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Abstract: This paper concerns the modeling of eddy current losses in conductive materials in the
vicinity of a high-frequency transformer; more specifically, in two-dimensional problems where a high
ratio between the object dimensions and the skin-depth exists. The analysis is performed using the
Spectral Element Method (SEM), where high order Legendre–Gauss–Lobatto polynomials are applied
to increase the accuracy of the results with respect to the Finite Element Method (FEM). A convergence
analysis is performed on a two-dimensional benchmark system, for both the SEM and FEM. The
benchmark system consists of a high-frequency transformer confined by a conductive cylinder and is
free of complex geometrical shapes. Two different objectives are investigated. First, the discretizations
at which the relative error with respect to a reference solution is minimized are compared. Second,
the discretizations at which the trade-off between computational effort and accuracy is optimized are
compared. The results indicated that by applying the SEM to the two-dimensional benchmark system,
a higher accuracy per degree of freedom and significantly lower computation time are obtained with
respect to the FEM. Therefore, the SEM is proven to be particularly useful for this type of problem.

Keywords: eddy currents; finite element analysis; inductive power transmission; numerical models;
Pareto analysis; spectral element method

1. Introduction

Wireless Power Transfer (WPT) by means of an inductive coupling is widely applied in
applications where physical electrical contact is problematic or undesirable, for example in aerospace,
biomedical, and robotics applications [1]. To improve the performance, a high-frequency power-supply
is often applied. Therefore, gallium-nitride transistors have gained popularity in WPT applications,
because these transistors allow for switching frequencies in the range of several MHz, low switching
losses, and a high power density [2,3].

Adding a high-frequency power-supply to an application imposes several challenges in the
electromagnetic modeling, especially in situations where restrictions on the field penetration into
surrounding objects are of importance; for example, in solid rotor, as well as permanent magnet
high-speed machines [4–6] and in order to comply with electromagnetic compatibility safety
standards [7]. The Finite Element Method (FEM) is often applied for the estimation of the resulting
losses [8,9]. For high-frequency applications in which skin-depths are orders of magnitude smaller in
comparison to the overall model dimensions, meshing problems arise, which lead to locally different
requirements of the mesh density within the model [5]. In order to minimize the mesh size, elongated
mesh elements are preferred, which compromise the accuracy of the FEM. Alternatively, for this type
of problem, higher order methods can be applied, such as the Spectral Element Method (SEM), in
which elongated elements do not compromise the accuracy of the results [5,10].
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The SEM has been widely applied in various research areas, such as fluid dynamics or waveguide
analysis [11,12]. In [5], a single spectral element was used to model the eddy current losses in a
high-speed rotating cylinder. In [10], the formulation of the SEM for the magnetic field and temperature
distribution in electric machines was discussed, and in [13], the application of the method to a linear
synchronous machine was presented. In [14], a coupled FEM and SEM simulation was introduced,
where the non-linear SEM was used for modeling of the rotor and the FEM was applied for the rest of
the model. Another example of a coupled approach was provided in [15], where transformer cooling
was investigated using coupled FEM and SEM. A detailed discussion on the implementation of the
SEM was presented in [16], and the mathematical formulation of eddy current problems was provided
in [17–19]. The modeling approach presented in this paper is valid for two-dimensional problems.
However, the method can be extended to three-dimensional problems. In various research areas, such
as computational seismology, nanodevice applications, and waveguide analysis, the SEM has been
successfully implemented and applied to three-dimensional problems [12,20,21].

In this paper, it is demonstrated that by applying the SEM to a benchmark system, a higher
accuracy per degree of freedom (d.o.f.) is obtained, which results in a significant reduction of the
computational effort as compared to the FEM. These features prove to be useful for efficient and
accurate solving of eddy current loss problems with high ratios between the object dimensions and
skin-depth. The formulation of the method, as well as the implementation of the specific transformer
model are discussed and analyzed.

