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Abstract: In this study, we investigate the existence of chaos in global cryptocurrency market. 
Specifically, we analyze parameters of chaotic order, nonlinearity, sensitivity to the initial 
conditions, monofractality, and multifractality. For this purpose, we conduct a comprehensive series 
of tests, including Brock–Dechert–Scheinkman (BDS) test, largest Lyapunov exponent, box-
counting, and monogram analysis for fractal dimension, and multiple tests for long-range 
dependence (Aggregated Variances, Peng, Higuchi, R/S Analysis, and Multifractal Detrended 
Fluctuation Analysis (MFDFA)). All tests are performed over a variety of major cryptocurrencies: 
Bitcoin, Litecoin, Ethereum, and Ripple. The empirical results support the existence of chaos in 
cryptocurrency market. Accordingly, cryptocurrency returns are not random and follow a chaotic 
order. Therefore, long term predictions are not possible, contrary to most of the discussions ongoing 
in the media and the public. 
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1. Introduction 

Chaos theory is the science of surprises. Informally, it teaches us to expect the unexpected and 
can be highly effective in modeling the behavior of virtually unpredictable complex nonlinear 
systems. Chaos theory, having numerous introductive resources, such as Alligood et al. [1] and 
Strogatz [2], has found applications in physics, biology, chemistry, and engineering. Among the 
practically infinite and ever-increasing examples, some are weather patterns [3], biological systems 
[4], food chains [5], crude oil markets [6], and brain states [7]. In terms of the variety of fields of study, 
the cases where chaos is present are extensive, and this renders chaos applicable to broad and 
interdisciplinary areas of study. Chaos theory may help us understand how our ecosystems, social 
systems, and economic systems work, and as such, it naturally paves its way to applications in 
economics and finance. A fundamental question for a particular system is whether chaos theory 
applies or not; if yes, to what extent does it apply? In this study, we attempt to examine the chaotic 
behavior of a relatively new financial product: cryptocurrencies. The main motivation of the study is 
to seek whether chaotic features are present in cryptocurrency market in the context of predictability. 
As this market has had considerable investor attention in recent years, there is an intense discussion 
regarding its future. However, rather than telling the cryptocurrency market’s fortune, scientific 
evidence is required to determine if there is a foreseeable path in this market. We believe that 
statistical evidence can pave the way for a better investor mindset in these instruments and 
predictions in market trends. 

Since the inception of cryptocurrencies, their main criticism has been the absence of an 
underlying theoretical background and their wild volatility. As of 2017, the spike in the 
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cryptocurrency market raised the attention of the media and the public. However, putting the 
marketing of the issuers and possibly optimistic investors aside, there is no evidence in the literature 
to justify this soaring. The common sense is ‘this market is very risky’, ‘the mechanism is way too 
complicated’, and the lack of theoretical clarification has escalated the perspectives of everyday 
citizens. Bitcoin and cryptocurrencies, in general, seem to be uncorrelated with global stock market 
trends, monetary policy decisions, such as Federal Reserve policies, and the major events in the 
world, and the average individual keeps their distance due to common sentiment that “bitcoin is 
baseless” or that “it does not rely on anything”. Even amongst investors, the psychology is two-sided 
and ranges between the two extremes of “bitcoin is going to take over the world tomorrow” and “it 
is worth nothing”. Cheah and Fry [8] put forward the psychological, bubble-oriented behavior in 
bitcoin markets via a critical approach. As observed by Glaser et al. [9], for the current state of the 
market, it can be argued that users are primarily interested in investment and the holding value of 
bitcoin, rather than using it as an alternative monetary transaction system. On the other hand, a report 
of multinational investment company Morgan–Stanley [10] stated that Bitcoin and altcoins constitute 
a new institutional investment class, and have already attracted some retail venture. Even under the 
assumption of an innovative asset price behavior, the idiosyncratic nature of bitcoin involves many 
uncertainties and legislative question marks as it typically resides in a legal grey zone in most 
countries. 

Apart from the above, statistically speaking, there may be some order in the behavior of this 
market. According to chaos theory, apparently random processes might have a hidden order, as 
chaotic dynamics are generated from nonlinear deterministic systems. Therefore, the process in 
which the price formation is determined might have chaotic characteristics, provided that certain 
features of chaos theory are held. As stated by Kortian [11], along with the supply and demand, many 
other parameters, such as self-fulfilling expectations, mass psychology, herd behavior, and 
manipulations, take a role in the determination of asset prices. The combination of these factors 
creates a market equilibrium price for any asset. However, the price formed does not guarantee 
fairness of value unless the market is fully efficient. In a market which is inefficient, the formed price 
might create opportunities due to undervaluing or overvaluing of the asset. The efficient market 
hypothesis assumes that the price innovations are fully random and unpredictable. This randomness 
requires the rejection of the existence of chaos in the market, and any departures from randomness 
can be considered/evaluated as a sign of chaos. From this point of view, this study attempts to seek 
chaotic price evidence in the cryptocurrency market, being tempted by the idea of investors that this 
market has opaque complexity. Although a few studies have examined the presence of chaos in the 
cryptocurrency market, to the best of our knowledge, these studies are often quite limited in their 
methodologies for investigating the characteristics of chaos. While chaotic dynamics require testing 
of multiple aspects of asset prices, from the self-similarity to sensitivity to the initial conditions, 
existing studies usually employ single-sided methodologies representing one aspect only. 

2. Literature Review 

Having been proposed under a pseudonymous name [12], and being the first of its kind, bitcoin 
has led the way for a variety of cryptocurrencies, which are considered as a nontraditional asset class. 
Due to its notorious price increase since its inception, bitcoin has arguably been the most successful 
currency in terms of demand so far, and without doubt, a highly controversial one. In parallel to the 
public interest in media and social media platforms and enthusiasm among investors, studies related 
to different divisions of cryptocurrencies are growing exponentially. There is a wide range of studies 
regarding anonymity, protocol proposals, security, transaction costs, scalability, energy 
consumption, and legislation related to cryptocurrencies, whereas our focus is on the financial and 
statistical aspects. Unlike centralized banking networks, the transaction capabilities of blockchain-
based networks are highly related to the underlying technology, the limitations of which are yet to 
appear as it is still under development. Various aspects, such as governance, are covered in [13]. A 
heavily debated topic is transaction costs, which have risen over time as indicated in a relatively early 
work [14]. However, the technology is still evolving. Although a highly decentralized structure such 
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as the core bitcoin network, per se, is not scalable, promising technologies such as the so-called 
“lightning network” emerge to overcome these problems, as described in [15], and have already been 
deployed and in practical use as of 2018. This solution, allowing transactions to not rely on miners, 
also has the potential to decrease the highly criticized redundant energy consumption of bitcoin 
miners at the cost of centralization of transaction entities. Nevertheless, the native scalability 
shortcoming of bitcoin is also one of the reasons that has led academics to develop alternative 
protocol proposals, such as in [16]. Another aspect is anonymity, which has been studied extensively 
by Reid and Harrigan [17]. Another is security; a recent study involved devising an algorithm that 
can track tokens that are stolen from exchanges [18]. We will briefly discuss the blockchain 
mechanism and the academic interest on it, as without some basic understanding, from a purely 
financial perspective, one cannot really comprehend cryptocurrencies. Indeed, the underlying 
blockchain technology of bitcoin, although having been most notably utilized for tokenizing digital 
assets, has the capability of acting as a trusted third party, enabling a large number of applications 
other than cryptocurrencies, as discussed in Underwood [19]. Among the numerous fields that 
employ blockchain, one can discuss its usage for digital identity management and protecting personal 
data with the additional benefit of auditability, as studied by Zyskind and Nathan [20] and how it 
may be used to construct e-voting mechanisms as in [21]. Reyna et al. [22], in particular, discuss how 
blockchain can be integrated into the internet of things. Furthermore, blockchain, along with RFID 
technologies, are frequently discussed to restructure supply chain traceability systems, as argued by 
Tian [23]. In addition, a major discussion is that blockchain may have significant applications in 
banking and have potential financial implications as discussed in [24,25]. Studies investigating the 
relationship of cryptocurrencies and other economic or financial variables are also extensive in the 
literature. Gandal et al. [26] studied bitcoin price manipulation. Viglione [27] argues that relative 
bitcoin price within a country is inversely correlated with the economic freedom therein. The 
speculative aspect of bitcoin is studied by Bouoiyour and Selmi [28] and in [29], along with the 
relationship between the supply–demand fundamentals and its price. Dyhrberg [30] classifies bitcoin 
as somewhere in between gold and the US dollar, while identifying its attributes as a medium of 
exchange versus a store of value. A related work by Katsiampa [31] estimates the volatility of bitcoin 
via a comparison of GARCH models. Brauneis and Mestel [32] argue that cryptocurrencies become 
less predictable/inefficient as liquidity increases. 

