
Mathematical

and Computational

Applications

Article

An Artificial Neural Network Based Solution Scheme
for Periodic Computational Homogenization of
Electrostatic Problems

Felix Selim Göküzüm *, Lu Trong Khiem Nguyen and Marc-André Keip
Institute of Applied Mechanics, Chair of Materials Theory, University of Stuttgart, Pfaffenwaldring 7,
70569 Stuttgart, Germany; nguyen@mechbau.uni-stuttgart.de (L.T.K.N.);
keip@mechbau.uni-stuttgart.de (M.-A.K.)
* Correspondence: goekuezuem@mechbau.uni-stuttgart.de

Received: 22 March 2019; Accepted: 9 April 2019; Published: 17 April 2019
����������
�������

Abstract: The present work addresses a solution algorithm for homogenization problems based on
an artificial neural network (ANN) discretization. The core idea is the construction of trial functions
through ANNs that fulfill a priori the periodic boundary conditions of the microscopic problem. A
global potential serves as an objective function, which by construction of the trial function can be
optimized without constraints. The aim of the new approach is to reduce the number of unknowns as
ANNs are able to fit complicated functions with a relatively small number of internal parameters. We
investigate the viability of the scheme on the basis of one-, two- and three-dimensional microstructure
problems. Further, global and piecewise-defined approaches for constructing the trial function are
discussed and compared to finite element (FE) and fast Fourier transform (FFT) based simulations.

Keywords: machine learning; artificial neural networks; computational homogenization

1. Introduction

Artificial neural networks (ANNs) have attracted a lot of attention in the last few years due to
their excellent universal approximation properties. Originally developed to model nervous activity
in living brains [1,2], they nowadays grow popular in data-driven approaches. Tasks such as image
and speech recognition [3,4] or the prediction of users’ behavior on social and commercial websites
are characterized by a large amount of accessible data compared to a difficult analytic mathematical
description. The use of ANNs or other machine learning algorithms such as anomaly detection [5] and
support vector machines [6] is suited for such problems as it enables the fitting of even highly complex
data with high accuracy. Recent trends in machine learning concern the physical constraining of data
driven methods for even higher convergence rate and accuracy, as done in [7].

Due to the aforementioned advantages and improvements, machine learning algorithms gained
entry into the field of continuum mechanics and material modeling as well. Successful implementations
were performed for the prediction of material response based on the fitting of experimental data
through ANNs [8–10]. Another interesting application is the reduction of microstructure data of a given
material through pattern recognition in order to reduce computational demands (see, e.g., [11,12]).

In the present work, we employ ANNs to seek the solution of homogenization problems.
Homogenization aims for the prediction of the macroscopic response of materials that have
microstructures described on length scales far lower than the macroscopic dimension. In terms
of analytical homogenization, Voigt [13] and Reuss [14] were the first to provide bounds of effective
properties [15]. Hashin and Shtrikman [16] and Willis [17] improved the theory in terms of tighter
bounds. Further estimates were developed using the self-consistent method [18,19] and the
Mori–Tanaka method [20] afterwards.

Math. Comput. Appl. 2019, 24, 40; doi:10.3390/mca24020040 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
http://dx.doi.org/10.3390/mca24020040
http://www.mdpi.com/journal/mca
https://www.mdpi.com/2297-8747/24/2/40?type=check_update&version=2

Math. Comput. Appl. 2019, 24, 40 2 of 28

In the case of a rather fine microstructures with complex topology and non-linear material
behavior, those bounds are only able to make rough predictions on the effective properties. To
describe microscopic fields and effective properties in a more detailed and accurate fashion, several
computational approaches have been developed in the last decades. Two of the most commonly used
discretization techniques are finite element (FE) methods [21,22] and fast Fourier transform (FFT)
based solvers [23,24]. However, for materials with a microstructure that need fine discretization,
the memory cost and solution time of the solvers increases vastly, making multiscale simulations
uneconomical. Promising approaches to mitigate these problems are model order reduction methods
(see, e.g., [25,26]).

In the present work, a memory efficient solution scheme based on the discretization through
ANNs is presented. We therefore follow the idea of Lagaris et al. [27], who introduced a method for
solving differential equations through ANN-based trial functions. The functions are constructed in
a way that they a priori fulfill the given boundary conditions and the squared error residual of the
differential equation is used as an objective that needs to be optimized with respect to the ANNs’
weights. The construction of the trial function might be a difficult task for complicated boundary
value problems. However, in conventional homogenization problems, we usually deal with rather
simple boundary geometries. In the present work, we consider square representative volume elements
(RVE) under periodic boundary conditions, as described in Section 2. In Section 3.1, the concept of the
ANN-based trial function according to Lagaris et al. [27] is explained. In contrast to Lagaris et al. [27],
the optimization objective in our problem is not the squared error residual of a differential equation
but emerges from a global energy potential. Sections 3.2 and 3.3 give the ANNs’ structure used in
the present work as well as the derivatives necessary to optimize the objective function. Finally, in
Section 4, the robustness of the presented method is validated for one-, two- and three-dimensional
problems and is compared to FE- and FFT-based computations. Further, we compare a global with a
piecewise-defined approach for constructing the trial function. In the global approach, the solution is
represented by only one global function using several ANNs and the topology of the microstructure
must be learned by the neural networks itself. On the other hand, in a piecewise-defined approach, the
solution is represented by many neural networks that are piecewise defined on different sub-domains
of the RVE. A conclusion is provided in Section 5.

2. Homogenization Framework

In the present work, we consider first-order homogenization of electrostatic problems. The
fundamental laws of electrostatics and the corresponding variational formulation are given. In terms of
the homogenization framework, we assume separation of length scales between macro- and microscale
in the sense that the length scale at which the material properties vary quickly, namely the microscale,
is much smaller than the length scale at the same order of the body’s dimensions. A connection for the
micro- and macrofields is given by the celebrated Hill–Mandel condition [28], which allows for the
derivation of consistent boundary conditions for the microscopic boundary value problem.

2.1. Energy Formulation for Electrostatic Problems

We now recall the fundamental equations of electrostatics in the presence of matter [29]. The focus
lies on a variational formulation as the energetic potential is later needed in the optimization principle.
Assuming that there are neither free currents nor charges, the fundamental physics of electric fields in
a body B are governed by the reduced Maxwell equations

curl E = 0 and div D = 0 in B, (1)

where E denotes the electric field and D the electric displacement. In vacuum, the electric field and
displacement are connected through the vacuum permittivity κ0 ≈ 8.854 · 10−12 As

Vm as D = κ0E. In
the presence of matter, the permittivity κ = κ0 · κr must be adapted accordingly. To solve Equation (1),

Math. Comput. Appl. 2019, 24, 40 3 of 28

we choose the electric field as our primary variable and construct it as the negative gradient of some
scalar electric potential φ according to

E := − grad φ ⇒ curl E ≡ 0, (2)

and thus Equation (1)1 is automatically fulfilled. Next, we want to solve Equation (1)2 under some
boundary conditions. We therefore introduce an energy potential

Π(φ) =
∫
B

Ψ(E) dV +
∫

∂Bq
q φ dA and φ = φ∗ on ∂Bφ, (3)

where Ψ(E) is a constitutive energy density, ∂Bq and ∂Bφ denote boundaries along with electric charges
q and electric potential φ∗ as prescribed. From the latter potential, it can be shown that, for equilibrium,
i.e. δΠ = 0, Equation (1)2 is solved in a weak sense

δΠ(φ) = −
∫
B
(div D)δφ dV +

∫
∂Bq

(q + D · N) δφ dA = 0 with D = −∂Ψ
∂E

, (4)

for all δφ. Here, N denotes the unit normal vector pointing outwards of ∂B. By choosing Ψ =

−1/2κ E · E, the static Maxwell equations are recovered.

2.2. Microscopic Boundary Value Problem

In the present work, we consider homogenization problems governed by the existence of
so-called representative volume elements (RVEs). They are chosen in a way that they are statistically
representative for the overall microstructure of the material. Fields emerging on the microscale are
driven by macroscopic fields, which are assumed to be constant in the RVE due to the separation of
length scales. The separation of length scales leads to a degeneration of the RVEs to points on the
macroscale. Scale transition rules can be derived from the Hill–Mandel condition [28] by postulating
energy conservation between the microscopic RVE and a macroscopic observation in the form

Π = sup
E

1
|B|Π(φ), (5)

where the macroscopic energy potential Π is obtained at equilibrium of the microscopic energy
potential Π(φ). According to Equation (3), the internal energy density appearing in the potential is
now a function of the electric field. In line with the assumption of first-order homogenization and
separation of length scales, the electric field vector

E = E−∇φ̃ (6)

is decomposed into a macroscopic contribution

E =
1
|B|

∫
B

E dV, (7)

which is constant on the microscale, and the gradient of the fluctuative scalar electric potential φ̃ that
acts as primary variable. The system is closed by applying appropriate boundary conditions on the
RVE. There are several boundary conditions that fulfill the Hill–Mandel condition (5). In the present
work, we focus on periodic boundary conditions of the form

φ̃(x+) = φ̃(x−) and D · N(x+) = −D · N(x−) on ∂B, (8)

Math. Comput. Appl. 2019, 24, 40 4 of 28

where x± indicate opposite coordinates at the boundary of the RVE [30–32]. Note that we only need to
prescribe one of the two boundary conditions given in the latter equation as the other one will emerge
naturally in equilibrium.