2. Modeling Approach

To model the eddy current problem, the formulation of the SEM for a generic partial differential
equation is considered:

∇ · (c∇ϕ) = s (1)

where c is a material property, ϕ is the physical quantity of interest, and s is the source descriptions. In
order to model eddy currents, s takes the form of:

s0 + k
∂ϕ

∂t
(2)

where k is a different material property. In order to solve the differential equation using the SEM,
the investigated geometry is divided into rectangular elements. In each element, the nodal Galerkin
method is applied to (1), meaning that the residuals of the approximated solution are projected onto
a set of basis functions, therefore obtaining the weak form. After applying Green’s first identity, the
following expression is obtained:∮

∂Ωξ,η

c∇ϕ · n̂βdl −
∫∫

Ωξ,η

∇β · (c∇ϕ)dΩξ,η

=
∫∫

Ωξ,η

sβdΩξ,η

(3)

where β is the basis functions and Ωξ,η is the computational domain of the element with local coordinate
axes ξ and η [10].

The basis functions applied in the SEM are based on the Legendre polynomials, which are
given by:

LN+1(ξ) =
2N + 1
N + 1

ξLN(ξ)−
N

N + 1
LN−1(ξ)

in which, L0 = 1 and L1 = ξ

(4)
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where LN is the Legendre polynomial of degree N. The degree of the Legendre polynomial directly
relates to the number of grid points in an element. The grid points correspond to the roots of the
Legendre–Gauss–Lobatto (LGL) polynomials, which for degree N are given by:

PLGL = LN+1 − LN−1 = 0 (5)

where PLGL are the roots, calculated through an iterative process. The integrals shown in (3) are
evaluated numerically by Gaussian quadratures (qj):

∫ b

a
f (ξ)dξ =

N

∑
j=0

f jqj

qj =
2

N(N + 1)(LN(ξ j))2

(6)

where f j is the value of the function f at the corresponding root (ξ j). The Lagrangian interpolation
polynomials are used to reconstruct the polynomial basis and interpolate the approximated function:

f (ξ) =
N

∑
j=0

f jlj(ξ) (7)

where lj is the Lagrangian basis function given by:

lj(ξ) =
N

∏
n=0
n 6=j

ξ − ξn

ξ j − ξn
. (8)

The derivative of the basis functions from (3) is also computed on the roots using the Lagrangian
basis functions from (7), which results in a derivative matrix. The entries of the derivative matrix are
computed as:

di,j = l′j(ξi) (9)

where l′j is the derivative of the Lagrangian basis function. The derivative matrix replaces the derivative
operators in (3). Finally, the system of linear equations for each element is obtained and assembled in a
global matrix [10,16].

For the modeling of eddy current losses in conductive materials in the frequency domain, the
partial differential equation shown in (1) takes the form of:

∇ · (ν∇Aθ) = Jθ − jωσAθ (10)

where ν is the magnetic reluctivity, Aθ and Jθ are the vector potential and current density in the
circumferential direction, respectively, ω is the electrical frequency, and σ is the electric conductivity.
The eddy current losses in a conductive region are calculated as:

Pe =
1
σ

∫
V
|Je|2 dV

Je = −jωσAθ

(11)

where Je is the induced current density and V is the volume. The integral in (11) is evaluated
numerically by the Gaussian quadratures of the corresponding region.
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3. Benchmark System

The benchmark system considered in this paper consists of a pot core transformer, which is
operated at an electrical frequency of 1 MHz. The transformer is confined by a conductive cylinder,
which is directly positioned in the fringing-flux path parallel to the air gap. As a result, eddy
current losses are induced in the conductive cylinder. An overview of the investigated domain
in the three-dimensional space is shown in Figure 1, and the various components of the geometry are
indicated in the figure. In each side of the core, a small indentation is present, such that the winding
is able to enter and exit the magnetic core. The effect of the indentation on the transferred power is
negligible [22]. Therefore, the benchmark system is modeled as an axisymmetric problem. An overview
of the investigated domain in the two-dimensional space is shown in Figure 2, and the corresponding
geometrical parameters and physical quantities are shown in Table 1. For this type of problem, (3) is
typically solved for rϕ, as opposed to directly solving for ϕ [23,24]. Consequently, a negligible offset
(r0) is present in the geometry, such that the zero-axis is excluded from the domain. The investigated
domain is bounded by a zero Dirichlet boundary condition. The benchmark system is modeled using
both the SEM and FEM. A comparison between the two methods is made by performing a convergence
analysis and refinement optimization.

Figure 1. Overview of the investigated domain in three-dimensional space; pot core transformer
confined by a conductive cylinder.
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Figure 2. Overview of the investigated domain in two dimensions, including boundary conditions
(b.c.), geometrical parameters, material properties, and discretization of (a) elements and polynomial
degree in the Spectral Element Method (SEM) model and (b) minimum element sizes (mesh points) in
the Finite Element Method (FEM) model.