The current literature on the cryptocurrency market is quite limited in the context of nonlinear 
behaviors of these instruments. The recent studies which discuss the chaotic dynamics of 
cryptocurrencies can be summarized as follows: Takaishi [33] and Lahmiri and Bekiros [34] 
independently studied the multifractality properties of bitcoin. Urquhart [35] studied the market 
inefficiency of bitcoin via random walks, whereas Bariviera [36] revisited the same topic by using 
Hurst exponent. Bariviera et al. [37] further studied long-range dependence of bitcoin again by Hurst 
exponents. In a recent related study, Garnier et al. [38] observed orderly correlation in the bitcoin 
market. There are alternate views on Bitcoin regarding its chaoticity and its complexity. Santos [39] 
claims that bitcoin can neither be regarded as a complex system nor exhibits chaotic features. 
Pilkington [40] also studied bitcoin through the perspective of complexity theory. Al-Yahyae et al. 
[41] compared the multifractality properties of bitcoin compared to gold, stock, and global currency 
markets and their findings show that the bitcoin market is the most inefficient compared to others. 
In a similar study, Bouri et al. [42] also tested for nonlinear short-term and long-term relationships 
between bitcoin, aggregate commodity, and gold prices. Khuntia and Pattanayak [43] considered the 
adaptive market hypothesis and evolving return predictability in the bitcoin market. Khuntia and 
Pattanayak [44] also evaluated the adaptive pattern of long memory in the volatility of day-trading 
bitcoin returns while testing the impact of the trading volume on time-varying long memory. Jiang 
et al. [45] also studied time-varying long-term memory in the bitcoin market by considering Hurst 
exponents and found inefficiency. Jang and Lee [46] used a different and interesting approach in the 
prediction of bitcoin prices via Bayesian neural networks. Apart from the cryptocurrency-related 
studies in the literature, chaos and its features have already been examined with a great deal of 
interest. Following the seminal paper of Lorenz [47], many researchers have attempted to examine 
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chaos in different fields. Chaos was mathematically defined by Li and Yorke [48] by three properties: 
the dependence on the initial value of the system, boundedness, and nonperiodicity. Some relatively 
early work was performed by Brock [49], providing a rigorous mathematical introduction to the tests 
that help distinguish between random and deterministic systems. Related results are given in [50].  

In practice, the determination of chaos is conducted through different types of tests (Hurst 
exponent for self-similarity analysis, Lyapunov exponent, BDS tests, fractal dimension, etc.), such 
that each test measures the examined feature of chaos. For example, Grassberger and Procaccia [51] 
studied a variety of algorithms for describing attractors of a dynamic chaotic system. An attractor is 
said to be strange if it has a fractal structure. In this case, the system exhibits dependence on initial 
conditions. The study of Takens [52] is recognized as a reliable mathematical foundation for detecting 
attractors. Adeli et al. [53] use EEGs (electroencephalograms) and certain sub-bands through a 
wavelet-chaos methodology to detect seizure and epilepsy. Becks et al. [54] empirically demonstrated 
the existence of chaos in a biological predator–prey setting in bacterial species. Lee et al. [55], a study 
in aeronautical engineering, analyzed nonlinear aeroelastic analysis of airfoils. Gunay [56] examined 
chaos in the stock markets of BRIC countries and Turkey through various methods and stated that 
the evidence is too weak to accept the presence of chaos. Barkoulas et al. [57] searched for the 
existence of chaos in the Athens Stock Exchange, whereas Serletis et al. [58] claimed that there is no 
evidence of chaos, due to some dependence on the US stock market. Among other theoretical chaos 
work, Eissa et al. [59] studied a specific comparison within the boundaries of vibrations and dynamic 
chaos and Cai et al. [60] studied secure communication between two different chaotic systems. 
Needless to say, the use of Lyapunov exponents in the context of chaos has been studied in various 
other markets, such as in future markets, as in [61]. The BDS test, a powerful tool for detecting serial 
dependence in time series, was first devised by Brock [62]. The test was later modified by Brock et al. 
[62]. Brock [63] provided a recent related survey on analyzing causality, chaos, and prediction in 
economics and finance. While there are alternative methods for revealing nonlinearities in financial 
time series, the BDS test has gained widespread acceptance. McKenzie [64] applied the BDS test in 
the context of chaotic behavior in the national stock market indices. However, not being indicative of 
chaos, a large number of studies employ the test in a complementary fashion. Among them, Opong 
et al. [65] studied the behavior of certain UK equity markets employing Hurst exponents as well as 
the BDS test. Serletis and Gogas [66] studied chaos in East European black market exchange rates 
using the Lyapunov exponent estimator alongside the BDS test. The previously mentioned work of 
Barkoulas et al. [57] also employed the BDS test and a number of others. On the other hand, the fractal 
dimension, also utilized in the examination of chaotic features, was first studied by Mandelbrot [67] 
and algorithmic implementations were studied in [68]. Many resources, such as [69], were presented 
for financial chaos theory applications and fractal market analysis. Diego and Giampiero [70] applied 
fractal dimensions to earth sciences and specifically analyzed geochemically linked groups to reveal 
magmatic interaction. Tsonis and Elsner [71] applied the box-counting method as a measurement of 
fractal dimension to identify chaotic behavior in weather patterns. Among the financial studies, while 
Vassilicos et al. [72] provided yet another study in which no evidence of chaos was observed in the 
foreign exchange and the stock markets but the presence of multifractals was noticed. Lindsay and 
Campbell [73] applied the box-counting method to predict bankruptcies within a chaos theory 
approach. On the other hand, Sun et al. [74] studied the predictability of the Hang Seng stock index 
in Hong Kong via multifractal analysis and the box counting method. The study of Hurst exponents, 
also used in the determination of chaotic signals in asset prices, depends on the seminal study of 
Hurst [75] that was conducted to detect long memory in hydrologic time series. The method was 
made popular by Mandelbrot and Wallis [76], where rescaled range (R/S) analysis was studied. 
Mandelbrot [77] later interpreted this statistic for financial time series. A historically significant 
relevant study was due to [78]. For a survey displaying variations on Hurst exponent, see [79] and 
for theory and various applications of long-range dependence, see [80]. Even though predicting stock 
markets and futures markets is a challenging task, some studies have attempted to describe their 
behavior via chaos theory. Serletis and Rosenberg [81] and He and Chen [82] studied the Hurst 
exponent in energy futures prices and agricultural futures markets, respectively. Qian and Rasheed 
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[83] employed the Hurst exponent to show that not all periods of the stock markets were equally 
random. Another work applying the Hurst exponent was by Zunino et al. [84], who studied stock 
markets’ inefficiency. 