3. Artificial Neural Network Based Solution Scheme

In this section, a solution procedure based on artificial neural networks (ANNs) for finding the
equilibrium state of the potential in Equation (3) is presented. Core idea is the construction of
trial functions, which consist of ANNs and multiplicative factors fulfilling the given set of boundary
conditions in Equation (8). We then recapitulate the two main ANN structures used in the present work,
namely the single layer perceptron net and the multilayer perceptron. Additionally, the derivatives of
those nets with respect to its inputs as well as with respect to its weights are given as they are needed
when using gradient descent methods.

3.1. Optimization Principle

Consider the previously introduced RVE occupying the space B. Our goal is to find the
microscopic equilibrium state of a given global potential for this body. Under prescribed periodic
Dirichlet boundary conditions in Equation (8)1, the potential in Equation (3) takes the form

Π(φ) =
∫
B

Ψ(x, E) dV. (9)

Having the physical problem covered, the question arises how to approximate the solution fields.
While finite element approaches employ local shape functions and Fourier transform based methods
use global trigonometric basis functions, in the present work, we want to investigate an approximation
method based on artificial neural networks. Following the idea of Lagaris et al. [27], we construct a
trial function φt using arbitrary artificial neural networks Ni(x, pi) as

φ̃t(x, p) = A0(x) + A1(x)N1(x, p1) + A2(x)N2(x, p2) + ... + An(x)Nn(x, pn), (10)

where Ai(x) are functions ensuring that the boundary conditions are fulfilled a priori. As a generic
one-dimensional example, one could think of a scalar electric potential that should fulfill the boundary
conditions φ̃(0) = φ̃(1) = 1. In this case, we would have A0 = 1 and A1 = x(1− x), yielding the trial
function according to Equation (10) as φ̃t(x, p) = 1 + x(1− x)N1(x, p1). The corresponding electric
field Et(x, p) in line with Equation (6) can be calculated analytically according to the neural network
derivatives given in Sections 3.2 and 3.3. Using the gradient field along with Equation (9) gives the
global potential in terms of the neural network’s parameters as follows

Π(p) =
∫
B

Ψ(x, Et(x, p)) dV. (11)

Finally, the objective function in our machine learning problem is obtained from the Hill–Mandel
condition in Equation (5) in combination with the global potential in Equation (11) approximated by
neural networks. It appears as

Π = sup
p

1
|B|Π(p), (12)

where the optimization is carried out with respect to the neural network’s parameters. By having the
periodic boundary conditions fulfilled by construction, the optimization can be carried out without
any constraints on the parameters p.

Math. Comput. Appl. 2019, 24, 40 5 of 28

3.2. Single Layer Perceptron (SLP)

The single layer perceptron (SLP) is one of the most basic versions of artificial neural networks [33].
It is a reduced version of the general structure depicted in Figure 1. An SLP only consists of one hidden
layer that connects the input and the output. Assuming an input vector x of dimension d, the response
N of an SLP is calculated as

N(x, p) =
H

∑
i=1

viσ(zi) + b with zi =
d

∑
j=1

wijxj + ui, (13)

where vi, wij, ui and b are the weights and biases of the hidden unit and the output bias, respectively,
and H is the overall number of neurons in the hidden layer. Those weights and biases are assembled
in the neural network parameter vector p. Here, σ denotes an activation function of a neuron. The
activation functions may be chosen problem-dependent and can have a large impact on the training
behavior of the artificial neural network. Figure 2 shows the three activation functions used in the
present work, namely the logistic sigmoid, the hyperbolic tangent and the softplus function. Despite
its popularity in machine learning tasks, we are not using the rectifier linear unit (ReLu) activation
function in the present work. First tests using the ReLu function resulted in poor convergence rates.
We suspect that this stems from errors in the numerical integration when using the ReLu function and
its discontinuous derivative. The derivatives of the SLP net with respect to its input then appear as

N,j =
∂N
∂xj

=
H

∑
i=1

viwijσ
′(zi), (14)

where σ′(zi) denotes the derivative of the sigmoid function with respect to its argument. The spatial
derivative can be perceived as an SLP with modified weights and activation function but it is now
a gradient field. To use efficient gradient based solvers when optimizing the weights of the neural
network, it is convenient to have the explicit derivatives of the ANNs with respect to the weights.
These can be obtained as

∂N
∂ui

= viσ
′(zi),

∂N,j

∂ui
= viwijσ

′′(zi),

∂N
∂wij

= vixjσ
′(zi),

∂N,j

∂wim
= xmviwijσ

′′(zi) + viσ
′(zi)δjm,

∂N
∂b

= 1,
∂N,j

∂b
= 0,

∂N
∂vi

= σ(zi),
∂N,j

∂vi
= wijσ

′(zi).

(15)

Note that, in the derivatives above, the indices are not treated by Einstein’s summation convention.
Indices appearing twice are rather multiplied pointwise in MATLAB [34] convention.

Math. Comput. Appl. 2019, 24, 40 6 of 28

Figure 1. General structure of a multilayer perceptron with input x, L hidden layers and output N.
Each neuron evaluates its inputs through predefined activation functions.

Figure 2. Different types of popular activation functions: logistic sigmoid, hyperbolic tangent and
softplus function.

3.3. Multilayer Perceptron (MLP)

The multilayer perceptron (MLP) works similarly to the single layer perceptron. However, it is
constructed by a higher number L of hidden layers. It can be shown that this deep structure enables
a more general approximation property of the neural network and might lead to better training
behavior [35]. In the present work, we focus on MLPs with only two hidden layers. The output is then
computed as

N(x, p) =
H2

∑
k=1

vkσ(rk) + b, rk =
H1

∑
i=1

θkiσ(zi) + ck with zi =
d

∑
j=1

wijxj + ui, (16)

where we have now additional weights θki and biases ck associated with the second hidden layer. The
spatial derivative of the MLP appears as

N,j =
∂N
∂xj

=
H2

∑
k=1

H1

∑
i=1

vkσ′(rk)θkiσ
′(zi)wij. (17)

Math. Comput. Appl. 2019, 24, 40 7 of 28

The derivatives of the MLP with respect to the weights are computed as

∂N
∂ui

=
H2

∑
k=1

vkσ′(rk)θkiσ
′(zi),

∂N,j

∂ui
=

H2

∑
k=1

[
vkσ′′(rk)θkiσ

′(zi)
H1

∑
i=1

[wijθkiσ
′(zi)]

+ vkσ′(rk)θkiσ
′′(zi)wij)

]
,

∂N
∂wij

=
H2

∑
k=1

vkσ′(rk)θkiσ
′(zi)xj,

∂N,j

∂wim
=

H2

∑
k=1

[
vkσ′′(rk)θkiσ

′(zi)xm

H1

∑
i=1

[wijθkiσ
′(zi)]

+ vkσ′(rk)θkiσ
′′(zi)wijxm

+ vkσ′(rk)θkiσ
′(zi)δim

]
,

∂N
∂ck

= vkσ′(rk),
∂N,j

∂ck
= vkσ′′(rk)

H1

∑
i=1

[wijθkiσ
′(zi)],

∂N
∂θki

= vkσ′(rk)σ(zi),
∂N,j

∂θki
= vkσ′′(rk)σ

′(zi)
H1

∑
i=1

[wijθkiσ(zi)]

+ vkσ′(rk)σ
′(zi)wij,

∂N
∂b

= 1,
∂N,j

∂b
= 0,

∂N
∂vk

= σ(rk),
∂N,j

∂vk
= σ′(rk)

H1

∑
i=1

[wijθkiσ
′(zi)].

(18)

4. Numerical Examples

In this section, we test the robustness and reliability of the proposed method on a set of one-, two-
and three-dimensional problems. The influence of global versus piecewise-defined constructions of
the trial functions as well as the impact of the neuron count on the simulation results are explored.
The one-dimensional example is implemented in MATLAB [34] while the two- and three-dimensional
examples are carried out by a Fortran 77 code that utilizes the L-BFGS-B optimization algorithms [36,37].
For the sake of simplicity, all the following simulations are performed with normalized units.