Table 1. Geometrical parameters and physical quantities of the investigated benchmark system.

Geometrical Parameters

Parameter Symbol Value Unit

Geometry offset radius r0 0.10 mm
Radial thickness of the inner air region r1 1.55 mm
Radial thickness of the inner core leg r2 1.45 mm
Radial thickness of the winding area r3 2.80 mm
Radial thickness of the outer core leg r4 1.35 mm
Radial thickness of the air gap r5 0.50 mm
Full radial thickness of the conductive cylinder r6 1.00 mm
Modeled radial thickness of the conductive cylinder r6,m 52.2 µm
Height air region z1 4.55 mm
Core height z2 1.40 mm
Winding area height z3 2.80 mm
Air gap height z4 1.00 mm

Physical Quantities

Quantity Symbol Value Unit

Frequency f 1.0 MHz
Plate conductivity σ 8.41 × 106 S/m
Plate relative permeability µr,p 100 -
Skin depth δs 17.4 µm
Core relative permeability µr,c 3000 -
Primary current density Jp 4.21 Arms/mm2

Secondary current density Js 1.35 Arms/mm2

Phase primary current θp −77.9 o

Phase secondary current θs 159.8 o

3.1. SEM Model

The division of the domain into rectangular elements and the polynomial degree discretization
for the SEM model are shown in Figure 2a. The polynomial degree in the domain is discretized into
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three different parameters. One parameter (Nz) is assigned to the axial (z) direction, whereas two
parameters (Nr1 and Nr2) are assigned to the radial (r) direction. A distinction between non-conductive
and conductive regions is made because in the conductive region, the magnetic vector potential is
expected to have a higher gradient compared to the rest of the geometry. Therefore, a high polynomial
degree is required for a locally more accurate approximation.

3.2. FEM Model

The mesh density in the FEM model is parametrized into five different minimum element
sizes (mesh points). The smallest mesh points (Ms1, Ms2, and Ms3) are assigned to the conductive
cylinder and air gap regions, whereas the largest mesh point (Ml) is assigned to the domain boundary.
Furthermore, an intermediate mesh point (Mm) is assigned to part of the transformer core and winding
area. The division of the mesh points is shown in Figure 2b. The FEM model is solved using
commercial software (Altair Flux) [24]. Triangular mesh elements are created in the non-conductive
regions, whereas rectangular mesh elements are employed in the conductive region. The FEM requires
at least two elements per skin-depth in the radial direction of the conductive region, such that the
second order elements provide an accurate approximation of the exponential variation occurring in this
region [24]. Therefore, rectangular elements are preferred because the contrasting mesh requirements
in the radial and axial direction can be realized by creating elongated elements. As a result, a lower
number of d.o.f. is required for meshing the conductive region compared to a mesh consisting of
triangular elements [24]. In the FEM model, two mesh elements per skin-depth are ensured regardless
of the size of the mesh elements in the rest of the model.

3.3. Assumptions

Both the transformer core and conductive cylinder are assumed to have linear material properties.
The current density values and corresponding phase angles were obtained from an FEM simulation, in
which the primary side was supplied with a peak voltage of 48.0 V, the secondary side was connected
to a load of 23.5 Ω, the primary side had four turns, and the secondary side had seven turns. The
current densities and phase angles were equal for both methods and remained unchanged in the
convergence analysis.

In the interest of significantly reducing the mesh requirements in the conductive cylinder, model
reduction was applied in the cylinder; only a radial thickness equal to three-times the skin-depth
was taken into account. The effect on the induced losses is shown in Figure 3, in which the absolute
value of the relative error with respect to the reference, i.e., the loss for the full radial thickness of the
conductive cylinder, is shown as a function of the modeled radial thickness. The absolute value of the
relative error with respect to the reference (ε) is given by:

ε =
|Pe − P∗e |

P∗e
× 100% (12)

where Pe is the calculated eddy current loss and P∗e is the reference. The results were generated by an
FEM simulation, in which at every iteration, the modeled radial thickness of the conductive cylinder
was increased by one skin-depth. In case the modeled radial thickness was equal to three-times the
skin-depth, a relative error with respect to the reference of less than 0.1% was obtained, therefore
justifying the assumption.
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Figure 3. Absolute value of the relative error with respect to the reference (ε) as a function of the
modeled radial thickness of the conductive cylinder (r6,m), including the indication of the selected value.