3. Methodology 

3.1. BDS Test  

The BDS test was originally designed by Brock et al. [49,62] in order to detect serial dependence 
in price data. The BDS test is essentially a statistic based on the correlation dimension of the residuals 
that result from the fitted linear autoregressive model. In other words, the inquiry is whether there 
is a simple linear dependence or certain daily seasonality in the data. Such dependence is meant to 
be filtered out before testing for nonlinearity. The BDS test indeed has strength against linear and 
nonlinear alternative tests that can be employed for the same purpose [85]. Given a time series, we 
first compute the “m-histories” of the series; that is, we embed the series into a set of m-dimensional 
vectors as follows: {𝑥𝑥𝑡𝑡𝑚𝑚} =  (𝑥𝑥𝑡𝑡 , 𝑥𝑥𝑡𝑡+𝜏𝜏, … , 𝑥𝑥𝑡𝑡+𝜏𝜏(𝑚𝑚−1)) , where 𝑡𝑡 = 1, … ,𝑇𝑇 −𝑚𝑚  is the time, 𝑚𝑚  is the 
embedding dimension, and 𝜏𝜏 is the delay. We then compute the correlation integral as follows 

𝐶𝐶𝑚𝑚(ε ) =
1

(𝑇𝑇 − 𝑚𝑚 + 1(𝑇𝑇 − 𝑚𝑚))
�𝐼𝐼ε(𝑥𝑥𝑡𝑡𝑚𝑚, 𝑥𝑥𝑠𝑠𝑚𝑚)  
∀𝑡𝑡,𝑠𝑠

  

where, 𝐼𝐼ε(𝑥𝑥𝑡𝑡𝑚𝑚, 𝑥𝑥𝑠𝑠𝑚𝑚)  is the indicator function, that is 𝐼𝐼ε  = 1  if || 𝑥𝑥𝑡𝑡𝑚𝑚 −  𝑥𝑥𝑠𝑠𝑚𝑚|| ≤ ε  (points are close 
enough) and is 0 otherwise. The BDS test is now stated as: 

𝐶𝐶𝑚𝑚,𝑇𝑇(ε) =
√𝑇𝑇[(𝐶𝐶𝑇𝑇(ε) − 𝐶𝐶1(ε)𝑚𝑚]

𝜎𝜎𝑚𝑚,𝜏𝜏(ε)
  

where 𝜎𝜎𝑚𝑚,𝜏𝜏(ε) = 4�𝐾𝐾𝑚𝑚 + 2�∑ 𝐾𝐾𝑚𝑚−𝑗𝑗𝐶𝐶(ε)2𝑗𝑗𝑚𝑚−1
𝑗𝑗=1 � + (𝑚𝑚 − 1)2𝐶𝐶(ε)2𝑚𝑚 − 𝑚𝑚2𝐾𝐾𝐶𝐶(ε)2𝑚𝑚−2�  and 𝐾𝐾(ε)  is 

computed by 𝐾𝐾(ε) = 6∑   𝑡𝑡,𝑠𝑠,𝑟𝑟 ℎε�𝑥𝑥𝑡𝑡
𝑚𝑚,𝑥𝑥𝑠𝑠𝑚𝑚,𝑥𝑥𝑟𝑟𝑚𝑚�

[𝑇𝑇𝑚𝑚(𝑇𝑇𝑚𝑚−1)(𝑇𝑇𝑚𝑚−2)]
 and ℎε(𝑥𝑥𝑡𝑡𝑚𝑚, 𝑥𝑥𝑠𝑠𝑚𝑚, 𝑥𝑥𝑟𝑟𝑚𝑚) = 1

3
 [ 𝐼𝐼ε(𝑖𝑖, 𝑗𝑗)𝐼𝐼ε(𝑗𝑗, 𝑘𝑘) + 𝐼𝐼ε(𝑖𝑖, 𝑘𝑘)𝐼𝐼ε(𝑘𝑘, 𝑗𝑗) +

𝐼𝐼ε(𝑗𝑗, 𝑖𝑖)𝐼𝐼ε(𝑖𝑖, 𝑘𝑘)]. 

3.2. Largest Lyapunov Exponent 

Sensitivity to the initial conditions can be measured by the largest Lyapunov exponent and 
positive values of this test statistic for time series produced by dynamical systems is postulated as a 
sign of chaos. Calculating the largest Lyapunov exponent from a given time series as in [86] is 
accurate, and robust to changes in quantities such as the embedding dimension, the size of data set, 
the noise level, and the reconstruction delay. One may use the method to calculate the correlation 
dimension. Hence, one sequence of computations helps simultaneous estimation of both the level of 
chaos and the system’s complexity. As we construct rows by {𝑋𝑋𝑖𝑖} = (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+𝐽𝐽, … , 𝑥𝑥𝑖𝑖+𝐽𝐽(𝑚𝑚−1)), 𝐽𝐽 being 
the delay and 𝑚𝑚 being the embedding dimension, each row being a vector, we obtain the 𝑀𝑀 × 𝑚𝑚 
trajectory matrix 𝑋𝑋  such that {𝑋𝑋} =  [𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑀𝑀]𝑇𝑇 . Letting 𝜆𝜆1 be the largest of the Lyapunov 
exponents 𝜆𝜆𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, and 𝑑𝑑(𝑡𝑡) = 𝐶𝐶𝑒𝑒𝜆𝜆1𝑡𝑡 be the average divergence at time 𝑡𝑡 where 𝐶𝐶 is a constant 
that normalizes the initial separation, we assume that the 𝑗𝑗𝑡𝑡ℎ pair of nearest neighbors diverge at the 
rate of the largest Lyapunov exponent, that is, 𝑑𝑑𝑗𝑗(𝑖𝑖)≈𝐶𝐶𝑗𝑗𝑒𝑒𝜆𝜆1(𝑖𝑖.Δ𝑡𝑡)  or ln𝑑𝑑𝑗𝑗(𝑖𝑖)≈ln𝐶𝐶𝑗𝑗 + 𝜆𝜆1(𝑖𝑖.Δ𝑡𝑡) . The 
largest Lyapunov exponent is obtained by using a least-squares fit to the “average” of these lines 
defined as 𝑦𝑦(𝑖𝑖) = 1

Δt
< ln𝑑𝑑𝑗𝑗(𝑖𝑖) > where < ⋯ > is the average over all values of 𝑗𝑗. 

