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Abstract: We studied the properties of generalized solutions in unbounded domains and the
asymptotic behavior of solutions of elliptic boundary value problems at infinity. Moreover, we studied
the unique solvability of the mixed Dirichlet–Steklov-type and Steklov-type biharmonic problems in
the exterior of a compact set under the assumption that generalized solutions of these problems has a
bounded Dirichlet integral with weight |x|a. Depending on the value of the parameter a, we obtained
uniqueness (non-uniqueness) theorems of these problems or present exact formulas for the dimension
of the space of solutions.
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1. Introduction

Let Ω be an unbounded domain in Rn, n ≥ 2, Ω = Rn \ G with the boundary ∂Ω ∈ C2, where G
is a bounded simply connected domain (or a union of finitely many such domains) in Rn, 0 ∈ G,

Ω = Ω ∪ ∂Ω is the closure of Ω, x = (x1, . . . , xn) ∈ Rn and |x| =
√

x2
1 + · · ·+ x2

n.
In Ω, we consider the following problems for the biharmonic equation

∆2u = 0 (1)

with the mixed Dirichlet–Steklov-type boundary conditions

u
∣∣
Γ1

=
∂u
∂ν

∣∣∣
Γ1

= 0,
∂u
∂ν

∣∣∣∣
Γ2

=

(
∂∆u
∂ν

+ τ u
)∣∣∣∣

Γ2

= 0, (2)

and the Steklov-type boundary conditions

∂u
∂ν

∣∣∣∣
∂Ω

=

(
∂∆u
∂ν

+ τ u
)∣∣∣∣

∂Ω
= 0, (3)

where Γ1 ∪ Γ2 = ∂Ω, Γ1 ∩ Γ2 = ∅, mesn−1 Γ1 6= 0, ν = (ν1, . . . , νn) is the outer unit normal vector to
∂Ω, τ ∈ C(∂Ω), τ ≥ 0, τ 6≡ 0, and τ > 0 on a set of positive (n− 1)-dimensional measure on ∂Ω.

As is well known that, if Ω is an unbounded domain, one should additionally characterize the
behavior of the solution at infinity. As a rule, to this end, one usually poses either the condition that
the Dirichlet (energy) integral is finite or a condition on the character of vanishing of the modulus of
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the solution as |x| → ∞. Such conditions at infinity are natural and were studied by several authors
(e.g., [1–3]).

The behavior of solutions of the Dirichlet problem for the biharmonic equation as |x| → ∞ is
considered in [4,5], where estimates for |u(x)| and |∇u(x)| as |x| → ∞ are obtained under certain
geometric conditions on the domain boundary.

Elliptic problems with parameters in the boundary conditions have been called Steklov or Steklov-
type problems since their first appearance in [6]. For the biharmonic operator, these conditions were
first considered the authors of [7–9], who studied the isoperimetric properties of the first eigenvalue.

Note that standard elliptic regularity results are available in [10]. The monograph covers
higher order linear and nonlinear elliptic boundary value problems, mainly with the biharmonic
or polyharmonic operator as leading principal part. The underlying models and, in particular, the role
of different boundary conditions are explained in detail. As for linear problems, after a brief summary
of the existence theory and Lp and Schauder estimates, the focus is on positivity. The required kernel
estimates are also presented in detail.

In [10,11], the spectral and positivity preserving properties for the inverse of the biharmonic
operator under Steklov and Navier boundary conditions are studied. These are connected with the
first Steklov eigenvalue. It is shown that the positivity preserving property is quite sensitive to the
parameter involved in the boundary condition. Moreover, positivity of the Steklov boundary value
problem is linked with positivity under boundary conditions of Dirichlet and Navier type.

In [12], the boundary value problems for the biharmonic equation and the Stokes system
are studied in a half space, and, using the Schwartz reflection principle in weighted Lq-space,
the uniqueness of solutions of the Stokes system or the biharmonic equation is proved.

We also point out [13–15], in which using the methods of complex analysis the Dirichlet and
Neumann problems for the polyharmonic equation are explicitly solved in the unit disc of the complex
plane. The solution is obtained by modifying the related Cauchy–Pompeiu representation with the
help of the polyharmonic Green function.

