mesh for the high-pressure turbine
blade with a zoom around the cooling channels.

The loading is different from the application of [7] and is represented in Figure 11: 10 temperature
fields were considered, the coolest were applied for the lowest rotation speeds, whereas the hottest
were applied for the highest rotation speeds. The online variability differs from the offline variability
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during the three time steps located around the last three maxima of the rotation speed profile, where
only the temperature fields changed as indicated by the two pictures at the right side of Figure 11.
The maximum of the temperature is moved from the center to the front of the top part of the blade.
As we will see, this local modification will lead to large errors for the ROM if no enrichment strategy
is considered.

0 20 40
0

0.2

0.4

0.6

0.8

1
·104

time (s)

ro
t.

sp
ee

d
(r

pm
)

offline variability online variability

Figure 11. High-pressure turbine test case: (left) rotation speed with respect to time; (right)
representation of maximum temperature fields used in the offline and online computations; the
axis of rotation is located below the blade along the x-axis.

The characteristics for the high pressure turbine blade case are given in Table 5.

Table 5. Characteristics for the high-pressure turbine blade test case.

number of dofs 4,892,463

number of (quadratic) tetrahedra 1,136,732

number of integration points 5,683,660

number of time steps 50

behavior law for the foot
elas (temperature-dependent cubic elasticity

and isotropic thermal expansion)

behavior law for the blade evp (Norton flow with nonlinear kinematic hardening)

The computation procedure is presented in Table 6, all steps being computed in parallel with
distributed memory, using MPI for the interprocess communications (48 processors within two nodes).
The visualization is also parallel with distributed memory using a parallel version of Paraview [48,49].

Table 6. Description of the computational procedure.

Step Algorithm

Data generation AMPFETI solver in Z-set, εHFM
Newton = 10−5

Data compression Distributed Snapshot POD, εPOD = 10−5

Operator compression Distributed NonNegative Orthogonal Matching Pursuit, εOp.comp. = 10−4

Reduced order model εROM
Newton = 10−4

Dual quantities reconstruction Distributed Gappy-POD, εGappy−POD = 10−5

The correlations between the ROM-Gappy-POD residual E (13) and the error E (12) on the dual
quantities cumulated plasticity p and stress tensor σ are investigated in Table 7. This time, we carry-out
the calibration process independently on each subdomain. The same conclusion as the academic test
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cases can be drawn for the correlations between the ROM-Gappy-POD residual E and the error E on
the subdomains 28 and 47 (see Figure 10 for the localization of these subdomains).

Table 7. Illustration of the correlation between the ROM-Gappy-POD residual E (13) and the error
E (12) on the dual quantities cumulated plasticity p and a component of the stress tensor σ.

p σxx
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In Table 8, we compare the error indicator (19) with the error (12) for the considered offline and
online variabilities. As for the academic test cases, the values of the error indicator are larger than the
error except for very large errors (for which the ROM is useless), and sometimes in the last time steps,
as residual forces build up. Without enrichment, the ROM makes very large error. We observe that the
subdomain for which the enrichment criterion is used enables to control the error on the corresponding
subdomain, whereas the error is larger in the other subdomain. This illustrates that local (in space)
quantities of interest can be considered to prevent the enrichment steps to occur too often when it’s
not needed.

Table 8. Comparison of the error indicator (19) with the error (12) for the considered offline and online
variabilities. The category “plot” for the columns refers to the subdomain for which the error indicator
and the error are plotted, whereas the category “enrichment” for the rows refers to the subdomain of
whom the indicator is used to decide the enrichment step.
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Table 8. Cont.
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monitoring
subdomain 28

0 20 40
0

0.02
0.04
0.06

time (s)

Gprp(E p), Ep

0 20 40
0

0.05

0.1

0.15

time (s)

Gprσ22 (Eσ22 ), Eσ22

0 20 40
0

0.02

0.04

time (s)

Gprp(E p), Ep

0 20 40
0

0.1

0.2

time (s)

Gprσ11 (Eσ11 ), Eσ11

monitoring
subdomain 47

0 20 40
0

0.02
0.04
0.06

time (s)

Gprp(E p), Ep

0 20 40
0

0.1

0.2

0.3

time (s)

Gprσ22 (Eσ22 ), Eσ22

0 20 40
0

0.02

0.04

time (s)

Gprp(E p), Ep

0 20 40
0

0.01

0.02

time (s)

Gprσ11 (Eσ11 ), Eσ11

In Figures 12 and 13 are illustrated various predictions of dual quantities: the index “off.” refers
to the HF prediction for the offline variability, “ref.” to the HF reference for the online variability,
“nores.” to the ROM without enrichment, “sd28” to the ROM with enrichment while monitoring
the error indicator on subdomain 28, and “sd47” to the ROM with enrichment while monitoring the
error indicator on subdomain 47. We observe that without enrichment, the ROM suffers from large
errors. With enrichment, the monitored subdomain enjoys an accurate ROM prediction. Particularly in
Figure 13, the conclusions hold when the HF reference for the online variability is visually different
from the HF prediction for the offline variability.

poff. pref.

p̃nores. p̃sd28 p̃sd47

σ22,off. σ22,ref.