3.3. Fractal Dimension: Box-Counting Method 

By following the definition of Gneiting et al. [87], let 𝑁𝑁(𝜖𝜖) be the number of boxes required at 
scale 𝜖𝜖 and let 𝑢𝑢 be the range of the data so that 𝑢𝑢 = max0≤𝑗𝑗≤𝑛𝑛 𝑋𝑋𝑗𝑗/𝑛𝑛 − min0≤𝑗𝑗≤𝑛𝑛 𝑋𝑋𝑗𝑗/𝑛𝑛. We assume a 
scale 𝜖𝜖𝑘𝑘 = 2𝑘𝑘−𝐾𝐾 where 𝑘𝑘 = 0,1, … ,𝐾𝐾. At the largest scale 𝜖𝜖𝑘𝑘 = 1, the graph can be covered by a box 
whose width is 1 and height is 𝑢𝑢, which is called the bounding box. It is observed that the bounding 
box can be tiled by 4𝐾𝐾−𝑘𝑘 boxes each with the height 𝑢𝑢2𝑘𝑘−𝐾𝐾 and the width 2𝑘𝑘−𝐾𝐾 . Among these, let 
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𝑁𝑁(𝜖𝜖𝑘𝑘) denote the number of such boxes which intersects with the linearly interpolated data graph. 
Then, the box estimator is 

𝐷𝐷�𝐵𝐵𝐵𝐵 = −��(𝑠𝑠𝑘𝑘 − �̅�𝑠) log𝑁𝑁(𝜖𝜖𝑘𝑘)
𝐾𝐾

𝑘𝑘=0

� ��(𝑠𝑠𝑘𝑘 − �̅�𝑠)2
𝐾𝐾

𝑘𝑘=0

�

−1

  

where 𝑠𝑠𝑘𝑘 = log 𝜖𝜖𝑘𝑘  and �̅�𝑠  is the mean of 𝑠𝑠0, 𝑠𝑠1, … , 𝑠𝑠𝐾𝐾 . We also employ generalized variation 
estimators again as in [87], 

𝐷𝐷�𝑉𝑉;𝑝𝑝 = 1 −
1
𝑝𝑝

log𝑉𝑉�𝑝𝑝 �
2
𝑛𝑛� − log𝑉𝑉�𝑝𝑝 �

1
𝑛𝑛�

log 2
,  

such that 

𝑉𝑉�𝑝𝑝(𝑙𝑙/𝑛𝑛) = −
1

2(𝑛𝑛 − 𝑙𝑙)
��𝑋𝑋𝑖𝑖/𝑛𝑛 − 𝑋𝑋(𝑖𝑖−𝑙𝑙)/𝑛𝑛�

𝑝𝑝 ,
𝐾𝐾

𝑘𝑘=0

  

where 𝑋𝑋 is the point set, 𝑛𝑛 is the sample size, 𝜖𝜖𝑙𝑙 = 𝑙𝑙/𝑛𝑛 is the scales used. When 𝑝𝑝 = 1, we obtain a 
madogram. 

3.4. Long-Memory (Long Range Dependence) 

3.4.1. Rescaled Range  

The original statistical approach of long memory, called rescaled range analysis (R/S range), was 
presented in [75] and is a simple and useful tool for analyzing the time series. We adopt the 
formulation as in [88], which can be described as the rescaled range statistic 𝑅𝑅𝑡𝑡

𝑠𝑠𝑡𝑡
 as follows: 

𝑅𝑅𝑡𝑡 =    max
0≤𝑗𝑗≤𝑇𝑇

 ���𝑦𝑦𝑗𝑗 − 𝑗𝑗𝑦𝑦��
𝑟𝑟

𝑗𝑗=1

� −  min
0≤𝑗𝑗≤𝑇𝑇

 ���𝑦𝑦𝑗𝑗 − 𝑗𝑗𝑦𝑦��
𝑟𝑟

𝑗𝑗=1

�.  

Here  𝑅𝑅  is the range,  𝑦𝑦�  is the sample mean and 𝑠𝑠𝑇𝑇  is the standard deviation where 𝑠𝑠𝑇𝑇 =

�1
𝑇𝑇
∑ (𝑦𝑦𝑡𝑡 − 𝑦𝑦�)2𝑟𝑟
𝑗𝑗=1 �

1
2. 

3.4.2. Modified DFA 

The Detrended Fluctuation Analysis (DFA) was originally due to [89]. We adopt the formulation 
as in [90]. Let us first describe DFA (without modification) as below. Given (𝑖𝑖), 𝑖𝑖 = 1,2, … ,𝑁𝑁, we aim 
to find the correlation between 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑖𝑖+𝑠𝑠 . Let 𝑥𝑥𝚤𝚤� = 𝑥𝑥𝑖𝑖−< 𝑥𝑥 >  where < 𝑥𝑥 > = 1

𝑁𝑁
 ∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1  is the 
mean. Now the quantitative correlation between 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑖𝑖−𝑠𝑠 is 

𝐶𝐶(𝑠𝑠) =< �̅�𝑥𝑖𝑖 , �̅�𝑥𝑖𝑖+𝑠𝑠 > =
1

𝑁𝑁 − 𝑠𝑠
 ��̅�𝑥𝑖𝑖 . �̅�𝑥𝑖𝑖+𝑠𝑠 
𝑛𝑛

𝑖𝑖=1

.  

Note that 𝐶𝐶(𝑠𝑠) declines as a power-law for long-range correlations, that is,  𝐶𝐶(𝑠𝑠) ∝ 𝑠𝑠−𝛾𝛾, 0 <  𝛾𝛾 <  1. 

𝑌𝑌(𝑖𝑖) =  �𝑥𝑥𝑘𝑘−< 𝑥𝑥 > 
𝑖𝑖

𝑘𝑘=1

  

is computed for the record (𝑥𝑥𝑖𝑖) of length 𝑁𝑁. Afterwards, we cut the profile 𝑌𝑌(𝑖𝑖) into 𝑁𝑁𝑠𝑠 ≡  [𝑁𝑁/𝑠𝑠] 
non-overlapping segments each with length s. Now we calculate the local trend for each segment. 
For that, we apply a least-square fit of the data. Then let 𝑌𝑌𝑠𝑠(𝑖𝑖) = 𝑌𝑌(𝑖𝑖) − 𝑝𝑝𝑣𝑣(𝑖𝑖), which is the difference 
between the time series and the fits. For each of the 2𝑁𝑁𝑠𝑠 segments, we calculate the variance 𝐹𝐹𝑠𝑠2(𝑣𝑣) =
< 𝑌𝑌𝑠𝑠2(𝑖𝑖) >= 1

𝑠𝑠
∑ 𝑌𝑌𝑠𝑠2[(𝑣𝑣 − 1)𝑠𝑠 + 𝑖𝑖]𝑠𝑠
𝑖𝑖=1 . Finally, by averaging over all segments, the DFA fluctuation 
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function is 𝐹𝐹(𝑠𝑠) = � 1
2 𝑁𝑁𝑠𝑠 

∑ 𝐹𝐹𝑠𝑠2(𝑣𝑣)2𝑁𝑁𝑠𝑠
𝑣𝑣=1 �

1/2
. In the case of the modified DFA, the distinction is that we 

simply divide the DFA fluctuation functions 𝐹𝐹(𝑠𝑠) above by the corresponding correction function 

𝐾𝐾𝛼𝛼
(𝑛𝑛)(𝑠𝑠) = <�𝐹𝐹(𝑛𝑛)(𝑠𝑠)�

2
>1/2 𝑠𝑠′𝛼𝛼

<�𝐹𝐹(𝑛𝑛)(𝑠𝑠′)�
2
>1/2 𝑠𝑠𝛼𝛼

 for 𝑠𝑠′ ≫ 1. In particular, we divide 𝐹𝐹(𝑛𝑛)(𝑠𝑠) by 𝐾𝐾1/2
(𝑛𝑛)(𝑠𝑠). 