4.1. One-Dimensional Example

We first consider a one-dimensional problem to demonstrate the features of the proposed method.
The RVE is a simple two-phase laminate of unit length l = 1 and unit cross section, which is loaded
with a macroscopic electric field E = 0.01. The global potential takes the form

Π(φ) =
∫
B

Ψ(E, x) dx = −
∫
B

1
2

κE2 dx, (19)

where κ1 = 1 for x < 0.5 and κ2 = 2 for x > 0.5. Having the decomposition in Equation (6)

E = E− ∂φ̃

∂x
(20)

along with the boundary conditions φ̃(0) = 0 and φ̃(1) = 0, the analytical solution for the electric
field reads

E =

2κ2

κ1 + κ2
E 0 ≤ x < l/2

2κ1

κ1 + κ2
E l/2 < x ≤ l

(21)

Math. Comput. Appl. 2019, 24, 40 8 of 28

and for the electric potential

φ̃ =

E

κ1 − κ2

κ1 + κ2
x 0 ≤ x ≤ l/2

E
κ2 − κ1

κ1 + κ2
(x− l) l/2 ≤ x ≤ l

. (22)

4.1.1. Global Neural Net Approach on Equidistant Grid

To find the electric scalar potential that optimizes the energy potential in Equation (19), we
construct a global trial function according to Equation (10) that automatically fulfills the boundary
conditions given above as

φ̃t = Ao + A1(x)N(x, p) = x(1− x)N(x, p), (23)

where N is a neural network that takes x as an input and has the weights and biases p. The derivatives
in this case can be computed explicitly as

∂φ̃t

∂x
= (1− 2x)N(x, p) + x(1− x)

∂N(x, p)
∂x

. (24)

The derivatives then allow us to compute the global potential in terms of the neural network’s
weights and biases as

Π(p) = −
∫
B

1
2

κ(E− φ̃t

∂x
)2 dx. (25)

Finally, we need a numerical integration scheme to evaluate the integral. In the present work, we
use quadrature points in terms of equidistant grid points xk with distance ∆x on the interval of [0, 1] as
{∆x/2, 3∆x/2, . . . , 1− ∆x/2}, yielding the discrete objective

Π = sup
p

1
l ∑

0<xk<1.0
−1

2
κ(E− φ̃t

∂x
)2∆x. (26)

The maximum of this objective function can be found by means of the gradient descent method.
The gradients of the objective with respect to the weights p that are needed for such an iterative solver
can be computed using Equation (15). We then have everything at hand to carry out the first numerical
example. As for the ANN architecture, we use an SLP with H = 10 neurons in the hidden layer. As for
the activation function, the logistic sigmoid function σ(z) = 1/(1 + e−z) is chosen, and the weights
and biases p are randomly initalized with a uniform distribution between 0 and 1. Figure 3 shows
the result of the numerical experiment (green) compared to the analytical results (black). One can see
that the numerical scalar electric potential φ̃t is close to the analytical solution. However, having a
look at the gradients in the form of E reveals the occurrence of oscillations around the discontinuity.
The MATLAB [34] code that generates these results can be found in Appendix A. Note that the
tolerances for the step size and the optimality as well as the maximum number of function evaluations
and iterations is set different from the MATLAB [34] default values to obtain reasonable results. One
might decrease the oscillations by having even higher iteration numbers. However, the jump in the
solution at the vicinity of the material jump cannot be captured by the global smooth neural network
function. The more neurons we use, the better accuracy we obtain, which leads to a trade-off between
accuracy and speed.

Math. Comput. Appl. 2019, 24, 40 9 of 28

Figure 3. Numerical vs. analytical solution for a global trial function approach using an SLPs with
10 neurons and a random initialization of p(0) ∼ U (0, 1), where U (0, 1) denotes a vector of numbers
generated from a uniform distribution between 0 and 1. These parameters are statistically independent.

4.1.2. Piecewise-defined Neural Net Approach on Equidistant Grid

To overcome the oscillations observed in the global approach, we next construct a trial function
that is piecewise defined for the RVE’s different material regions

φ̃t =

xN1(x, p1) 0 < x ≤ 0.5

(0.5− x)(1− x)N2(x, p2) + 2(1− x)φ̃t(0.5) 0.5 < x ≤ 1.0
. (27)

Its derivatives can be computed according to

∂φ̃t

∂x
=

N1(x, p1) + x

∂N1(x, p1)

∂x
0 < x < 0.5

(2x− 1.5)N2(x, p2) + (0.5− x)(1− x)
∂N2(x, p2)

∂x
− 2φ̃t(0.5) 0.5 < x < 1.0

. (28)

The global potential in terms of the neural network’s weights and biases then appears as

Π(p) =
∫
B

1
2

κ(E− φ̃t

∂x
)2 dx. (29)

In analogy to the global approach, numerical integration is performed using equidistant grid
points xk with distance ∆x as quadrature points in the interval [0, 1] to obtain the discrete objective

Π = sup
p

1
l

(
∑

0<xk<0.5
−1

2
κ1(E− φ̃t

∂x
)2 − ∑

0.5<xk<1.0

1
2

κ2(E− φ̃t

∂x
)2

)
∆x. (30)

The gradient of the objective function with respect to the parameters p can again be obtained
through the derivatives of Equation (15). However, the output and training behavior of artificial neural
networks is dependent on the initialization of the weights and biases p. In a first run, we set the
number of neurons in the two SLPs’ hidden layers to 10 and initialize the weights randomly between 0
and 1. As for the activation function, we choose the logistic sigmoid function σ(z) = 1/(1 + e−z).

Figure 4 shows the numerical results in green compared to the analytical results in black. There is
a distinct deviation between them. Having a look at the output layer of the SLP in Equation (13) and

Math. Comput. Appl. 2019, 24, 40 10 of 28

its derivative in Equation (14), one can see that the initial output for 10 neurons for an initialization
of all weights between 0 and 1 is far from the exact solution. This difference becomes even larger
for higher number of neurons. In contrast to the global approach, we use the default values of the
unconstrained MATLAB [34] minimizer and, apparently, there are too few iterations.

Figure 4. Numerical vs. analytical solution for 2 SLPs with 10 neurons each and a random initialization
of p(0) ∼ U (0, 1), where U (0, 1) denotes a vector of numbers generated from a uniform distribution
between 0 and 1. These parameters are statistically independent.

Next, we want to have fewer iterations of the solver within the default values by using an adaptive
way of initializing the weights. The key idea is to initialize the weights in a way that the net and its
derivative output values are roughly in the range of the values we would expect with respect to the
given macroscopic load. We therefore use a simple modification of the weight initialization given as

p(0),∗ ∼ E
H
∗U (0, 1), (31)

where U (0, 1) is a vector of random numbers uniformly distributed along 0 and 1. Please note that
we use boldface calligraphic U to indicate the vector notation instead of univariate distribution. The
results of the computation using the adaptive initialization method can be seen in Figure 5. The
results are closer to the analytical solution and are independent of the number of hidden neurons used,
making the overall method much more reliable. The MATLAB [34] code used for generating Figure 5
can be found in Appendix B.

Math. Comput. Appl. 2019, 24, 40 11 of 28

Figure 5. Numerical vs. analytical solution for 2 SLPs with 10 neurons each and a random initialization
of p(0),∗ ∼ E

H ∗ U (0, 1), where U (0, 1) denotes a vector of numbers generated from a uniform
distribution between 0 and 1. These parameters are statistically independent.

4.2. Two-Dimensional Example

Next, we consider a two-dimensional microstructure with a circular inclusion, as shown in
Figure 6. The radius of the inclusion is r0 = 0.178l, corresponding to 10% volume fraction. The global
energy potential per unit out-of-plane thickness is given as the integral of the internal energy density
over the RVE’s domain

Π =
∫
B

Ψ(E) dA = −
∫
B

1
2

κE · E dA. (32)

In this example, the material parameter is set to κ = 1 in the matrix and κ = 10 in the inclusion.
The square RVE of unit length l = 1 is loaded with the constant macroscopic field E1 = 1 and E2 = 0
under the periodic Dirichlet boundary conditions in Equation (8)1. For reference, a simulation using
the finite element method is performed for this optimization problem. The mesh is discretized by
linear quadrilateral elements with four Gauss points. The optimized global potential is calculated to
|Π|FEM = 0.588652. Figure 6 shows the contour plot of the microscopic field E1. The finite element
results serve as a reference for the neural network based approaches in the following examples.

Math. Comput. Appl. 2019, 24, 40 12 of 28

Figure 6. Microstructure of length l with a circular inclusion having the radius r0 = 0.178l. On the right,
a finite element solution for a phase contrast of 10 and a loading of E1 = 1 and E2 = 0 is displayed.

4.2.1. Global Neural Net Approach on Equidistant Grid

First, we want to build a global trial function, which is covering the whole RVE. As we want to
implement periodic boundary conditions, a set of three neural networks is used to construct the trial
function φt: Nx1(x1) acting in the x1-direction, Nx2(x2) acting in the x2-direction and N1(x) acting in
both directions. The trial function then takes the form

φ̃t(x, p) = A1(x1, x2)N1(x, p1) + A2(x1)Nx1(x1, px1
) + A3(x2)Nx2(x2, px2

)

= x1(1− x1)x2(1− x2)N1(x, p1)

+ x1(1− x1)Nx1(x1, px1
) + x2(1− x2)Nx2(x2, px2

).

(33)

Figure 7 shows a visualization of the functions ensuring the boundary conditions. Here, we use
SLPs for the boundary networks and a two-layer MLP for the two-dimensional neural network. As for
the activation function for the neurons, the hyperbolic tangent σ(z) = tanh(z) is chosen. The negative
gradient of the trial function can then be computed to obtain the trial field

Et = E−∇φ̃t, (34)

where we drop dependencies on x and p in our notation. According to Equation (32), we arrive at the
global potential as an objective

Π = sup
p

1
|B|Π(p) = sup

p

1
|B|

∫
B
−1

2
κ(x)Et · Et dA. (35)

The spatial gradient of the trial function∇φ̃t as well as gradients of the global potential ∂Π(p)/∂p
used in optimization algorithms can be obtained analytically through the derivatives given in
Sections 3.2 and 3.3. We use equidistant grid points for establishing a regular mesh of elements
and employ nine Gauss points per element as the quadrature points for numerical integration. The
objective is optimized without any constraints on the parameters p, as we satisfy the boundary
conditions a priori by the construction of φ̃t.