In the present note, this condition is the boundedness of the weighted Dirichlet integral:

Da(u, Ω) ≡
∫

Ω
|x|a ∑

|α|=2
|∂αu(x)|2 dx < ∞, a ∈ R.

In various classes of unbounded domains with finite weighted Dirichlet (energy) integral, one of
the authors [16–29] studied uniqueness (non-uniqueness) problem and found the dimensions of
the spaces of solutions of boundary value problems for the elasticity system and the biharmonic
(polyharmonic) equation.

By developing an approach based on the use of Hardy type inequalities [1–3,30], in the present
note, we obtain a uniqueness (non-uniqueness) criterion for a solution of the mixed Dirichlet–Steklov-
type and Steklov-type problems for the biharmonic equation.

Notation: C∞
0 (Ω) is the space of infinitely differentiable functions in Ω with compact support

in Ω.
We denote by Hm(Ω, Γ), Γ ⊂ Ω, the Sobolev space of functions in Ω obtained by the completion

of C∞(Ω) vanishing in a neighborhood of Γ with respect to the norm

||u; Hm(Ω, Γ)|| =

∫
Ω

∑
|α|≤m

|∂αu(x)|2dx

1/2

, m = 1, 2,

where ∂α ≡ ∂|α|/∂xα1
1 . . . ∂xαn

n , α = (α1, . . . , αn) is a multi-index, αi ≥ 0 are integers, and |α| =
α1 + · · ·+ αn; if Γ = ∅, we denote Hm(Ω, Γ) by Hm(Ω).

◦
H

m
(Ω) is the space obtained by the completion of C∞

0 (Ω) with respect to the norm
||u(x); Hm(Ω)||.
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◦
H

m

loc (Ω) is the space obtained by the completion of C∞
0 (Ω) with respect to the family of semi-norms

‖u; Hm(Ω ∩ B0(R))‖ =

 ∫
Ω∩B0(R)

∑
|α|≤m

|∂αu(x)|2 dx


1/2

for all open balls B0(R) := {x : |x| < R} in Rn for which Ω ∩ B0(R) 6= ∅.
Let (n

k) be the (n, k) binomial coefficient, (n
k) = 0 for k > n.

2. Definitions and Auxiliary Statements

Definition 1. A solution of the homogenous biharmonic Equation (1) in Ω is a function u ∈ H2
loc(Ω) such

that, for every function ϕ ∈ C∞
0 (Ω), the following integral identity holds:∫

Ω
∆u ∆ϕ dx = 0.

Lemma 1. Let u be a solution of Equation (1) in Ω such that Da(u, Ω) < ∞. Then,

u(x) = P(x) + ∑
β0<|α|≤β

∂αΓ(x)Cα + uβ(x), x ∈ Ω, (4)

where P(x) is a polynomial, ord P(x) < m0 = max{2, 2− n/2− a/2}, β0 = 2− n/2 + a/2, Γ(x) is
the fundamental solution of Equation (1), Cα = const, β ≥ 0 is an integer, and the function uβ satisfies
the estimate:

|∂γuβ(x)| ≤ Cγβ|x|3−n−β−|γ|, Cγβ = const,

for every multi-index γ.

Remark 1. As is known [31], the fundamental solution Γ(x) of the biharmonic equation has the form

Γ(x) =

{
C|x|4−n, i f 4− n < 0 or n is odd,
C|x|4−n ln |x|, i f 4− n ≥ 0 and n is even.

Proof. Consider the function v(x) = θN(x)u(x), where θN(x) = θ(|x|/N), θ ∈ C∞(Rn), 0 ≤ θ ≤ 1,
θ(s) = 0 for s ≤ 1, θ(s) = 1 for s ≥ 2, while N � 1 and G ⊂ {x : |x| < N}. We extend v to Rn by
setting v = 0 on G = Rn \Ω.

Then, the function v belongs to C∞(Rn) and satisfies the equation

∆2v = f ,

where f ∈ C∞
0 (Rn) and supp f ⊂ {x : |x| < 2N}. It is easy to see that Da(v,Rn) < ∞.