3.4.3. Higuchi’s Method 

This method was originally presented [91] for calculating the length of a curve and obtaining the 
fractal dimension of large-scale fluctuations of the interplanetary magnetic field. Higuchi [92] 
modified the method, in particular, the way the curve length is defined, turning it into a generic one 
and popularizing it. This method is widely referred to as Higuchi’s method, which we adopt, and 
can be stated as follows. Given 𝑋𝑋𝑖𝑖 , … ,𝑋𝑋𝑁𝑁, a time series of length 𝑁𝑁, and assuming a block size 𝑚𝑚, we 
first calculate 𝑌𝑌(𝑛𝑛) = ∑ 𝑋𝑋𝑖𝑖𝑛𝑛

𝑖𝑖=1  where 𝑛𝑛 is picked as an arbitrarily large number such as 𝑛𝑛 > 1000. 
Here, the purpose is to produce fractional Brownian motion from fractional Gaussian noise. Then, 
we find the normalized length of the curve via the formula 

𝐿𝐿(𝑀𝑀) =
𝑁𝑁 − 1
𝑚𝑚3 ��

𝑁𝑁 − 𝑖𝑖
𝑚𝑚

�
𝑚𝑚

𝑖𝑖=1

−1

� |𝑌𝑌(𝑖𝑖 + 𝑘𝑘𝑚𝑚) − 𝑌𝑌(𝑖𝑖 + (𝑘𝑘 − 1)𝑚𝑚)|,
[(𝑁𝑁−𝑖𝑖)/𝑚𝑚)]

𝑘𝑘=1

  

where [ ]  denotes the greatest integer function. We have 𝐸𝐸𝐿𝐿(𝑚𝑚)~𝐶𝐶𝐻𝐻𝑚𝑚−𝐷𝐷 , where 𝐷𝐷 = 2 − 𝐻𝐻 . 
Drawing 𝐿𝐿(𝑚𝑚) versus m logarithmically will produce a straight line with a slope 𝐷𝐷 = 2 −𝐻𝐻. 

3.4.4. Aggregated Variance Method 

The Aggregated Variance Method [93] is described below. Divide the time series {𝑋𝑋𝑖𝑖 , 𝑖𝑖 ≥ 1} into 
blocks of size 𝑚𝑚 and define 

𝑋𝑋(𝑚𝑚) =
1
𝑚𝑚

  � 𝑋𝑋(𝑖𝑖)    𝑘𝑘 = 1,2, …
𝑘𝑘𝑚𝑚

𝑖𝑖=(𝑘𝑘−1)𝑚𝑚+1

  

for all values of 𝑚𝑚, where blocks are labeled by the index 𝑘𝑘. Now compute the sample variance of 
𝑋𝑋(𝑚𝑚)(𝑘𝑘), 𝑘𝑘 = 1,2, … for each block, which is an estimator of 𝑉𝑉𝑉𝑉𝑉𝑉𝑋𝑋(𝑚𝑚) . With partitioning the data 
𝑋𝑋𝑖𝑖 , … ,𝑋𝑋𝑛𝑛 into 𝑁𝑁/𝑚𝑚 blocks each of size 𝑚𝑚, we calculate 𝑉𝑉𝑉𝑉𝑉𝑉�  𝑋𝑋(𝑚𝑚) using 𝑋𝑋(𝑚𝑚)(𝑘𝑘) for 𝑘𝑘 = 1,2, … ,𝑁𝑁/𝑚𝑚, 
for different values of 𝑚𝑚, where 

𝑉𝑉𝑉𝑉𝑉𝑉�  𝑋𝑋(𝑚𝑚) =
1

𝑁𝑁/𝑚𝑚
�(𝑋𝑋(𝑚𝑚)(𝑘𝑘))2 − �

1
𝑁𝑁/𝑚𝑚

� 𝑋𝑋(𝑚𝑚)

𝑁𝑁/𝑚𝑚

𝑖𝑖=1

(𝑘𝑘)�

2𝑁𝑁/𝑚𝑚

𝑖𝑖=1

,  

Here, note that 𝑉𝑉𝑉𝑉𝑉𝑉�  𝑋𝑋(𝑚𝑚) is an estimate for 𝑉𝑉𝑉𝑉𝑉𝑉𝑋𝑋(𝑚𝑚). Finally, we plot the logarithm of the sample 
variance 𝑉𝑉𝑉𝑉𝑉𝑉�  𝑋𝑋(𝑚𝑚) versus log m. 

4. Empirical Analysis 

We investigate the presence of chaos in cryptocurrency market for four main assets: Bitcoin, 
Litecoin, Ripple, and Ethereum, which are recognized as the major cryptocurrencies with a mature 
price history. Selection of cryptocurrencies is based on the market capitalizations as of January 13, 
2018. As discussed by Higgins [94] and Rickles et al. [95], the leading properties of chaotic systems 
are nonlinearity, nonrandom deterministic behavior, sensitivity to initial conditions, and fractality 
(self-similarity and fractal dimensions). Statistically proven existence of these features leads us to 
conclude that the respective time series display chaotic features. In other words, the presence of these 
elements helps distinguish chaos from randomness. To that end, in our study, we run three main 
tests: the estimation of the Hurst Exponent through monofractal and multifractal analysis, fractal 
dimension analysis (fractality), the BDS test (nonlinearity), and the Lyapunov Exponent (sensitivity 
to the initial conditions). By considering the preassumptions of the BDS test, we also conduct an 
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autoregressive fractionally integrated moving average (ARFIMA) and a fractionally integrated 
generalized autoregressive conditionally heteroskedastic (FIGARCH) model estimations for the 
corresponding times series. The data used in the study is obtained from the widely recognized price 
aggregator www.coinmarketcap.com with a daily frequency and covers the period April 28, 2013 to 
January 13, 2018. 

4.1. Fractality Test: Hurst Exponent and Fractal Dimension 

As discussed by Williams [96], fractals deal with quantitative ways of characterizing geometric 
patterns. Chaos, on the other hand, is a certain evolution in time, and its underlying characteristics 
distinguish itself. Fractals and chaos often occur together. Most chaotic attractors have a fractal 
striped texture. Chaotic attractors of invertible maps are typically fractals. Because of such close 
relationships, we say that fractals help detect chaos. The fractality feature of chaotic time series can 
be observed through long memory (long-range dependence) or self-similarity analysis in which we 
compute the Hurst exponent (H). There are plenty of methods to compute the Hurst exponent. 
Nonetheless, regardless of the method employed, the Hurst exponent varies between 0 and 1, and 
interpretation of the coefficient is as follows: For 0.5 < 𝐻𝐻 < 1,  the process has stationary long 
memory; For 𝐻𝐻 = 0.5, the time series obeys random walk; In the case where 0 < 𝐻𝐻 < 0.5, the series 
is said to be antipersistent.  