Math. Comput. Appl. 2019, 24, 40 13 of 28

Figure 7. Visualization of the functions A1, A2 and A3 ensuring periodicity of the two-dimensional
trial function φ̃t in a square RVE of unit length l = 1. One can see that A1 covers the volume, A2

satisfies the periodicity in x1-direction and A3 satisfies the periodicity in x2-direction.

The simulation is carried out for a different number of neurons and integration points as follows:
(a) 51 × 51 elements, 15 neurons in each of the two hidden layers of the MLP and 5 neurons each in the
layer of the boundary SLPs; (b) 51 × 51 elements, 10 neurons in each of the two hidden layers of the
MLP and 5 neurons each in the layer of the boundary SLPs; and (c) 101 × 101 elements, 15 neurons
in each of the two hidden layers of the MLP and 5 neurons each in the layer of the boundary SLPs.
Additionally, all three set ups are run with a uniform initialization of the weights through

p(0) ∼ U (−1, 1). (36)

Figure 8 shows the contour plot of Et1 of the neural network after 20,000 iterations. One can
see that the neural network in Case (a) localizes in an unphysical state. This could be a problem
related to overfitting. Case (b), with the same amount of integration points but lower neuron count,
shows a qualitatively better result. The overall optimization seems to become more reliable as the
integration is performed more accurately, as seen in Case (c). Quantitatively, the global potentials
are: (a) |Π|(p) = 0.213522; (b) |Π|(p) = 0.590266; and (c) |Π|(p) = 0.589887 compared to the FEM
potential of |Π|FEM(E) = 0.588652, taken from the simulation that creates Figure 6. In two dimensions
and with complicated geometries at hand, it can be difficult to estimate the magnitude of the solution
fields appearing a priori. A rather simple approach for initializing the weights as described in the
one-dimensional case did not seem to significantly improve the method. Here, we test a second
approach of initializing the weights according to a normal distribution

p(0),∗ ∼ N (µ, σ2), (37)

where we set the mean µ = 0 and the variance σ2 = 1. Figure 8 shows the contour plot of Et1 of
the neural network after 20,000 iterations for the normal distribution. Case (a) now shows a more
physical state. The energies are calculated as: (a) |Π|(p) = 0.590054; (b) |Π|(p) = 0.592981; and (c)
|Π|(p) = 0.590544. At this point, there is surely some potential left for improving weight initialization.
This is subject to other fields of machine learning as well, especially in the context of training speed
and vanishing gradient problems [38].

Math. Comput. Appl. 2019, 24, 40 14 of 28

Figure 8. Contour plot of Et1 for a set of parameters: (a) 51 × 51 elements, 15 neurons per layer in N1

and 5 neurons each for Nx1 and Nx2 ; (b) 51 × 51 elements, 10 neurons per layer in N1 and 5 neurons
each for Nx1 and Nx2 ; and (c) 101 × 101 elements, 15 neurons per layer in N1 and 5 neurons each for
Nx1 and Nx2 .

4.2.2. Piecewise-Defined Neural Net Approach

To further improve the training and approximation properties of the trial functions, we next
construct it in a way that it captures the discontinuity of material properties in the microstructure a
priori. This is possible due to the simple topology of the microstructure at hand. However, for more
complicated microstructures, defining explicit expressions for the trial function might be difficult. We
now need a set of four ANNs for the construction of φt: Nx1(x1) acting in the x1-direction, Nx2(x2)

acting in the x2-direction, N1(x) acting in the matrix and N2(x) acting in the inclusion. The global trial
function is defined piecewise in two sub-domains as follows

φ̃t =

x1(1− x1)x2(1− x2)N1(x, p1) + x1(1− x1)Nx1(x1, px1

)
r ≥ r0

+x2(1− x2)Nx2(x2, px2
)

φ̃t(r0, ϕ) + (r0 − r)N2(r, p1) r < r0

. (38)

One can see that the above equations automatically fulfill periodicity at the boundaries as well
as the transition condition at the phase interface of the circular inclusion. Here, we implement the
trial function in Cartesian coordinates for the matrix and in polar coordinates for the inclusion. Thus,
the neural network of the inclusion takes the coordinate vector r = (r, ϕ) in terms of the radius r and
the angle ϕ as its input. Having the origin of our coordinate system in the bottom left corner, the
transformation used here takes the form

x1 = 0.5 + r cosϕ and x2 = 0.5 + r sinϕ. (39)

Math. Comput. Appl. 2019, 24, 40 15 of 28

With the coordinate transformation at hand, one can calculate the gradient in the matrix and
inclusion as

Et = −∇(−E · x + φ̃t), (40)

where E is the applied macroscopic electric field. For a more detailed derivation, see Appendix C.
Finally, the potential to optimize in this example takes the form

Π = sup
p

1
|B|Π(p) = sup

p

1
|B|

(
−
∫
Bmatr

1
2

κ1Et · Et dA−
∫
Bincl

1
2

κ2Et · Et dA
)

. (41)

As a numerical integration scheme, we use a simple one-point quadrature rule, where we have an
equidistant grid of 3240 integration points in the matrix and 3600 integration points in the inclusion.
The MLP N1(x, p1) has two layers with five neurons in each, the SLP N2(x, p2) has one layer with four
neurons and the boundary SLPs Nx1(x1, px1

) and Nx2(x2, px2
) have seven neurons in the hidden layer.

This sums up to a total of 116 degrees of freedom p. In the present example, we use the hyperbolic
tangent σ(z) = tanh(z) as the activation function of the neurons. The initial weights are randomly
initialized with uniform distribution in the range of −1 to 1. As in the previous examples, the applied
macroscopic load in Equation (40) is E1 = 1.0 and E2 = 0.0.

Figure 9 shows the result for Et1 after 10,000 iterations for the local construction of the trial
function. Compared with the previous simulations using only one global trial function, the fields have
fewer oscillations. Additionally, the maximum energy after 10,000 iterations is |Π|(p) = 0.588414,
being lower than in the previous simulations and lower than the maximum energy computed with
finite elements. Interestingly, in the first iterations, the learning rates are higher for the global schemes,
whether the weights are initialized according to a normal distribution or a uniform distribution (see
Figure 9).

Figure 9. (left) Contour plot of Et1 for the piecewise-defined trial function in Equation (38) after 10,000
iterations in the optimization procedure; and (right) optimization of Π(p) vs. iteration count for the
piecewise-defined trial function with uniformly distributed weight initialization and the global trial
function (33) with uniformly and normally distributed weight initialization.

4.3. Three-Dimensional Example

In the present example, we apply the method to a three-dimensional cubic RVE of unit length
l = 1 with a spherical inclusion of radius r0 = 0.178l. We first construct a global trial function, for
which we need a set of seven neural networks: Nx1(x1) acting in the x1-direction, Nx2(x2) acting in
the x2-direction, Nx3(x3) acting in the x3-direction, Nx12(x1, x2) acting in the x1x2-plane, Nx13(x1, x3)

Math. Comput. Appl. 2019, 24, 40 16 of 28

acting in the x1x3-plane, Nx23(x2, x3) acting in the x1x2-plane and N1(x) acting in the RVE’s volume
(see Figure 10). The trial function for the matrix then appears as

φ̃t(x, p) = A1 N1(x, p1) + A2 Nx12(x1, x2, px12
) + A3 Nx13(x1, x3, px13

)

+A4 Nx23(x2, x3, px23
) + A5 Nx1(x1, px1

)

+A6 Nx2(x2, px2
) + A7 Nx3(x3, px3

),

(42)

where the functions Ai take the form

A1 = x1(1− x1)x2(1− x2)x3(1− x3), A5 = x1(1− x1),

A2 = x1(1− x1)x2(1− x2), A6 = x2(1− x2),

A3 = x1(1− x1)x3(1− x3), A7 = x3(1− x3),

A4 = x2(1− x2)x3(1− x3).

(43)

By construction, the trial function fulfills the periodic boundary conditions. The negative gradient
of the trial function can then be computed analytically according to Equation (40) (see also Appendix D
for a more detailed derivation). With the gradient at hand, we are able optimize the global potential in
Equation (32) with respect to the weights of the ANNs.

Figure 10. A representation of the artificial neural networks used in the construction of the trial function
φt. There are separate ANNs for the edges, surface boundaries and volumes. In the piecewise-defined
approach, there is one additional ANN acting in the inclusion.

As seen in the previous sections, the use of one global trial function might lead to oscillations
in the solution field. In line with Section 4.2.2, we additionally construct a piecewise-defined trial
function for comparison

φ̃t
∗
(x, p) =

A1 N1(x, p1) + A2 Nx12(x1, x2, px12
) + A3 Nx13(x1, x3, px13

)

r ≥ r0+A4 Nx23(x2, x3, px23
) + A5 Nx1(x1, px1

) + A6 Nx2(x2, px2
)

+A7 Nx3(x2, px3
)

φ̃t(r0, ϕ, θ) + A8 N2(r, p2) r < r0.