We can now use Theorem 1 of [32] since it is based on Lemma 2 of [32], which imposes no
constraint on the sign of σ. Hence, the expansion

v(x) = P(x) + ∑
β0<|α|≤β

∂αΓ(x)Cα + vβ(x),

holds for each a, where P(x) is a polynomial of order ord P(x) < m0 = max{2, 2− n/2− a/2},
β0 = 2− n/2 + a/2, Cα = const and

|∂γvβ(x)| ≤ Cγβ|x|3−n−β−|γ|, Cγβ = const .

Therefore, by the definition of v, we obtain Equation (4). The proof of Lemma 1 is complete.
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3. Main Results

3.1. The Mixed Dirichlet–Steklov-Type Biharmonic Problem

Definition 2. By a solution of the mixed Dirichlet–Steklov-type problem in Equations (1) and (2) we mean

a function u ∈
◦
H

2

loc (Ω, Γ1)∩
◦
H

1

loc (Ω), ∂u/∂ν = 0 on Γ2, such that, for every function ϕ ∈
◦
H

2

loc (Ω, Γ1) ∩
C∞

0 (Rn), ∂ϕ/∂ν = 0 on Γ2, the following integral identity holds:∫
Ω

∆u ∆ϕ dx−
∫

Γ2

τ u ϕ ds = 0. (5)

Theorem 1. The mixed Dirichlet–Steklov-type problem in Equations (1) and (2) with the condition
D(u, Ω) < ∞ has n + 1 linearly independent solutions.

Proof. For any nonzero vector A in Rn, we construct a generalized solution uA of the biharmonic
Equation (1) with the boundary conditions

uA(x)
∣∣
Γ1

= (Ax)
∣∣
Γ1

,
∂uA(x)

∂ν

∣∣∣
Γ1

=
∂(Ax)

∂ν

∣∣∣
Γ1

,
∂uA
∂ν

∣∣∣∣
Γ2

=

(
∂∆uA

∂ν
+ τ uA

)∣∣∣∣
Γ2

= 0, (6)

and the condition

χ(uA, Ω) ≡



∫
Ω

(
|uA|2
|x|4 +

|∇uA|2
|x|2 + |∇∇uA|2

)
dx < ∞

for n > 4,∫
Ω

(
|uA|2

||x|2 ln |x||2 +
|∇uA|2
||x| ln |x||2 + |∇∇uA|2

)
dx < ∞

for 2 ≤ n ≤ 4,

(7)

for A, x ∈ Rn, where Ax denotes the standard scalar product of A and x.
Such a solution of the problem in Equations (1) and (6) can be constructed by the variational

method [31], minimizing the functional

Φ(v) =
1
2

∫
Ω
|∆v|2 dx

in the class of admissible functions
{

v : v ∈ H2(Ω), v(x)
∣∣
Γ1

= (Ax)
∣∣
Γ1

, ∂v(x)
∂ν

∣∣
Γ1

= ∂(Ax)
∂ν

∣∣
Γ1

,
∂v
∂ν

∣∣∣
Γ2

=
(

∂∆v
∂ν + τ v

)∣∣∣
Γ2

= 0, v is compactly supported in Ω
}

.

The validity of the condition in Equation (7) as a consequence of the Hardy inequality follows
from the results in [1–3].

Now, for any arbitrary number e 6= 0, we construct a generalized solution ue of Equation (1) with
the boundary conditions

ue
∣∣
Γ1

= e,
∂ue

∂ν

∣∣∣∣
Γ1

= 0,
∂ue

∂ν

∣∣∣∣
Γ2

=

(
∂∆ue

∂ν
+ τ ue

)∣∣∣∣
Γ2

= 0, (8)

and the condition
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χ(ue, Ω) ≡



∫
Ω

(
|ue|2
|x|4 +

|∇ue|2
|x|2 + |∇∇ue|2

)
dx < ∞

for n > 4,∫
Ω

(
|ue|2

||x|2 ln |x||2 +
|∇ue|2
||x| ln |x||2 + |∇∇ue|2

)
dx < ∞

for 2 ≤ n ≤ 4.