Before the interpretation of the coefficient, determination of the most robust method would 
increase the accuracy of the study. In Table 1, we present various methods for the estimation of the 
Hurst exponent and each method has its own pros and cons. As stated by Gunay [97], while 
Aggregated Variances and the Peng Method are quite robust, the Higuchi Method and R/S Analysis 
have a strong bias. Considering those findings, we focus on the first two out of the four tests. 
According to the results of the Aggregated Variances and Peng Method, we can argue for a significant 
presence of long memory for all times series. As the larger Hurst exponent presents a greater intensity 
of long-range dependence, we can say that Ethereum returns display a higher order of dependence 
or persistence.  

Table 1. Hurst exponent estimations. 

 Bitcoin Litecoin Ripple Ethereum 

Aggregated Variances 
0.5696*** 0.5530*** 0.5041*** 0.5754*** 
−0.8609 −0.8940 −0.9918 −0.8492 
0.0184 0.0223 0.0585 0.0265 

Peng Method 
0.5391*** 0.5321*** 0.5618*** 0.5629*** 
1.0782 1.0643 1.1236 1.1258 
0.0138 0.0150 0.0145 0.0132 

Higuchi Method 
0.5983*** 0.6194*** 0.5743*** 0.6661*** 
−1.4017 −1.3806 −1.4257 −1.3339 
0.0336 0.0470 0.0496 0.0422 

R/S Method 
0.5908*** 0.5523*** 0.6197*** 0.5713*** 
0.5908 0.5523 0.6197 0.5713 
0.0264 0.0292 0.0151 0.0176 

*** denotes significance at 99% confidence level. Source: Estimated by the authors through the R 
implementation of [98]. 

The Hurst exponent can also be interpreted as self-similarity indicator. As discussed by Rickles 
et al. [95], a chaotic system’s time series depicts fractality features such as self-similarity. Self-
similarity can be defined as a property of an object which yields the same appearance under different 
scales. For example, a time series might appear to exhibit the same behavior under annual, monthly, 
and daily frequencies. For a time series, self-similarity can be observed in a distributional sense. In 
this case, for different scales, time series would depict the same correlation structure. Therefore, for 
a self-similar time series, we might witness long memory feature [99]. From this point of view, the 
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results in Table 1 also indicate that the corresponding time series shows self-similarity, and therefore 
chaotic features. However, this is a preliminary analysis and we need to support this finding through 
further research by running corresponding tests. In order to raise the robustness of the paper, we 
have also calculated the multifractal Hurst exponent. Unlike the monofractal theory, the multifractal 
approach states that some asset returns might display multiple scaling exponents rather than single 
ones. In modeling the scaling behavior of different subsets of data, Kantelhardt et al. [100] introduced 
multifractal detrended fluctuation analysis (MFDFA). Results of the MFDFA are presented in Table 
2.  

Table 2. Multifractality analysis. 

 𝐇𝐇(𝐪𝐪 = −𝟓𝟓) 𝐇𝐇(𝐪𝐪 = 𝟎𝟎) 𝐇𝐇(𝐪𝐪 = 𝟓𝟓) 
Bitcoin 0.8396 0.6567 0.5376 
Litecoin 0.9164 0.6984 0.4093 
Ripple 0.9129 0.6768 0.3992 

Ethereum 0.8773 0.6957 0.5219 
Source: Authors’ estimation through the Matlab implementation of Ihlen [101]. 

Large variation in H(q) is an indicator of a multifractal time series. According to the findings, 
the MFDFA yields different H values (different scaling behaviors) for each utilized q-orders (−5, 0, 
and 5). The indication of multifractality also supports the existence of chaos that was asserted in 
monofractal analysis. As pointed by Rickles et al. [95], fractals are a spatial type of chaos and another 
way to extract the fractality feature from a time series is examining its fractal dimension.  

As stated by Peters [102], the fractal dimension defines the roughness or smoothness of a time 
series. While in Euclidean geometry dimensions are integers and can take a value such as 1 (line), 2 
(planes), or 3 (solids), in fractal geometry, dimensions might have noninteger values. The fractal 
dimension of a time series is related to scaling in time. For a time series, the fractal dimension will 
have values between 1 and 2. Considering the relationship 𝐷𝐷 = 𝐻𝐻 + 2, a random walk processes 
𝐷𝐷 = 1.5. Hence, for a given time series, with any 𝐷𝐷 value different than 1.5, one can infer the absence 
of randomness as a signal of chaos. Results exhibited in Table 3 indicate that all D values are different, 
and there is random walk behavior. In Figure 1, for each cryptocurrency, we provide two graphs, 
where the one depicts the results of the box-count and the graph below is the madogram output. 
Recalling that the box-count estimator is the slope in an ordinary least squares regression fit of 
log𝑁𝑁(𝑙𝑙) on log(𝑙𝑙), where 𝑁𝑁(𝑙𝑙) is the number of boxes required at scale 𝑙𝑙, for the box count outputs 
in charts in Figure 1, log(2𝑙𝑙) and log𝑁𝑁(𝑙𝑙) are represented over x and y axes, respectively. Note that 
ϵ in the methodology description of the box-counting method is replaced by l for the sake of feasibility 
in representation in computer software. For the madogram outputs, the x-axis represents lags 𝑙𝑙/𝑛𝑛 
where 𝑙𝑙 = 1, and the corresponding p-variation is on the y-axis. Again, a log–log regression fit over 
our data for the variation estimator is presented for order 𝑝𝑝 = 1 madogram. However, test results 
aside, inferring chaos requires more evidence that satisfies other features of chaos. Therefore, in the 
following section, we fulfill the tests regarding nonlinearity and sensitivity to the initial conditions. 
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Table 3. Fractal dimension statistics. 

 Madogram Box-Count 
Bitcoin 1.94 1.60 
Litecoin 1.91 1.53 
Ripple 1.89 1.58 

Ethereum 1.95 1.49 
Source: Estimated by the authors through the R implementation of [103]. 
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Figure 1. Fractal dimension graphics. 

As we discussed before, the investigation of chaos also requires the test of nonlinear behavior in 
data. In this section of the paper, we execute the BDS test. As discussed by Brock et al. [62], this test 
is implemented to detect if the time series is related to a process that generates chaotic data. 
Implementation of the BDS test has a prerequisite. The test is implemented to forecast errors of the 
fitted model, such as ARMA, ARIMA, or ARFIMA. The null hypothesis of the model tests whether 
the time series is independently and identically distributed. As our earlier analysis revealed the 
existence of long memory in series, here, for BDS test, we execute the ARFIMA model which 
considers long-range dependence. 