(44)

where we add an eighth neural network for the inclusion and the function

A8 = r0 − r. (45)

Math. Comput. Appl. 2019, 24, 40 17 of 28

The transformation between the spherical coordinates r = (r, ϕ, θ) and the Cartesian coordinates
x = (x1, x2, x3) is given as

x1 = 0.5 + r sinϕ cosθ, x2 = 0.5 + r sinϕ sinθ, x3 = r cosϕ. (46)

The gradient in Equation (40) can then be computed accordingly in Cartesian coordinates for the matrix
and in spherical coordinates for the inclusion, as derived in Appendix D, allowing us to optimize the
global potential

Π∗ = sup
p

1
|B|Π

∗(p) = sup
p

1
|B|

(
−
∫
Bmatr

1
2

κ1E∗t · E∗t dV −
∫
Bincl

1
2

κ2E∗t · E∗t dV
)

. (47)

For our numerical experiment, the RVE depicted in Figure 10 is loaded with a macroscopic field
of E1 = 1.0, E2 = 0.0 and E3 = 0.0. The material parameters are chosen as κ1 = 1 and κ2 = 10. For the
global approach, the mesh consists of 43 × 43 × 43 equidistant integration points. The ANNs acting
on the edges and surface boundaries are SLPs, having four neurons along each edge ANN and five
neurons along each surface ANN. The ANN acting in the volume is a two-layer perceptron with eight
neurons in each layer. This trial function totals 256 parameters to optimize in the ANNs. As for the
activation function, we choose the softplus function, as it provides the best results in our examples. As
for the piecewise-defined trial function in Equation (44), the ANNs are constructed in the same way.
The additional ANN acting in the inclusion is an SLP with eight neurons and also has the softplus
activation function. The mesh used in this case consists of 32,768 integration points in the matrix and
16,384 integration points in the inclusion. Additionally, an FFT-based simulation [23] using a conjugate
gradient solver [24,39–42] is carried out for comparison, where the microstructure is discretized on a
43 × 43 × 43 grid.

Figure 11 shows the contour plot of Et1 for the approach using the global and the piecewise-defined
trial function after 20,000 iterations. In comparison to the FFT-based solution, both simulations produce
qualitatively good results. The global approximation scheme captures the expected jump of Et1
across the phase interface a little less distinctly compared with the piecewise-defined one. However,
the piecewise-defined approximation is more difficult to construct and will be quite challenging to
implement in the case of complicated microstructure geometries. Quantitatively, the optimized global
potentials after 20,000 iterations are quite close to each other, with |Π|(p) = 0.529926 for the global
approach and |Π|∗(p) = 0.529692 for the piecewise-defined approach, compared to a optimum energy
|Π|FFT = 0.527590 obtained by the FFT-based simulation.

Math. Comput. Appl. 2019, 24, 40 18 of 28

Figure 11. Contour plot of E1 for a global and a piecewise-defined construction of the trial function
as well as an FFT-based simulation for comparison. The results of the ANN simulations are close to
the FFT-based simulation. The jump discontinuity is more distinct in the piecewise-defined approach
compared with the global approach.

5. Conclusions

We presented a solution scheme to periodic boundary value problems in homogenization based
on the training of artificial neural networks. They were employed in tandem with the multiplicative
factors in a way that the resulted trial function fulfilled the boundary conditions a priori and thus we
arrived at the unconstrained optimization problem. The numerical examples showed that physically
reasonable results can be obtained with rather low amounts of neurons, which allows for low memory
demand. A construction of trial functions by defining them piecewise in separate sub-domains led
to lower oscillations and a generally more stable training behavior compared with a global approach
but was geometrically more challenging to construct. The scheme carried over to three dimensions
quite well. We assume this to stem from the ratio of neurons compared with the number of integration
points: In the considered example of a cube-shaped matrix with spherical inclusion, the solution could
be approximated using a quite low neuron count while the number of integration points grew a lot. For
future progress, the training speed of the neural network needs to be improved. More sophisticated

Math. Comput. Appl. 2019, 24, 40 19 of 28

ANN structures such as deep nets or recurrent nets might further improve the approximation and
training behavior of the method, while methods such as dropout or regularization might assist to
avoid problems of overfitting.

Author Contributions: Conceptualization, F.S.G., L.T.K.N. and M.-A.K.; Funding acquisition, M.-A.K.;
Investigation, F.S.G.; Methodology, F.S.G., L.T.K.N. and M.-A.K.; Software, F.S.G. and L.T.K.N.; Validation,
F.S.G., L.T.K.N. and M.-A.K.; Visualization, F.S.G.; Writing—original draft, F.S.G.; Writing—review & editing,
L.T.K.N. and M.-A.K.

Acknowledgments: Funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy—EXC 2075—390740016.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Matlab Script for Global One-Dimensional Example

1 % Evaluat ion points in area
2 dx = 0 . 0 1 ;
3 x = dx /2: dx:1−dx /2;
4

5 % Applied macroscopic e l e c t r i c f i e l d
6 E0 = 0 . 0 1 ;
7

8 % E l e c t r i c p e r m i t t i v i t y in laminate
9 KK = zeros (s i z e (x)) ;

10 KK(x > 1/2) = 2 . 0 ;
11 KK(x < 1/2) = 1 . 0 ;
12

13 % Number of hidden neurons
14 nn = 1 0 ;
15

16 % I n i t i a l i z e weights and b i a s e s
17 wb0 = rand (3∗nn +1 ,1) ;
18

19 % Anonymous funct ion handle
20 f = @(wb) neuralapprox (wb,KK, E0 , x , dx , nn) ;
21

22 % Cal l unconstrained minimizer
23 opts = optimoptions (@fminunc , ’ Algorithm ’ , ’ quasi−newton ’ , . . .
24 ’ S tepTolerance ’ ,1 e−12, ’ Optimal i tyTolerance ’ ,1 e − 1 2 , . . .
25 ’ MaxFunctionEvaluations ’ , 1 0 0 0 0 , . . .
26 ’ Spec i fyObjec t iveGradient ’ , true , ’ CheckGradients ’ , true , . . .
27 ’ F i n i t eD i f f e r en c eT yp e ’ , ’ c e n t r a l ’ , ’ MaxI terat ions ’ , 10000) ;
28 [wb, f] = fminunc (f , wb0 , opts)
29

30 func t ion [f , g] = neuralapprox (wb,KK, E0 , x , dx , nn)
31

32 % r e s t o r e weights and b i a s e s f o r ANN
33 u = wb(1 : nn) ;
34 w = wb(nn+1:2∗nn) ;
35 b = wb(2∗nn+1) ;
36 v = wb(2∗nn+2:3∗nn+1) ;
37

38 % Neural network response f o r feedforward net (FFN) (Eq . (1 3))

Math. Comput. Appl. 2019, 24, 40 20 of 28

39 z = w∗x + u ;
40 sigmoid = (1 + exp(−z)) .^(−1) ;
41 ANN = sum(v . ∗ sigmoid) + b ;
42

43 % S p a t i a l d e r i v a t i v e response f o r feedforward net (Eq . (1 4))
44 d_sigmoid = sigmoid . ∗ (1 − sigmoid) ;
45 d_ANN = sum(v .∗w. ∗ d_sigmoid) ;
46

47 % Derivat ive of 1 s t FFN and dFFN/dx w. r . t . i t s weights (Eq . (1 5))
48 d2_sigmoid = sigmoid . ∗ (1 − sigmoid) .^2 − sigmoid . ^ 2 . ∗ (1 − sigmoid) ;
49

50 xmatr = x .∗ ones (s i z e (z)) ;
51 ANN_du = v . ∗ d_sigmoid ;
52 ANN_dw = v . ∗ d_sigmoid . ∗ xmatr ;
53 ANN_db = ones (s i z e (x)) ;
54 ANN_dv = sigmoid ;
55

56 d_ANN_du = v .∗w. ∗ d2_sigmoid ;
57 d_ANN_dw = v . ∗ d_sigmoid + v . ∗w. ∗ d2_sigmoid .∗ xmatr ;
58 d_ANN_db = zeros (s i z e (x)) ;
59 d_ANN_dv = w.∗ d_sigmoid ;
60

61 % D e r i v a t i v e s of the t r i a l funct ion phi = x∗(1−x) ∗N (Eq . (2 4) &(15))
62 d_phi_t = (1−2∗x) .∗ANN + x.∗(1−x) . ∗d_ANN;
63 d_phi_t_du = (1−2∗xmatr) .∗ANN_du + xmatr .∗(1− xmatr) .∗d_ANN_du;
64 d_phi_t_dw = (1−2∗xmatr) .∗ANN_dw + xmatr .∗(1− xmatr) .∗d_ANN_dw;
65 d_phi_t_db = (1−2∗x) .∗ANN_db + x .∗(1−x) . ∗d_ANN_db ;
66 d_phi_t_dv = (1−2∗xmatr) .∗ANN_dv + xmatr .∗(1− xmatr) .∗d_ANN_dv ;
67

68 % Cost funct ion and i t s d e r i v a t i v e s w. r . t . the weights (Eq . (2 6))
69 J J = 0 . 5∗KK. ∗ (E0 − d_phi_t) . ^ 2 ;
70

71 J J_du = −KK. ∗ (E0 − d_phi_t) . ∗ d_phi_t_du ;
72 JJ_dw = −KK. ∗ (E0 − d_phi_t) . ∗ d_phi_t_dw ;
73 J J_db = −KK. ∗ (E0 − d_phi_t) . ∗ d_phi_t_db ;
74 J J_dv = −KK. ∗ (E0 − d_phi_t) . ∗ d_phi_t_dv ;
75