4. Convergence Analysis and Refinement Optimization

The two methods were compared to each other by performing a convergence analysis on the
benchmark system. In the convergence analysis, p-refinement was applied in the SEM model, i.e., the
accuracy of the results was improved by increasing the polynomial degree. The p-refinement was
applied according to the discretization shown in Table 2, which resulted in a total of 9000 combinations
being evaluated and a number of d.o.f. in the range of 56–17,091. In the FEM model, h-refinement
was applied, i.e., the accuracy of the results was improved by reducing the characteristic length of
the mesh elements, resulting in the number of elements being increased. The discretization of the
h-refinement applied in the convergence analysis is shown in Table 2, which resulted in a total of 34,300
combinations being evaluated and a number of d.o.f. in the range of 937–27,528. The coarsest and
densest FEM meshes occurring in the convergence analysis are shown in Figures 4 and 5, respectively.
For visualization purposes, the mesh is only shown in the most critical part of the model, i.e., the region
where the fringing-flux around the outer transformer teeth induces the eddy current loss. This region is
also indicated in Figure 2b by the blue dotted rectangle. Furthermore, the mesh in the non-conductive
and conductive regions are shown in separate figures. For every combination of p- or h-refinement
evaluated in the convergence analysis, the number of d.o.f. and the losses in the conductive cylinder
were obtained. Furthermore, the absolute value of the relative error with respect to the reference
solution was calculated using (12), where the FEM solution having the highest number of d.o.f. was
chosen as the reference. Additionally, the time required for meshing and solving of the models was
stored. Both models were evaluated on a single core of the same machine using a direct solving
technique. Two Pareto fronts were generated from the obtained solutions. The first front consisted of
the absolute relative error with respect to the reference and the number of d.o.f. In the second front, the
latter was changed to the computation time (consisting of the time required for meshing and solving
of the models).

The optimum discretization of the polynomial degree and mesh points was determined by
applying the weighted sum method, given by:

minimize:
⇀
x

F(
⇀
x ) = w1 ¯fn,t(

⇀
x ) + w2 f̄ε(

⇀
x )

where: {w1, w2} ∈ (0, 1)

subject to: w1 + w2 = 1

(13)
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where
⇀
x is the set of design variables (the polynomial degree and mesh points), ¯fn,t is the normalized

number of d.o.f. in the first case, or the computation time in the second case, a weighting factor
of w1 was applied, and f̄ε is the normalized absolute value of the relative error with respect to the
reference having weighting factor w2. The quantities were normalized with respect to the minimum
and maximum values occurring in the dataset generated by the corresponding method.

In this analysis, two different situations were investigated. First, the weighting factors were
set to zero and one, respectively, which resulted in the converged solution. Second, both weighting
factors were set to 0.5, which resulted in an equally-weighted trade-off between the absolute value
of the relative error with respect to the reference and the number of d.o.f. for the first front, or the
computation time for second front, respectively.

Table 2. Discretization of the polynomial degree (SEM) and mesh points (FEM) evaluated in the
convergence analysis.

SEM Discretization (p-refinement)

Polynomial Symbol Minimum (-) Maximum (-) Steps (-)

Radial 1 Nr1 1 10 10
Radial 2 Nr2 1 30 30
Axial Nz 1 30 30

FEM Discretization (h-refinement)

Mesh point Symbol Minimum (mm) Maximum (mm) Steps (-)

Large Ml 1.00 3.00 7
Medium Mm 0.40 1.00 7
Small 1 Ms1 0.10 1.00 7
Small 2 Ms2 0.10 1.00 10
Small 3 Ms3 0.10 1.00 10
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(b)
Figure 4. The coarsest FEM mesh considered in the convergence analysis (937 d.o.f.); (a) mesh in the
non-conductive region (b) mesh in the conductive region near the outer teeth.
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Figure 5. The densest FEM mesh considered in the convergence analysis (27,528 d.o.f.); (a) mesh in the
non-conductive region (b) mesh in the conductive region near the outer teeth.