(9)

The solution of the problem in Equations (1) and (8) is also constructed by the variational
method with the minimization of the corresponding functional in the class of admissible functions
{v : v ∈ H2(Ω), v

∣∣
Γ1

= e, ∂v
∂ν

∣∣∣
Γ1

= 0, ∂v
∂ν

∣∣∣
Γ2

=
(

∂∆v
∂ν + τ v

)∣∣∣
Γ2

= 0, where v is compactly supported

in Ω}.
The condition in Equation (9) as a consequence of the Hardy inequality follows from the results

in [1–3].
Consider the function v = (uA − Ax)− (ue − e).
Obviously, v is a solution of the problem in Equations (1) and (2):

∆2v = 0, x ∈ Ω, v
∣∣
Γ1

=
∂v
∂ν

∣∣∣∣
Γ1

= 0,
∂v
∂ν

∣∣∣∣
Γ2

=

(
∂∆v
∂ν

+ τ v
)∣∣∣∣

Γ2

= 0.

One can easily see that v 6≡ 0 and D(v, Ω) < ∞.
To each nonzero vector A = (A0, A1, . . . , An) in Rn+1, there corresponds a nonzero solution

vA = (vA0 , vA1 , . . . , vAn) of the problem in Equations (1) and (2) with the condition D(vA, Ω) < ∞,
and, moreover,

vA = uA − ue − Ax + e.

Let A0, A1, . . . , An be a basis in Rn+1. Let us prove that the corresponding solutions
vA0 , vA1 , . . . , vAn are linearly independent. Let

n

∑
i=0

CivAi ≡ 0, Ci = const .

Set W ≡ ∑n
i=1 Ci Aix− C0e. We have

W =
n

∑
i=1

CiuAi − C0ue,∫
Ω
|x|−2|∇W|2 dx < ∞, n > 4,∫

Ω
||x| ln |x||−2|∇W|2 dx < ∞, 2 ≤ n ≤ 4.

Let us show that

W ≡
n

∑
i=1

Ci Aix− C0e ≡ 0.

Let T = ∑n
i=0 Ci Ai = (t0, . . . , tn), where A0 = −e. Then,∫

Ω
|x|−2|∇W|2 dx =

∫
Ω
|x|−2(t2

1 + · · ·+ t2
n) dx =∞, n > 4,∫

Ω
||x| ln |x||−2|∇W|2 dx =

∫
Ω
||x| ln |x||−2(t2

1 + · · ·+ t2
n) dx = ∞, 2 ≤ n ≤ 4,

if T 6= 0.
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Consequently, T = ∑n
i=0 Ci Ai = 0, and since the vectors A0, A1, . . . , An are linearly independent,

we obtain Ci = 0, i = 0, 1, . . . , n.
Thus, the Dirichlet–Steklov-type problem in Equations (1) and (2) with the condition D(u, Ω) < ∞

has at least n + 1 linearly independent solutions.
Let us prove that each solution u of the problem in Equations (1) and (2) with the condition

D(u, Ω) < ∞ can be represented as a linear combination of the functions vA0 , vA1 , . . . , vAn , i.e.,

u =
n

∑
i=0

CivAi , Ci = const .

Since A0, A1, . . . , An is a basis in Rn+1, it follows that there exists constants C0, C1, . . . , Cn such that

A =
n

∑
i=0

Ci Ai.

We set

u0 ≡ u−
n

∑
i=0

CivAi .

Obviously, the function u0 is a solution of the problem in Equations (1) and (2), and D(u0, Ω) < ∞,
χ(u0, Ω) < ∞.

Let us show that u0 ≡ 0, x ∈ Ω. To this end, we substitute the function ϕ(x) = u0(x)θN(x)
into the integral identity in Equation (5) for the function u0, where θN(x) = θ(|x|/N), θ ∈ C∞(R),
0 ≤ θ ≤ 1, θ(s) = 0 for s ≥ 2 and θ(s) = 1 for s ≤ 1; then, we obtain∫

Ω
(∆u0)

2θN(x) dx +
∫

Γ2

τ |u0|2θN(x) ds = −J1(u0)− J2(u0), (10)

where
J1(u0) = 2

∫
Ω

∆u0∇u0∇θN(x) dx, J2(u0) =
∫

Ω
u0 ∆u0 ∆θN(x) dx.

By applying the Cauchy–Schwarz inequality and by taking into account the conditions
D(u0, Ω) < ∞ and χ(u0, Ω) < ∞, one can easily show that J1(u0) → 0 and J2(u0) → 0 as N → ∞.
Consequently, by passing to the limit as N → ∞ in Equation (10), we obtain∫

Ω
(∆u0)

2 θN(x) dx +
∫

Γ2

τ |u0|2θN(x) ds→ 0.