76 g1 = [JJ_du ; JJ_dw ; J J_db ; J J_dv] ;
77

78 f = dx∗sum(J J) ;
79 g = dx∗sum(g1 , 2) ;
80

81 end

Math. Comput. Appl. 2019, 24, 40 21 of 28

Appendix B. Matlab Script for Piecewise-Defined One-Dimensional Example

1 % Evaluat ion points in area
2 dx = 0 . 0 1 ;
3 x = dx /2: dx:1−dx /2;
4

5 % Applied macroscopic load
6 E0 = 0 . 0 1 ;
7

8 % E l e c t r i c p e r m i t t i v i t y in laminate
9 KK = zeros (s i z e (x)) ;

10 KK(x > 1/2) = 2 . 0 ;
11 KK(x < 1/2) = 1 . 0 ;
12

13 % Number of hidden neurons
14 nn = 1 0 ;
15

16 % I n i t i a l i z e weights and b i a s e s
17 wb0 = rand (6∗nn +2 ,1) ∗ (E0/nn) ;
18

19 % Anonymous funct ion handle
20 f = @(wb) neuralapprox (wb,KK, E0 , x , dx , nn) ;
21

22 % Cal l unconstrained minimizer
23 opts = optimoptions (@fminunc , ’ Algorithm ’ , ’ quasi−newton ’ , . . .
24 ’ Spec i fyObjec t iveGradient ’ , true , ’ CheckGradients ’ , true , . . .
25 ’ F i n i t eD i f f e r en c eT yp e ’ , ’ c e n t r a l ’ , ’ MaxI terat ions ’ , 5 0 0 0) ;
26 [wb, f] = fminunc (f , wb0 , opts)
27

28 func t ion [f , g] = neuralapprox (wb,KK, E0 , xx , dx , nn)
29 %%% Cost funct ion f o r i n t e r v a l [0 , 0 . 5]
30

31 % Restore weights and b i a s e s f o r f i r s t ANN
32 u = wb(1 : nn) ;
33 w = wb(nn+1:2∗nn) ;
34 b = wb(2∗nn+1) ;
35 v = wb(2∗nn+2:3∗nn+1) ;
36

37 % Quadrature points f o r i n t e g r a t i o n
38 x = xx (1 : f l o o r (s i z e (xx , 2) /2)) ;
39 K = KK(1 : f l o o r (s i z e (KK, 2) /2)) ;
40

41 % Neural network response f o r 1 s t feedforward net (FFN) (Eq . (1 3))
42 z = w∗x + u ;
43 sigmoid = (1 + exp(−z)) .^(−1) ;
44 ANN = sum(v . ∗ sigmoid) + b ;
45

46 % S p a t i a l d e r i v a t i v e response f o r 1 s t feedforward net (Eq . (1 4))
47 d_sigmoid = sigmoid . ∗ (1 − sigmoid) ;
48 d_ANN = sum(v .∗w.∗ d_sigmoid) ;

Math. Comput. Appl. 2019, 24, 40 22 of 28

49

50 % Derivat ive of 1 s t FFN and dFFN/dx w. r . t . i t s weights (Eq . (1 5))
51 d2_sigmoid = sigmoid . ∗ (1 − sigmoid) .^2 − sigmoid . ^ 2 . ∗ (1 − sigmoid) ;
52

53 xmatr = x .∗ ones (s i z e (z)) ;
54

55 ANN_du = v . ∗ d_sigmoid ;
56 ANN_dw = v . ∗ d_sigmoid . ∗ xmatr ;
57 ANN_db = ones (s i z e (x)) ;
58 ANN_dv = sigmoid ;
59

60 d_ANN_du = v .∗w. ∗ d2_sigmoid ;
61 d_ANN_dw = v . ∗ d_sigmoid + v . ∗w. ∗ d2_sigmoid .∗ xmatr ;
62 d_ANN_db = zeros (s i z e (x)) ;
63 d_ANN_dv = w.∗ d_sigmoid ;
64

65 % FFN and d e r i v a t i v e s evaluated at the d i s c o n t i n u i t y (Eq . (2 8) &(15))
66 z_disc = w∗0 . 5 + u ;
67

68 sigmoid_disc = (1 + exp(−z_disc)) .^(−1) ;
69 d_sigmoid_disc = sigmoid_disc . ∗ (1 − sigmoid_disc) ;
70

71 ANN_disc = sum(v . ∗ sigmoid_disc) + b ;
72 ANN_disc_du = v . ∗ d_sigmoid_disc ;
73 ANN_disc_dw = v .∗ d_sigmoid_disc ∗ 0 . 5 ;
74 ANN_disc_db = 1 . 0 ;
75 ANN_disc_dv = sigmoid_disc ;
76

77 % D e r i v a t i v e s of the t r i a l funct ion phi = x∗N_1 (Eq . (2 8) &(15))
78 p h i _ t _ d i s c = 0 . 5 . ∗ANN_disc ;
79 d_phi_t_disc_du = ANN_disc_du ;
80 d_phi_t_disc_dw = ANN_disc_dw ;
81 d_phi_t_disc_db = ANN_disc_db ;
82 d_phi_t_disc_dv = ANN_disc_dv ;
83

84 d_phi_t = ANN + x .∗d_ANN;
85

86 d_phi_t_du = ANN_du + xmatr .∗d_ANN_du;
87 d_phi_t_dw = ANN_dw + xmatr .∗d_ANN_dw;
88 d_phi_t_db = ANN_db + x . ∗d_ANN_db ;
89 d_phi_t_dv = ANN_dv + xmatr . ∗d_ANN_dv ;
90

91 % Cost funct ion and i t s d e r i v a t i v e s w. r . t . the weights (Eq . (3 0))
92 J J = 0 . 5∗K. ∗ (E0 − d_phi_t) . ^ 2 ;
93

94 J J_du = −K. ∗ (E0 − d_phi_t) . ∗ d_phi_t_du ;
95 JJ_dw = −K. ∗ (E0 − d_phi_t) . ∗ d_phi_t_dw ;
96 J J_db = −K. ∗ (E0 − d_phi_t) . ∗ d_phi_t_db ;
97 J J_dv = −K. ∗ (E0 − d_phi_t) . ∗ d_phi_t_dv ;
98

Math. Comput. Appl. 2019, 24, 40 23 of 28

99 g1 = [JJ_du ; JJ_dw ; J J_db ; J J_dv] ;
100

101 f = dx∗sum(J J) ;
102 g = dx∗sum(g1 , 2) ;
103

104 %%% Cost funct ion f o r i n t e r v a l [0 . 5 , 1 . 0]
105

106 % Restore weights and b i a s e s f o r second ANN
107 u = wb(3∗nn+2:4∗nn+1) ;
108 w = wb(4∗nn+2:5∗nn+1) ;
109 b = wb(5∗nn+2) ;
110 v = wb(5∗nn+3:6∗nn+2) ;
111

112 % Quadrature points f o r i n t e g r a t i o n
113 x = xx (f l o o r (s i z e (xx , 2) /2) +1: end) ;
114 K = KK(f l o o r (s i z e (KK, 2) /2) +1: end) ;
115

116 % Neural network response f o r 2nd feedforward net (FFN) (Eq . (1 3))
117 z = w∗x + u ;
118 sigmoid = (1 + exp(−z)) .^(−1) ;
119 ANN = sum(v . ∗ sigmoid) + b ;
120

121 % S p a t i a l d e r i v a t i v e response f o r 2nd feedforward net (Eq . (1 4))
122 d_sigmoid = sigmoid . ∗ (1 − sigmoid) ;
123 d_ANN = sum(v .∗w. ∗ d_sigmoid) ;
124

125 % Derivat ive of end FFN and dFFN/dx w. r . t . i t s weights (Eq . (2 8) &(15))
126 d2_sigmoid = sigmoid . ∗ (1 − sigmoid) .^2 − sigmoid . ^ 2 . ∗ (1 − sigmoid) ;
127

128 xmatr = x .∗ ones (s i z e (z)) ;
129

130 ANN_du = v . ∗ d_sigmoid ;
131 ANN_dw = v . ∗ d_sigmoid . ∗ xmatr ;
132 ANN_db = ones (s i z e (x)) ;
133 ANN_dv = sigmoid ;
134

135 d_ANN_du = v .∗w. ∗ d2_sigmoid ;
136 d_ANN_dw = v . ∗ d_sigmoid + v . ∗w. ∗ d2_sigmoid .∗ xmatr ;
137 d_ANN_db = zeros (s i z e (x)) ;
138 d_ANN_dv = w.∗ d_sigmoid ;
139

140 % D e r i v a t i v e s of the t r i a l funct ion
141 % phi = (0.5−x) ∗(1−x) ∗N_2 + 2∗(1−x) ∗phi (0 . 5) (Eq . (2 8) &(15))
142 d_phi_t = (2∗x−1.5) . ∗ANN + (0.5−x) .∗(1−x) .∗d_ANN − 2∗ p h i _ t _ d i s c ;
143