5. Results

The absolute value of the relative error with respect to the reference as a function of the number
of d.o.f. and the computation time for all evaluated data points is shown in Figure 6a,b, respectively.
Additionally, the Pareto fronts and optima are indicated in the figures. The figures show that by
applying the SEM, a higher accuracy per d.o.f. and a lower computation time were obtained compared
to the FEM.

The converged and Pareto solutions for both methods are shown in Table 3. As a result of the
FEM solution having the highest number of d.o.f. being the reference, the FEM was able to converge to
zero; whereas, the SEM converged to a relative error with respect to the reference, approaching zero,
while reducing the required number of d.o.f. and computation time by 76.5% and 75.1%, respectively.
Additionally, an FEM solution is shown in Table 3, for which the difference between the relative errors
was the smallest. In this case, the SEM reduced the number of d.o.f. and computation time by 62.2%
and 70.0%, respectively, therefore proving the advantage of the SEM for this type of problem.

The solutions at the Pareto optima are also shown in Table 3. For the first Pareto optimum (the
trade-off between the number of d.o.f. and the absolute value of the relative error), the SEM reduced
the number of d.o.f. and computation time by 92.3% and 99.2%, respectively, whereas the relative error
with respect to the reference was 0.604% higher. Compared to the converged solution, the number of
d.o.f. and computation time were significantly reduced for both methods at the expense of an increased
relative error with respect to the reference. The second Pareto optimum (the trade-off between the
computation time and the absolute value of the relative error) presented a more attractive solution. For
both the SEM and FEM optima, the error with respect to the reference solution was very small (less
than 0.1%), while the number of d.o.f. and computation time were significantly reduced. Comparing
the two solutions, both methods had an approximately equal relative error with respect to the reference,
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while the SEM reduced the number of d.o.f. and computation time by 79.5% and 98.2%, respectively.
The discretization of the SEM and FEM model at the optima is shown in Table 4.
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(b)
Figure 6. Absolute value of the relative error with respect to the reference as a function of (a) the
number of d.o.f. and (b) the computation time. The Pareto fronts and optima (w1 = w2 = 0.5) are
indicated in both cases.
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Table 3. Converged solution, including the reference and Pareto optima (w1 = w2 = 0.5) for
both methods.

Converged Solution

Method Losses (W) d.o.f. (-) Relative Error (%) Time (s)

FEM (reference) 5.0848 2.7504 × 104 0.0000 5.701
FEM 5.0848 1.7117 × 104 7.0071 × 10−4 4.731
SEM 5.0848 6.4770 × 103 7.0076 × 10−4 1.418

Pareto Optimum 1

FEM 5.0790 2.9230 × 103 0.1140 4.875
SEM 5.1213 2.2500 × 102 0.7182 4.015 × 10−2

Pareto Optimum 2

FEM 5.0805 3.4400 × 103 8.374 × 10−2 3.198
SEM 5.0812 7.0400 × 102 7.081 × 10−2 5.807 × 10−2

Table 4. Discretization of the polynomial degree (p-refinement) and mesh points (h-refinement) in the
SEM and FEM model, respectively, at the two Pareto optima.

SEM Discretization (p-refinement)

Polynomial Symbol Pareto Optimum 1 (-) Pareto Optimum 2 (-)

Radial 1 Nr1 2 5
Radial 2 Nr2 4 6
Axial Nz 2 3

FEM Discretization (h-refinement)

Mesh Point Symbol Pareto Optimum 1 (mm) Pareto Optimum 2 (mm)

Large Ml 3.00 2.00
Medium Mm 0.80 0.70
Small 1 Ms1 1.00 0.85
Small 2 Ms2 0.30 0.30
Small 3 Ms3 0.90 0.80

6. Conclusions

The SEM has been applied for the modeling of eddy currents in conductive materials in the vicinity
of a high-frequency transformer. The performance of the method has been investigated by performing
a convergence analysis on a two-dimensional benchmark system, consisting of a high-frequency
transformer confined by a conductive cylinder. The results have indicated that the SEM is able to
provide a fast and highly accurate estimation of the eddy current losses (less than 8.0 × 10−4% relative
error with respect to the reference), while requiring 70.0% less d.o.f. and 62.2% less computation time
with respect to the FEM. Therefore, the SEM provides a better alternative for this type of problem, i.e.,
two-dimensional problems where the skin-depth is several orders of magnitude smaller compared to
the object dimensions and complex geometrical shapes are absent.
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