σ̃22,nores. σ̃22,sd28 σ̃22,sd47

Figure 12. Cont.
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Figure 12. (top) Diverse HF and ROM dual quantity fields at t = 43.5 s for subdomain 28, (left) p,
(right) σ22; (bottom) comparison at the point identified by the green arrow on the top-left picture.
The components of the stress tensor are in MPa.

poff. pref.

p̃nores. p̃sd28 p̃sd47

σ11,off. σ11,ref.

σ̃11,nores. σ̃11,sd28 σ̃11,sd47
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σ11,off., σ11,ref., σ̃11,nores., σ̃11,sd28, σ̃11,sd47

Figure 13. (top) Diverse HF and ROM dual quantity fields at t = 43.5 s for subdomain 47, (left) p,
(right) σ11; (bottom) comparison at the point identified by the green arrow on the top-left picture.
The components of the stress tensor are in MPa.

Finally, we represent various predictions of dual quantities on the complete structure in Figure 14.
The ROM without enrichment shows a cumulated plasticity with large errors around the cooling
channel, whereas the stress prediction has large errors on the complete structure.



Math. Comput. Appl. 2019, 24, 41 25 of 28

poff. pref.

p̃nores. p̃sd28

σoff. σref.

σ̃nores. σ̃sd28

Figure 14. Complete ROM dual quantity fields at t = 43.5 s, with enrichment by monitoring subdomain
28. (left) Cumulated plasticity; (right) magnitude of the stress tensor.

The test cases presented in this section enable us to make two following observations:

[O1] in the a posteriori reduction of elastoviscoplastic computation, online variabilities of the
temperature loading not encountered during the offline stage can lead to important errors,

[O2] the ROM-Gappy-POD residual (13) is highly correlated to the error (12), so that the proposed
error indicator (19) can be used in the online stage as described in the workflow illustrated in
Figure 4 to correct online variabilities of the temperature loading not encountered during the
offline stage.

6. Conclusions and Outlook

In this work, we considered the model order reduction of structural mechanics with
elastoviscoplastic behavior laws, with dual quantities such as cumulated plasticity and stress tensor
as quantities of interest. We observed in our numerical experiments a strong correlation between the
ROM-Gappy-POD residual of the reconstruction of these dual quantities and the global error. From this
observation, we proposed an efficient error indicator by means of Gaussian process regression from
the data acquired when solving the high-fidelity problem in the learning phase of the reduced order
modeling. We illustrated the ability of the error indicator to enrich a reduced order model when the
online variability cannot be predicted using the current reduced order basis, leading to an accurate
reduced prediction.

For the moment, the reduced order model is enriched using a complete reference high-fidelity
computation, and the POD and Gappy-POD are recomputed. In future work, we need to consider
restart strategies to call the high-fidelity solver only at the time step of enrichment, from a complete
mechanical state reconstructed from the prediction of the reduced order model at the previous time
step, which can introduce additional errors. We also need to consider incremental strategies for the
POD and Gappy-POD updates.
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Abbreviations

The following abbreviations are used in this manuscript:

POD Proper orthogonal decomposition
HF(M) high-fidelity (model)
ROM reduced order model

The following notations are used in this manuscript:

u high-fidelity displacement field
û reduced displacement field
p high-fidelity cumulated plasticity field
p̃ reduced cumulated plasticity field reconstructed by Gappy-POD
p vector of component the value of the high-fidelity cumulated plasticity field at the reduced

integration points
p̂ vector of component the cumulated plasticity computed by the behavior law solver at the

reduced integration
points during the online phase. Notice that this vector is not obtained by taking the value of
some field at the
reduced integration points.

p̃ vector of component the value of the reduced cumulated plasticity field reconstructed by
Gappy-POD at
the reduced integration points

Ep relative error, defined in (12)
E p ROM-Gappy-POD residual, defined in (13)
Gprp (E p) proposed error indicator, defined in (19)
poff reference high-fidelity cumulated plasticity field at the considered offline variability
pref reference high-fidelity cumulated plasticity field at the considered online variability
p̃nores reduced cumulated plasticity field reconstructed by Gappy-POD without enrichement

(no restart)

The same notations as the ones on the cumulated plasticity are used for all the dual quantities.
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