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Abstract: This paper presents a two-dimensional analytical model of outer rotor permanent magnet 
machines equipped with surface inset permanent magnets. To obtain the analytical model, the 
whole model is divided into the sub-domains, according to the magnetic properties and geometries. 
Maxwell equations in each sub-domain are expressed and analytically solved. By using the 
boundary/interface conditions between adjacent sub-regions, integral coefficients in the general 
solutions are obtained. At the end, the analytically calculated results of the air-gap magnetic flux 
density, electromagnetic torque, unbalanced magnetic force (UMF), back-electromotive force (EMF) 
and inductances are verified by comparing them with those obtained from finite element method 
(FEM). One of the merits of this method in comparison with the numerical model is the capability 
of rapid calculation with the highest precision, which made it suitable for optimization problems. 

Keywords: analytical model; partial differential equations; separation of variable technique; 
electrical machines; surface inset permanent magnet 

 

1. Introduction 

The existence of different types of PM brushless machines (PMBLM) made them applicable for 
a wide range of applications. PMBLMs have superiorities in comparison with other rivals like 
induction machines or reluctance synchronous machines due to higher efficiency, high torque per 
volume, lower torque ripple, lower vibration, and lower acoustic noise.  

PMBLM can be categorized in terms of various criteria such as the topology of PMs, the relative 
position of the rotor and stator, the slotted or slotless stator structure, etc.  

Various PM topologies such as surface-mounted, surface-inset, and interior are used where each 
has its own advantages and disadvantages. Among these topologies, surface-inset can provide a 
compromise between the other two topologies. 

Electric machines with single rotor and single stator can be either inner rotor or outer rotor. The 
outer rotor motors can develop more output torque than the inner ones for the same volume of the 
machine. Usually, inner rotor machines are used for applications, which need rapid acceleration and 
deceleration. Outer rotor machines usually are used for applications which need constant speed. 
Also, the mechanical robustness of the PMs in the outer rotor configuration is higher than the inner 
one. 

In this paper because of the aforementioned advantages of the outer rotor machines and surface 
inset PMs, an exact two-dimensional electromagnetic model for this type of machines is extracted. 
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In the design procedure, the static model is normally considered. Numerous static models have 
been presented for electric machines, in which some of them are based on the analytical approaches 
[1–52], and the others are based on numerical methods [53–55]. 

The presented analytical model for electric machines are based on permeance model [1] or 
magnetic equivalent circuit, also known as (a.k.a.) 0-D analytic model [2], or resolution of the 
Maxwell’s equations in 2-D plane (a.k.a. 2-D analytic model) [3-48] or 3-D plane (a.k.a. 3-D analytic 
model) [49,50]. Also, other methods based on mapping techniques such as Schwarz-Christoffel have 
been used to extract the model of some machine with the analytical approach [51,52]. The most 
accurate presented models among the analytical methods are 3-D analytic and 2-D analytic. The 2-D 
analytic method can be used instead of 3-D when the model is symmetric and has no skewing. Two-
dimensional analytical models are not only capable of considering a high number of harmonics which 
elevate the precision of the models, but also have less computational time in comparison with the 
numerical methods and made them appropriate for optimal design problems. 

Two-dimensional analytical models are presented for the slotted [3–17,19,20,29–38,41,42,44,45] 
and slotless [21–28] machines, equipped with surface mounted [3–6,10–12,14–20,23,26,32,34,37,41,52] 
and surface inset [9,13,21,22,24,25,35,36] or spoke type magnets [7,8], in order to obtain the important 
quantities like magnetic flux density, electromagnetic torque, unbalanced magnetic force, back-EMF, 
and inductances. Also, the 2-D analytical model is used to calculate the eddy current effect 
[11,18,22,31,32,49,50] in electrical machines. Most of the abovementioned publications are focused on 
the inner rotor structure [5–18,22–27,31–33,34–38,42,44–46] and only a few of them present the 2-D 
model for outer rotor machines with surface mounted PMs [4,28–30,41]. Therefore, to the best 
knowledge of the authors, it is for the first time that 2-D analytical model of brushless PM machines 
with outer rotor and surface inset PM is presented using the subdomain technique.  

Most of the developed 2-D or 3-D analytic model are assumed with the infinite permeability of 
the iron parts. New techniques to account for finite soft-magnetic permeability have been recently 
developed, i.e., the multi-layer model using the Cauchy’s product theorem is presented in [38], and 
the subdomain technique by applying the superposition principle in both directions is proposed in 
[39–46] which can be used to calculate the core losses and saturation phenomena. 

An overview of the analytical models in the Maxwell‒Fourier method with a global or local 
saturation effect has been realized in [40]. According to [48], Dubas’ superposition technique [39,40] 
is very interesting since it enables the magnetic field calculation in the material of slotted geometries. 
This superposition technique has been implemented in radial-flux electrical machines with(out) PMs 
supplied by a direct or alternate current [44,45]. 

The presented technique in [39–46] is not only used to predict the magnetic field in all parts of 
the electrical machines, but also it is used to obtain a 2-D analytical model of the steady state heat 
transfer of the electrical machines by solving the heat equations [47].  