144 d_phi_t_du = (2∗ xmatr−1.5) . ∗ANN_du + (0.5− xmatr) .∗(1− xmatr) .∗d_ANN_du;
145 d_phi_t_dw = (2∗ xmatr−1.5) . ∗ANN_dw + (0.5− xmatr) .∗(1− xmatr) .∗d_ANN_dw;
146 d_phi_t_db = (2∗x−1.5) . ∗ANN_db + (0.5−x) .∗(1−x) .∗d_ANN_db ;
147 d_phi_t_dv = (2∗ xmatr−1.5) . ∗ANN_dv + (0.5− xmatr) .∗(1− xmatr) .∗d_ANN_dv ;
148

Math. Comput. Appl. 2019, 24, 40 24 of 28

149 % Cost funct ion and i t s d e r i v a t i v e s w. r . t . the weights (Eq . (3 0))
150 J J = 0 . 5∗K. ∗ (E0 − d_phi_t) . ^ 2 ;
151

152 J J_du = −K. ∗ (E0 − d_phi_t) . ∗ d_phi_t_du ;
153 JJ_dw = −K. ∗ (E0 − d_phi_t) . ∗ d_phi_t_dw ;
154 J J_db = −K. ∗ (E0 − d_phi_t) . ∗ d_phi_t_db ;
155 J J_dv = −K. ∗ (E0 − d_phi_t) . ∗ d_phi_t_dv ;
156

157 J J_d isc_du = −K. ∗ (E0 − d_phi_t) . ∗ d_phi_t_disc_du ;
158 J J_disc_dw = −K. ∗ (E0 − d_phi_t) . ∗ d_phi_t_disc_dw ;
159 J J _ d i s c _ d b = −K. ∗ (E0 − d_phi_t) . ∗ d_phi_t_disc_db ;
160 J J _ d i s c _ d v = −K. ∗ (E0 − d_phi_t) . ∗ d_phi_t_disc_dv ;
161

162 g0 = [J J_d isc_du ; JJ_disc_dw ; J J _ d i s c _ d b ; J J _ d i s c _ d v] ;
163 g1 = [JJ_du ; JJ_dw ; J J_db ; J J_dv] ;
164

165 f = f + dx∗sum(J J) ;
166 g = g − dx∗sum(g0 , 2) ;
167 g = [g ; dx∗sum(g1 , 2)] ;
168 end

Appendix C. Two-Dimensional Trial Function and Derivatives

Recalling Section 4.2, we have the trial function in the matrix and the inclusion defined as

φ̃t =

x1(1− x1)x2(1− x2)N1(x, p1) + x1(1− x1)Nx1(x1, px1

)
r ≥ r0

+x2(1− x2)Nx2(x2, px2
)

φ̃t(r0, ϕ) + (r0 − r)N2(r, p1) r < r0

, (A1)

where the coordinate transformation between Cartesian and polar coordinates is performed as

x1 = 0.5 + r cosϕ and x2 = 0.5 + r sinϕ. (A2)

The negative gradient of the trial function in the matrix (r ≥ r0) in Cartesian coordinates then
appears as

Ẽt = −∇φ̃t =−
[

(1− 2x1)x2(1− x2)N1 + x1(1− x1)x2(1− x2)
∂N1
∂x1

(1− 2x2)x1(1− x1)N1 + x1(1− x1)x2(1− x2)
∂N1
∂x2

]

−

 (1− 2x1)Nx1 + x1(1− x1)
∂Nx1
∂x1

(1− 2x2)Nx2 + x2(1− x2)
∂Nx2
∂x2

 .

(A3)

The gradient of the trial function in the inclusion (r < r0) in polar coordinates can be computed
through

Ẽt = −∇r φ̃t = −JT
0 ·

 ∂φ̃t
∂x1
∂φ̃t
∂x2

r0,ϕ

−
[
−N2 + (r0 − r) ∂N2

∂r
r0−r

r
∂N2
∂ϕ

]
, (A4)

Math. Comput. Appl. 2019, 24, 40 25 of 28

where the derivatives with respect to x1 and x2 are evaluated at x1(r0, ϕ) and x2(r0, ϕ). The Jacobian
for a radius of r0 takes the form

J0 =

[
0 − r0

r sinϕ

0 r0
r cosϕ

]
. (A5)

The integration of the global potential in Equation (41) is then piecewise carried out

Π(p) =
∫
Bmatr

1
2

κ1Et · Et dx dy +
∫
Bincl

1
2

κ2Et · Et r dr dϕ, (A6)

where the integration for the matrix is carried out in Cartesian coordinates and the integration for the
inclusion is carried out in polar coordinates.

Appendix D. Three-Dimensional Trial Function and Derivatives

Recalling Section 4.3, the piecewise-defined trial function is constructed as

φ̃t
∗
=

A1 N1(x, p1) + A2 Nx12(x1, x2, px12
) + A3 Nx13(x1, x3, px13

)

r ≥ r0+A4 Nx23(x2, x3, px23
) + A5 Nx1(x1, px1

) + A6 Nx2(x2, px2
)

+A7 Nx3(x3, px3
)

φ̃t(r0, ϕ, θ) + A8 N2(r, p2) r < r0

, (A7)

where the factors

A1 = x1(1− x1)x2(1− x2)x3(1− x3), A5 = x1(1− x1),

A2 = x1(1− x1)x2(1− x2), A6 = x2(1− x2),

A3 = x1(1− x1)x3(1− x3), A7 = x3(1− x3),

A4 = x2(1− x2)x3(1− x3). A8 = r− r0

(A8)

ensure the satisfaction of the boundary conditions. As the matrix material (r ≥ r0) is described in
Cartesian coordinates, the gradient can be straightforward computed as

Ẽ
∗
t = −∇φ̃t =−

∂A1
∂x1

N1 + A1
∂N1
∂x1

∂A1
∂x2

N1 + A1
∂N1
∂x2

∂A1
∂x3

N1 + A1
∂N1
∂x3

−

∂A2
∂x1

Nx12 + A2
∂Nx12

∂x1
∂A2
∂x2

Nx12 + A2
∂Nx12

∂x2

0

−

∂A3
∂x1

Nx13 + A3
∂Nx13

∂x1

0
∂A3
∂x3

Nx13 + A3
∂Nx13

∂x3

−

0

∂A4
∂x2

Nx23 + A4
∂Nx23

∂x2
∂A4
∂x3

Nx23 + A4
∂Nx23

∂x3

−

∂A5
∂x1

Nx1 + A5
∂Nx1
∂x1

∂A6
∂x2

Nx2 + A6
∂Nx2
∂x2

∂A7
∂x3

Nx3 + A7
∂Nx3
∂x3

 ,

(A9)

Math. Comput. Appl. 2019, 24, 40 26 of 28

where the derivatives of the factors Ai take the form

∂A1

∂x1
= (1− 2x1)x2(1− x2)x3(1− x3),

∂A1

∂x2
= (1− 2x2)x1(1− x1)x3(1− x3),

∂A1

∂x3
= (1− 2x3)x1(1− x1)x2(1− x2),

∂A2

∂x1
= (1− 2x1)x2(1− x2),

∂A2

∂x2
= (1− 2x2)x1(1− x1),

∂A3

∂x1
= (1− 2x1)x3(1− x3),

∂A3

∂x3
= (1− 2x3)x1(1− x1),

∂A4

∂x2
= (1− 2x2)x3(1− x3),

∂A4

∂x3
= (1− 2x3)x2(1− x2),

∂A5

∂x1
= (1− 2x1),

∂A6

∂x2
= (1− 2x2),

∂A7

∂x3
= (1− 2x3).

(A10)

As for the inclusion, the transformation between the spherical coordinates r = (r, ϕ, θ) and the
Cartesian coordinates x = (x1, x2, x3) is given as

x1 = 0.5 + r sinϕ cosθ, x2 = 0.5 + r sinϕ sinθ and x3 = r cosϕ. (A11)

One could now either directly substitute the latter transformation into the trial function in
Equation (A7) and take the derivatives with respect to r. Alternatively, the Jacobian for the matrix can
be computed as

J0 =

 0 r0
r cosϕcosθ − r0

r sinθ

0 r0
r cosϕsinθ r0

r cosθ

0 − r0
r sinϕ 0

 , (A12)

which allows for the computation of the gradient of φ∗t in spherical coordinates through

Ẽt = −∇r φ̃t = −JT
0 ·

∂φ̃t
∂x1
∂φ̃t
∂x2
∂φ̃t
∂x3

r0,ϕ,θ

−

∂A8
∂r N2 + A8

∂N2
∂r

A8
r

∂N2
∂ϕ

A8
rsinϕ

∂N2
∂θ

 . (A13)

Here, the partial derivative is simply ∂A8/∂r = −1. The integration of the global potential in
Equation (41) is then piecewise carried out

Π(p) =
∫
Bmatr

1
2

κ1Et · Et dx1 dx2 dx3 +
∫
Bincl

1
2

κ2Et · Et r2sinϕ dr dϕ dθ, (A14)

where one has to appropriately add the constant macroscopic loads to the fluctuations in Equations (A9)
and (A13) in Cartesian and polar coordinates.

References

1. Hebb, D.O. The Organization of Behavior; John Wiley & Sons: New York, NY, USA, 1949.
2. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys.

1943, 5, 115–133. [CrossRef]
3. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.