An ARFIMA (𝑝𝑝,𝑑𝑑, 𝑞𝑞 ) process is the combination of the AR and MA models along with a 
fractionally (noninteger) differencing parameter. As the results in Table 3 indicate, we have utilized 
different orders 𝑝𝑝 and 𝑞𝑞 to determine the best fitting model for the data. For the appropriate order 
selection, we employed Akaike Information Criteria (AIC). The models attained with the minimum 
AIC values are presented in Table 4. Results show that Bitcoin and Litecoin have higher lags in the 
AR and MA processes than Ripple and Ethereum. Besides this, for all variables, the fractional 
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differencing parameter 𝑑𝑑 is statistically significant, indicating that returns of all variables have long 
memory (long-range dependence). This also means that return in the cryptocurrency market does not 
obey the weak form of market efficiency and does not follow random walk. Deviation from 
randomness can also be interpreted as a sign of chaotic behavior. 

Table 4. ARFIMA model estimation. 

 
Bitcoin 

ARFIMA (4.d.2) 
Litecoin 

ARFIMA (2.d.3) 
Ripple 

ARFIMA (1.d.1) 
Ethereum 

ARFIMA (1.d.1) 

AR-1 
0.6023*** 
(0.0538) 

−1.2109*** 
(0.0438) 

0.3917** 
(0.1749) 

1.7037*** 
(0.1096) 

AR-2 
−0.9488*** 
(0.0349) 

−0.8625*** 
(0.0579) 

 
−0.7732*** 
(0.1021) 

AR-3 
−0.0728** 
(0.0357) 

   

AR-4 
−0.0661** 
(0.0332) 

   

d 
0.1098*** 
(0.0354) 

0.0700** 
(0.0355) 

0.1409** 
(0.0636) 

0.2284*** 
(0.0873) 

MA-1 
−0.7121 
(0.0282) 

1.1789*** 
(0.0695) 

−0.4843** 
(0.1943) 

−1.8493*** 
(0.0527) 

MA-2 
0.9385*** 
(0.0205) 

0.7666*** 
(0.1008) 

 
0.8909*** 
(0.0550) 

MA-3  
−0.0928* 
(0.0491) 

  

Constant 
0.0012*** 
(0.0008) 

0.0010 
(0.0011) 

0.0017 
(0.0020) 

0.0027 
(0.0034) 

Log-likelihood 4369 3594 3147 1675 
AIC −5.0640 −4.1649 −3.8688 −3.7451 

*** denotes significance at 99% confidence level. Source: Authors’ estimation. 

As discussed before, the benefit of incorporating an ARFIMA (𝑝𝑝,𝑑𝑑, 𝑞𝑞) model is filtering the linear 
structure of time series. The residuals of the ARFIMA models will be used in the BDS test to see 
whether the return series emerge from an IDD process. As discussed by Brooks [104], beside a linear 
model, the BDS test can also be implemented to the residuals of GARCH type models. However, as 
in this case, the critical values of the BDS test will be different from the standard normal distribution. 
We need to utilize the values provided by Hsieh [105]. By following this recommendation in our 
analysis, we run the FIGARCH model as well to see if further determinism, already filtered in the 
ARFIMA and FIGARCH models, is still present in the series. 

According to the reference, ranges for fractionally differencing parameter 𝑑𝑑 given by Baillie 
[88], volatility of the variables also has long memory. As discussed by the author, for 0 < 𝑑𝑑 < 0.5, 
the time series has long memory and its autocorrelation function decays hyperbolically. In the case 
where −0.5 < 𝑑𝑑 < 0, the process has short memory. Accordingly, in Table 5, we can state that the 
volatility of the process for all variables displays a hyperbolic decay for the influence of lagged 
squared innovations. Following the estimation of ARFIMA and FIGARCH models, we extract the 
residuals of these estimations. Employed BDS test results for these residuals are presented in Table 
6.  
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Table 5. FIGARCH model estimation. 

 Bitcoin 
FIGARCH (1.d.1) 

Litecoin 
FIGARCH (1.d.1) 

Ripple 
FIGARCH (1.d.1) 

Ethereum 
FIGARCH (1.d.1) 

cm 
0.0008** 
(0.0003) 

−0.0005 
(0.0005) 

−0.0017*** 
(0.0006) 

0.0010 
(0.0010) 

c v 
0.0965 

(0.0638) 
0.2157*** 
(0.0776) 

1.8985*** 
(0.7269) 

0.5213** 
(0.2466) 

d 
0.5486*** 
(0.1486) 

0.9707*** 
(0.1312) 

0.6493*** 
(0.1092) 

0.8071*** 
(0.1740) 

a 
0.2819** 
(0.1157) 

0.1575 
(0.1501) 

−0.3680*** 
(0.1236) 

0.1933 
(0.1488) 

b 
0.6223*** 
(0.1446) 

0.8868*** 
(0.0166) 

−0.2310* 
(0.1193) 

0.5979*** 
(0.1645) 

Log-likelihood 4691 3940 3702 1831 
AIC −5.4422 −4.5706 −4.5532 −4.0976 

** and *** denote significance at 95% and 99% confidence levels, respectively. Source: Authors’ 
estimation. 

The test statistic of BDS analysis makes use of the correlation function, the asymptotic 
distribution of which is known under the assumption of the null hypothesis. Therefore, the BDS test 
can be employed to produce a formal statistical test against arbitrary dependence [106]. The BDS test 
is two-sided and the greater test statistic than the critical value requires the rejection of the null 
hypothesis. For both residuals of the ARFIMA and FIGARCH models, we employed four epsilon 
values (0.5, 1, 1.5, 2) following the recommendation of Hsieh and LeBaron [107], and three embedding 
dimensions (3, 5, 7). The critical values for the BDS tests provided by Brock et al. [62] are as follows: 
1.960 and 2.575 at 95% and 99% confidence levels, respectively, for a linear filtration model. For 
GARCH type filtrations, critical values provided by Hsieh [105] range from 1.85 to 2.90 for epsilon 
from 0.5 to 2 and dimension from 2 to 5 at 97.5% confidence level. For these reference values, as can 
be seen in Table 6, the null hypothesis of the BDS test is rejected for all epsilon values and dimensions. 
As discussed by Hsieh [105], this proves that the cryptocurrency market is governed by low 
complexity chaotic dynamics. Therefore, fluctuation in returns and volatilities of cryptocurrencies is 
not random. 

As discussed by Peters [102], one of the most important features of chaotic dynamics is its 
sensitivity to initial conditions. This property expresses the difficulty of specifying the problem. The 
further we travel in time, the less accurate our forecasts will be. Another aspect is that randomness is 
created by the system itself through a mixing process. Hence, when the system reaches a certain point, 
information about early stages is lost. Here, we utilize the Largest Lyapunov exponent to examine its 
sensitivity to initial conditions in cryptocurrency market, which is proven to be a highly useful 
diagnostic for chaotic systems. Largest Lyapunov exponent (or in general Lyapunov exponents in the 
spectrum) is described by the average exponential rates of divergence of nearby orbits in the phase 
space. Here, nearby orbits refer to nearly identical states, and exponential divergence of orbits 
corresponds to systems whose initial differences are negligible and will soon behave quite differently. 
In this case, predictive ability is rapidly lost. A system containing a positive largest Lyapunov 
Exponent is defined to be chaotic in the magnitude of the exponent, which reflects the time scale on 
which the system’s dynamics become unpredictable [108]. In this study, estimation of the largest 
Lyapunov exponent is conducted through the Rosenstein algorithm [86]. Since, by using the 
flexibility provided in the code, we do not have a priori knowledge concerning the embedding lag 
(tau) of the system, we left the selection of optimum tau value to the software to be picked as default. 
As for the embedding dimension, we use the three-dimension level (𝑚𝑚): 3, 5, 7. According to the 
results in Table 7, all the largest Lyapunov exponents are positive and this points the existence of 
chaotic behaviors in cryptocurrency market for the samples of Bitcoin, Litecoin, Ripple, and 
Ethereum. However, it should be kept in mind that the conclusion resulting from the Lyapunov 
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exponent should be interpreted along with our previous findings. Chaos theory requires the 
differentiation of randomness from chaos itself. The evidence in our study indicates that 
cryptocurrency market display a different path from the random walk. This conclusion supports the 
proposition of long memory theory. Accordingly, it is stated that a time series exhibits long memory 
in returns (or in volatilities), unlike the random walk theory, where predictions might be possible for 
the future behavior of this series. Beside long memory, since in our study chaotic features were 
observed, we indeed assert that the predictability cannot be long-term. This is due to the fact that 
sensitivity to initial conditions would not allow for long-term predictions. Hence, we conclude that 
predictability has a constraint in terms of time scale rather than full predictability (such as linear time 
series) or no predictability (such as complete randomness). 