The aim of this paper is to extract a 2-D analytical model of PM brushless outer rotor machines 
equipped with surface inset PMs. The model is used to analytically compute the electromagnetic 
torque, torque ripple, back-electromotive force (EMF), inductances and unbalanced magnetic forces 
(UMF).  

Therefore, this paper is organized as follows. In Section 2 the procedure of extracting the 2-D 
model is explained. Section 3 is dedicated to the calculation of the electromagnetic quantities. In 
Section 4 the analytical results of the case study are presented and compared with those of the 
numerical method. In the final part this paper is concluded. 

2. Extracting the Magnetic Model  

2.1. Assumptions 

Figure 1 shows the topology of an outer rotor surface inset brushless permanent magnet 
machine. 



Math. Comput. Appl. 2019, 24, 24  3 of 27 

 

 

Qj ,,2,1   

slot 
Slot-opening 
Magnet 

Air-gap 
Rotor/Stator back-iron 

12,,1,0  pk   

sl, j 

a 

m, k 

so, j 

m,0 

m, k 

m, 2p-1 

  

sl,1 

sl,Q 

so,1 

so,Q 

so, j 

sl, j 

  

Rr 

Rs 
Rm 

Rsl 

Rso 

r

p

 
 

  

 
Figure 1. Outer rotor surface inset brushless permanent magnet machine illustration. 

In order to make the problem solvable, below assumptions are made: 

a) According to the geometry and the absence of skewing, the problem is solved in 2-D polar 
coordinates which means the end effect is neglected. 

b) Magnetic vector potential has just axial component which is function of r  and  . 
Consequently, magnetic flux density has radial and tangential component; i.e., [0,0, ]zAA , 

[ , ,0]rB BB . 
c) All materials are isotropic. 
d) Rotor and stator back iron have infinite permeability. 
e) The edges of the slots and slot-openings have radial direction. 
f) The eddy current effect is neglected. 

2.2. Dividing Region into Sub-regions 

According to the shape and material characteristics, the whole domain is divided into a number 
of sub-domains. All the sub-domains are illustrated in Figure 1 and listed in Table 1 for a PMBLM 
with Q slots and p pole-pairs. 

When the winding is single-layer or double-layer non-overlapping, as shown respectively in 
Figure 2a,b, each slot is a single subdomain; however, if the winding is two-layer overlapping, as 
shown in Figure 2c, each slot is divided into two subdomains. 

Table 1. The sub-domains and related symbols. 

Sub-domain Symbol Number of Sub-regions 

Magnet m  1, 2,..., 2 p  

Air-gap a  1 

Slot-opening so 1, 2,...,Q  

Slot sl  1, 2,...,Q  
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Figure 2. Winding topologies (a) single layer alternate teeth wound (b) double layer all teeth wound 
non-overlapping (c) double-layer overlapping. 

2.3. Extracting the Magnetic Model 

In this part, for each sub-domain a partial differential equation is extracted based on Maxwell’s 
equations. 

Maxwell’s equations in quasi-static form are as follows: 

0  B  (1) 

ˆ  H J J  (2) 

where B  is the magnetic flux density vector. Ampere’s law represents the relation between the 
magnetic field intensity vector ( H ), external current density vector ( J ), and current density vector 
in media ( Ĵ ). In this investigation the current density vector in media is assumed to be negligible, 
i.e., ˆ 0J . 

The relation between the magnetic flux density vector and the magnetic field intensity vector in 
permanent magnet media with linear demagnetizing curve is as follows: 

0 0r   B H M  (3) 

where M  is the magnetization vector. 
Substituting (3) in (2) yields 

0 0r     B J M  (4) 

The magnetic flux density vector can be represented as the curl of the magnetic vector potential 
( A ): 

  B A  (5) 

Using (4) and (5) the following expression is obtained: 
2

0 0r     A J M  (6) 

For each sub-domain, Equation (6) results in Poisson equations for the magnet and slot regions, 
and Laplace equations for the air-gap and slot-opening sub-domains, as represented below. 

2 ,
0

sl
r

j   A J  (7) 

2 ,
0

m k   A M (8) 

2 0 A ,  ( ),( , )a so j   (9) 

In 2-D polar coordinates, the magnetic vector potential and the current density vector have just 
a component along z , i.e.,  0, 0, ,zA r    A  and  0, 0, ,zJ t   J . Also, the magnetic 

flux density vector and the magnetization vector have radial and tangential components as below: 
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,  ( ),( , )a so j   (12) 

3.3. Boundary Conditions 

The perpendicular magnetic flux density in two adjacent sub-domains must be equal as 
mathematically represented as follows: 

i in.(B B ) = 0  (13) 

In this equation, iB  is the magnetic flux density in sub-domain i , and i B  is the magnetic 
flux density in the sub-domain i  . 

Also, if there is no current between the two adjacent sub-domains, the tangential components of 
the magnetic field intensity at the boundary of the two sub-domains are equal; this expression is 
shown mathematically by Relation (14). 