In Advances in Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q.,
Eds.; Curran Associates, Inc.: New York, NY, USA, 2012; pp. 1097–1105.

http://dx.doi.org/10.1007/BF02478259

Math. Comput. Appl. 2019, 24, 40 27 of 28

4. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

5. Denning, D.E. An intrusion-detection model. IEEE Trans. Softw. Eng. 1987, 2, 222–232. [CrossRef]
6. Steinwart, I.; Christmann, A. Support Vector Machines; Springer Science & Business Media: Cham,

Switzerland, 2008.
7. Raissi, M.; Yazdani, A.; Karniadakis, G.E. Hidden fluid mechanics: A Navier–Stokes informed deep learning

framework for assimilating flow visualization data. Available online: http://arxiv.org/abs/1808.04327
(accessed on 12 April 2019).

8. Ghaboussi, J.; Garrett, J.H.; Wu, X. Knowledge-based modeling of material behavior with neural networks.
J. Eng. Mech. 1991, 117, 132–153. [CrossRef]

9. Huber, N.; Tsakmakis, C. A neural network tool for identifying the material parameters of a finite deformation
viscoplasticity model with static recovery. Comput. Methods Appl. Mech. Eng. 2001, 191, 353–384. [CrossRef]

10. Le, B.; Yvonnet, J.; He, Q.-C. Computational homogenization of nonlinear elastic materials using neural
networks. Int. J. Numer. Methods Eng. 2015, 104, 1061–1084. [CrossRef]

11. Bessa, M.; Bostanabad, R.; Liu, Z.; Hu, A.; Apley, D.W.; Brinson, C.; Chen, W.; Liu, W. A framework for
data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Comput. Methods
Appl. Mech. Eng. 2017, 320, 633–667. [CrossRef]

12. Liu, Z.; Bessa, M.; Liu, W.K. Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic
heterogeneous materials. Comput. Methods Appl. Mech. Eng. 2016, 306, 319–341. [CrossRef]

13. Voigt, W. Theoretische Studien über die Elastizitastsverhältnisse der Cristalle; Königliche Gesellschaft der
Wissenschaften zu Göttingen: Göttingen, Germany, 1887.

14. Reuss, A. Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für
einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik 1929, 9, 49–58. [CrossRef]

15. Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. 1952, 65, 349. [CrossRef]
16. Hashin, Z.; Shtrikman, S. A variational approach to the theory of the elastic behaviour of multiphase

materials. J. Mech. Phys. Solids 1963, 11, 127–140. [CrossRef]
17. Willis, J. Bounds and self-consistent estimates for the overall properties of anisotropic composites. J. Mech.

Phys. Solids 1977, 25, 185–202. [CrossRef]
18. Budiansky, B. On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids 1965, 13, 223–227.

[CrossRef]
19. Hill, R. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 1965, 13, 213–222. [CrossRef]
20. Mori, T.; Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions.

Acta Mech. 1973, 21, 571–574. [CrossRef]
21. Miehe, C.; Schröder, J.; Schotte, J. Computational homogenization analysis in finite plasticity. Simulation

of texture development in polycrystalline materials. Comput. Methods Appl. Mech. Eng. 1999, 171, 387–418.
[CrossRef]

22. Schröder, J. A numerical two-scale homogenization scheme: The FE2–method. In Plasticity and Beyond;
Schröder, J., Hackl, K., Eds.; Springer: Cham, Switzerland, 2014; pp. 1–64.

23. Moulinec, H.; Suquet, P. A fast numerical method for computing the linear and nonlinear mechanical
properties of composites. Académie des Sciences 1994, 2, 1417–1423.

24. Zeman, J.; Vondřejc, J.; Novak, J.; Marek, I. Accelerating a fft-based solver for numerical homogenization of
periodic media by conjugate gradients. J. Comput. Phys. 2010, 229, 8065–8071. [CrossRef]

25. Fritzen, F.; Leuschner, M. Reduced basis hybrid computational homogenization based on a mixed incremental
formulation. Comput. Methods Appl. Mech. Eng. 2013, 260, 143–154. [CrossRef]

26. Ryckelynck, D. A priori hyperreduction method: An adaptive approach. J. Comput. Phys. 2005, 202, 346–366.
[CrossRef]

27. Lagaris, I.E.; Likas, A.; Fotiadis, D.I. Artificial neural networks for solving ordinary and partial differential
equations. IEEE Trans. Neural Netw. 1998, 9, 987–1000. [CrossRef] [PubMed]

28. Hill, R. Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 1963, 11,
357–372. [CrossRef]

29. Jackson, J.D. Classical Electrodynamics; Wiley: Hoboken, NJ, USA, 1999.
30. Bensoussan, A.; Lions, J.-L.; Papanicolaou, G. Asymptotic Analysis for Periodic Structures;

American Mathematical Society: Providence, RI, USA, 2011; Volume 374.

http://dx.doi.org/10.1109/TSE.1987.232894
http://arxiv.org/abs/1808.04327
http://dx.doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132)
http://dx.doi.org/10.1016/S0045-7825(01)00278-X
http://dx.doi.org/10.1002/nme.4953
http://dx.doi.org/10.1016/j.cma.2017.03.037
http://dx.doi.org/10.1016/j.cma.2016.04.004
http://dx.doi.org/10.1002/zamm.19290090104
http://dx.doi.org/10.1088/0370-1298/65/5/307
http://dx.doi.org/10.1016/0022-5096(63)90060-7
http://dx.doi.org/10.1016/0022-5096(77)90022-9
http://dx.doi.org/10.1016/0022-5096(65)90011-6
http://dx.doi.org/10.1016/0022-5096(65)90010-4
http://dx.doi.org/10.1016/0001-6160(73)90064-3
http://dx.doi.org/10.1016/S0045-7825(98)00218-7
http://dx.doi.org/10.1016/j.jcp.2010.07.010
http://dx.doi.org/10.1016/j.cma.2013.03.007
http://dx.doi.org/10.1016/j.jcp.2004.07.015
http://dx.doi.org/10.1109/72.712178
http://www.ncbi.nlm.nih.gov/pubmed/18255782
http://dx.doi.org/10.1016/0022-5096(63)90036-X

Math. Comput. Appl. 2019, 24, 40 28 of 28

31. Nemat-Nasser, S.; Lori, M.; Datta, S. Micromechanics: Overall properties of heterogeneous materials.
J. Appl. Mech. 1996, 63, 561. [CrossRef]

32. Terada, K.; Hori, M.; Kyoya, T.; Kikuchi, N. Simulation of the multi-scale convergence in computational
homogenization approaches. Int. J. Solids Struct. 2000, 37, 2285–2311. [CrossRef]

33. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
34. MATLAB R2017b (Version 9.3.0). The MathWorks Inc.: Natick, MA, USA, 2017. Available online: https:

//www.mathworks.com/products/matlab.html (accessed on 12 April 2019).
35. Rumelhart, D.E.; McClelland, J.L. Parallel Distributed Processing: Explorations in the Microstructure of Cognition,

Volume 1: Foundations; MIT Press: Cambridge, MA, USA, 1986.
36. Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. A limited memory algorithm for bound constrained optimization.

SIAM J. Sci. Comput. 1995, 16, 1190–1208. [CrossRef]
37. Zhu, C.; Byrd, R.H.; Lu, P.; Nocedal, J. Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale

bound-constrained optimization. ACM Trans. Math. Softw. 1997, 23, 550–560. [CrossRef]
38. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.

In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia,
Italy, 13–15 May 2010; pp. 249–256.

39. Gelebart, L.; Mondon-Cancel, R. Non-linear extension of fft-based methods accelerated by conjugate
gradients to evaluate the mechanical behavior of composite materials. Comput. Mat. Sci. 2013, 77, 430–439.
[CrossRef]

40. Göküzüm, F.S.; Keip, M.-A. An algorithmically consistent macroscopic tangent operator for FFT-based
computational homogenization. Int. J. Numer. Methods Eng. 2018, 113, 581–600. [CrossRef]

41. Göküzüm, F.S.; Nguyen, L.T.K.; Keip, M.A. A multiscale fe-fft framework for electro-active materials at finite
strains. Comput. Mech. 2019, 1–22. [CrossRef]

42. Kabel, M.; Böhlke, T.; Schneider, M. Efficient fixed point and newton-krylov solvers for fft-based
homogenization of elasticity at large deformations. Comput. Mech. 2014, 54, 1497–1514. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1115/1.2788912
http://dx.doi.org/10.1016/S0020-7683(98)00341-2
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1145/279232.279236
http://dx.doi.org/10.1016/j.commatsci.2013.04.046
http://dx.doi.org/10.1002/nme.5627
http://dx.doi.org/10.1007/s00466-018-1657-7
http://dx.doi.org/10.1007/s00466-014-1071-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Homogenization Framework
	Energy Formulation for Electrostatic Problems
	Microscopic Boundary Value Problem

	Artificial Neural Network Based Solution Scheme
	Optimization Principle
	Single Layer Perceptron (SLP)
	Multilayer Perceptron (MLP)

	Numerical Examples
	One-Dimensional Example
	Global Neural Net Approach on Equidistant Grid
	Piecewise-defined Neural Net Approach on Equidistant Grid

	Two-Dimensional Example
	Global Neural Net Approach on Equidistant Grid
	Piecewise-Defined Neural Net Approach

	Three-Dimensional Example

	Conclusions
	Matlab Script for Global One-Dimensional Example
	Matlab Script for Piecewise-Defined One-Dimensional Example
	Two-Dimensional Trial Function and Derivatives
	Three-Dimensional Trial Function and Derivatives
	References