Using the integral identity ∫
Ω
(∆u0)

2 dx +
∫

Γ2

τ |u0|2 ds = 0,

we find that if u0(x) is a solution of the homogeneous problem in Equations (1) and (2), then ∆u0 = 0.
Therefore, we have

∆u0 = 0, x ∈ Ω,

u0
∣∣
Γ1

=
∂u0

∂ν

∣∣∣∣
Γ1

= 0,
∂u0

∂ν

∣∣∣∣
Γ2

=

(
∂∆u0

∂ν
+ τ u0

)∣∣∣∣
Γ2

= 0.

Hence, it follows ([33] Ch.2) that u0 = 0 in Ω. The relation∫
∂Ω

τ |u0|2 ds = 0

implies that u0 ≡ 0 on a set of a positive measure on ∂Ω. The proof of the theorem is complete.
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Theorem 2. The mixed Dirichlet–Steklov-type problem in Equations (1) and (2) with the condition
Da(u, Ω) < ∞ has:

(i) the trivial solution for n− 2 ≤ a < ∞, n > 4;
(ii) n linearly independent solutions for n− 4 ≤ a < n− 2, n > 4;
(iii) n + 1 linearly independent solutions for −n ≤ a < n− 4, n > 4; and
(iv) k(r, n) linearly independent solutions for −2r + 2− n ≤ a < −2r + 4− n, r > 1, n > 4, where

k(r, n) =
(

r + n
n

)
−
(

r + n− 4
n

)
.

The proof of Theorem 2 is based on Lemma 1 about the asymptotic expansion of the solution of
the biharmonic equation and the Hardy type inequalities for unbounded domains [1–3]. In Case (iv),
we need to determine the number of linearly independent solutions of the biharmonic Equation (1),
the degree of which not exceed the fixed number.

It is well know that the dimension of the space of all polynomials in Rn of degree ≤ r is equal
to (r+n

n ) [34]. Then, the dimension of the space of all biharmonic polynomials in Rn of degree ≤ r is
equal to (

r + n
n

)
−
(

r + n− 4
n

)
,

since the biharmonic equation is the vanishing of some polynomial of degree r− 4 in Rn. If we denote
by k(r, n) the number of linearly independent polynomial solutions of Equation (1) whose degree do
not exceed r and by l(r, n) the number of linearly independent homogeneous polynomials of degree r,
that are solutions of Equation (1), then

k(r, n) =
r

∑
s=0

l(s, n),

where

l(s, n) =
(

s + n− 1
n− 1

)
−
(

s + n− 5
n− 1

)
, s > 0.

Further, we prove that the mixed Dirichlet–Steklov-type problem in Equations (1) and (2)
with the condition Da(u, Ω) < ∞ for −2r + 2− n ≤ a < −2r + 4− n has equally k(r, n) linearly
independent solutions.

3.2. The Steklov-Type Biharmonic Problem

Definition 3. A function u is a solution of the Steklov-type biharmonic problem in Equations (1) and (3), if
u ∈ H2

loc(Ω), ∂u/∂ν = 0 on ∂Ω, such that for every function ϕ ∈ C∞
0 (Rn), ∂ϕ/∂ν = 0 on ∂Ω, the following

integral identity holds ∫
Ω

∆u ∆ϕ dx−
∫

∂Ω
τ u ϕ ds = 0.

Theorem 3. The Steklov-type biharmonic problem in Equations (1) and (3) with the condition D(u, Ω) < ∞
has n + 1 linearly independent solutions.

Theorem 4. The Steklov-type biharmonic problem in Equations (1) and (3) with the condition Da(u, Ω) < ∞ has:
(i) n linearly independent solutions for n− 4 ≤ a < ∞;
(ii) n + 1 linearly independent solutions for −n ≤ a < n− 4; and
(iii) k(r, n) linearly independent solutions for −2r + 2− n ≤ a < −2r + 4− n, r > 1, where

k(r, n) =
(

r + n
n

)
−
(

r + n− 4
n

)
.
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The results of the article were presented at the 7th International Conference on Mathematical
Modeling in Physical Sciences (7th ICMSQUARE, August 27–31, 2018, Moscow, Russia).
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