Table 6. BDS test results. 

 e 
ARFIMA 

par 
FIGARCH 

par 
 

Residuals of ARFIMA Residuals of FIGARCH 
m = 3 m = 5 m = 7 m = 3 m = 5 m = 7 

Bi
tc

oi
n 

0.5 0.2086 0.4139 
w 19.28 33.29 59.11 21.06 36.56 64.77 
c 0.05 0.02 0.01 0.06 0.02 0.01 

1 0.4873 0.6622 
w 16.03 20.86 26.92 16.44 21.39 27.60 
c 0.26 0.17 0.11 0.27 0.17 0.12 

1.5 0.6798 0.8015 
w 13.06 14.94 17.04 13.42 15.30 17.56 
c 0.47 0.36 0.29 0.48 0.37 0.30 

2 0.8009 0.8796 
w 11.65 12.69 13.72 12.10 13.16 14.32 
c 0.65 0.55 0.48 0.65 0.56 0.49 

Li
te

co
in

 

0.5 0.2086 0.4943 
w 25.54 39.41 65.37 22.53 34.15 54.61 
c 0.11 0.06 0.03 0.12 0.06 0.03 

1 0.4873 0.7241 
w 18.50 21.90 26.52 17.79 21.10 25.18 
c 0.37 0.26 0.20 0.38 0.27 0.21 

1.5 0.6798 0.8380 
w 14.13 15.19 16.39 14.07 15.10 16.34 
c 0.56 0.46 0.38 0.57 0.47 0.39 

2 0.8009 0.8994 
w 12.11 12.26 12.49 12.12 12.12 12.43 
c 0.71 0.62 0.55 0.71 0.62 0.55 

R
ip

pl
e 

0.5 0.2086 0.4938 
w 23.77 33.18 52.17 23.91 33.64 52.88 
c 0.12 0.06 0.03 0.12 0.06 0.03 

1 0.4873 0.7291 
w 20.23 22.83 25.94 20.37 22.96 26.02 
c 0.40 0.29 0.22 0.41 0.30 0.23 

1.5 0.6798 0.8425 
w 17.52 18.58 19.84 18.02 18.90 20.00 
c 0.61 0.51 0.44 0.61 0.52 0.45 

2 0.8009 0.8996 
w 14.50 15.00 15.62 15.21 15.49 15.93 
c 0.73 0.65 0.59 0.73 0.65 0.59 

Et
he

re
um

 

0.5 0.2086 0.4297 
w 16.99 27.97 55.46 13.74 20.32 36.82 
c 0.06 0.02 0.01 0.06 0.02 0.01 

1 0.4873 0.6841 
w 12.87 15.79 19.96 12.59 14.98 18.81 
c 0.29 0.19 0.13 0.30 0.19 0.13 

1.5 0.6798 0.8253 
w 10.34 11.39 11.98 10.40 11.07 11.65 
c 0.52 0.41 0.33 0.53 0.42 0.34 

2 0.8009 0.9054 
w 9.46 9.72 9.50 8.50 8.63 8.48 
c 0.70 0.61 0.54 0.70 0.62 0.55 

Source: Authors’ estimation through the Matlab implementation of [109]. 
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Table 7. Largest Lyapunov exponent results (tau = 1). 

 m = 3 m = 5 m = 7 
Bitcoin 0.2522 0.1513 0.0875 
Litecoin 0.1799 0.1473 0.2070 
Ripple 0.1853 0.1773 0.1992 

Ethereum 0.2482 0.1767 0.0772 
Source: Authors’ estimation through the Matlab implementation of [110]. 

5. Conclusion 

Cryptocurrency market have considerably raised investor attention in recent years, and the 
ongoing discussions in the media and in the public are largely focused on the markets’ trend and the 
sustainability of cryptocurrency market. Unfortunately, a large amount of ongoing debate on these 
markets is not distinguishable from rumors and fortune-telling, and barely has any evidence to 
support their arguments. Absence of scientific evidence does not add value to investors’ strategies. 
To that end, in this paper, we attempt to examine statistics referring to the most essential features of 
cryptocurrency market through the perspective of chaos. One of the criticisms for cryptocurrencies 
is the lack of existence of an underlying fundamental theory, and another is the independence of the 
cryptocurrency market from global financial indicators. This self-ordained behavior raises concerns 
and makes investors vulnerable to wild volatilities despite the inception of derivative markets for the 
cryptocurrency instruments. These concerns raise the question of whether these instruments act 
through a hidden order in their behaviors and paths they follow, or they are totally unpredictable. 
The main motivation of this study is to confirm whether or not cryptocurrency market follows any 
hidden pattern, in the context of chaos theory. Considering the characteristics of chaotic time series, 
for each feature we have utilized the corresponding test: monofractality and multifractality (Hurst 
exponent and fractal dimension analysis), nonlinearity (BDS test), and sensitivity to initial conditions 
(largest Lyapunov exponent). Hurst exponent test results were performed through the most robust 
methods (Aggregated Variances and Peng Method). Results indicate the existence of long-range 
dependence in time series. Similar results are also observed through fractal dimension analysis. 
Although the Box-Count method yields values close to 1.5, for the madogram, we obtained numbers 
significantly greater than 1.5, meaning that the characteristics of the data are different from 
randomness. As for the BDS test employed to determine the residuals of the ARFIMA and FIGARCH 
models, it is indicated that all variables exhibit nonlinear features as the test statistic is greater than 
the corresponding critical values, meaning that the returns and volatilities are not random, although 
they may appear so. Final evidence is provided by means of largest Lyapunov exponent. According 
to the Rosenstein algorithm, all test statistics that are greater than zero imply further evidence for the 
existence of chaos. Overall results indicate that the statistical behavior of cryptocurrencies is not 
random and displays chaotic dynamics. In practice, this means that short term forecasts might be 
achievable in cryptocurrency market and investors might profit with an appropriate strategy, while 
the long-term behavior of these time series are not predictable at all. The wild volatility of the market, 
immature market background, and weak and insufficient regulations suggest that the cryptocurrency 
market is too risky for naive investors and riskier than the image illustrated in media, portals, and 
other corresponding platforms. 
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