( ) 0i i   n H H  (14) 

In this equation iH  is the magnetic field intensity of the sub-domain i  and i H  is the 
magnetic field intensity of sub-domain i  . 

In both (13) and (14), n  is the perpendicular unit vector to the interface between two adjacent 
sub-domains.  

According to Figure 1, all boundary/interface conditions between sub-domains have been 
tabulated in Table 2 where r ,  , and   are respectively the magnet arc per pole pitch ratio, the 
span angle of slot-openings, and the span angle of slots as shown in Figure 1.  
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Table 2. Interface/boundary condition between sub-domains. 
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r  2/  j  slso RrR   (24) 

Slot Stator yoke 0),(,  rH jsl

 slRr   2
  j  (25) 

2.4. Extracting the Fourier Series of the Armature Reaction 

To consider the effect of the armature reaction, the current density of each slot should be 
represented as Fourier series. The current of each phase varies with time and can be represented as 
Equation (26). 

   sin ,k v k v
v

i t I v p t       1, 2, ,k q   (26) 

where q is the number of the phases, v shows the order of the harmonics,  is the angular velocity 
of the rotor, p  is the number of the pole-pairs,  2 1 /k k q    is the time offset of the phase 

kth  respect to the first phase. Also vI  and v  are the magnitude and phase offset of vth  
harmonic, respectively. 

It is obvious that the relation between the current density in each slot and phase current is 
dependent on the winding configuration. If the winding configuration is like Figure 2a,b, each slot is 
considered as one sub-region, like Figure 3a,b. But, if the configuration is similar to Figure 2c, each 
slot consists of two sub-regions (upper and lower sub-regions), as represented in Figure 3c. 

The current density in each sub-region of a slot can be represented in Fourier series form as in 
Equation (27). 

        0
1

, cos / 2

/ 2 / 2.

vj j j
z v j

v

j j

J t J t J t 
   

    





   

   


 (27) 

where  0
jJ t  and  j

vJ t  are as follows: 

     
0 2

j j
rj J t J t

J t


 
 (28) 
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Figure 3. Sub-region division according to the winding configuration: (a) whole slot is considered as 
one region and belongs to one coil, (b) whole slot is considered as one region and left side and right 
side of the slot belongs to different coils, (c) whole slot divided into upper and lower sub-regions and 
each part belongs to one coil. 

In order to complete the Fourier series of each sub-region of a slot, it is necessary to obtain the 
current density of phases in each sub-region of a slot at a specific time by Equations (30) and (31): 

f slot

I
J

K A
  (30) 

/ 2f slot

I
J

K A
  (31) 

For instance, the current density in each sub-domain of a slot could be as Figure 4a,b. 
If the winding configuration is as shown in Figure 2a or 2c, the figure of the current density in 

each sub-region of slot, at a time instant will be as Figure 4a, and if the winding configuration is as 
shown in Figure 2b, the figure of the current density in a time instant will be as Figure 4b. Also if the 
configuration of the winding is similar to Figure 2c, the current density in each sub-region of the slot 
will be as Figure 4a. 
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Figure 4. Value of the current density in each sub-region of slot, according to represented winding 
configurations. 

2.5. Extracting the Fourier Series of the Magnetization  

In the 2-D polar coordinate system, the magnetization vector only has the radial and tangential 
components as Equation (32). 

rM M M r θ  (32) 
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where r  and θ  are the radial and tangential unit vectors. rM  and M  are the components of 
magnetization vector which can be represented as Fourier series expansion of Equations (33) and (34). 
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where nrM  and nM  respectively are the radial and tangential coefficient of the Fourier series and 
will be determined according to the magnetization pattern. In this paper, only the radial 
magnetization pattern has been used and represented in Figure 5. 

Table 3. Radial magnetization pattern and its Fourier series components. 
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2.6. Finding the General Solution  

The overall format for the general solution in all sub-domains can be represented as Equation 
(35): 

        0 0 0 0
1

, . cos n θ sin n θ lnr B θ Dn n
n n n n

n

A r A r B r C D A C


 
   



       (35) 

The general solution not only has the capability to satisfy the related PDE, but must satisfy the 
boundary conditions of the related sub-domain, especially Equations (16), (19), and (24). So the 
general solutions for sub-domains are as Equations (36)–(40). 

The general solution of Poisson equation in slot sub-domain will be as follows: 
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The particular solution is as follows: 
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Also the general solution for the slot-opening sub-domain is 
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The general solution for the air-gap sub-domain is 
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And finally, Poisson equation in the PMs sub-domain has the general solution as Equation (40). 
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In order to simplify the general solution in PM sub-domain, boundary condition (15) has been 
implemented. 
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where 
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Also, by implementing boundary condition (25), the general solution in slot sub-domain will be 
simplified as in Equation (45). 
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2.7. Obtaining Integral Coefficients 

For implementing boundary condition (17), the correlation technique must be used [31]. 
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From Equation (46), Equation (47) will be deduced. 
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The solutions of the integrals have been given in the appendix. 
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Equation (51) results in Equation (52): 
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The solution of the integral has been given in the appendix. 
Again Equation (18) must be multiplied by  1 cos n  , then integration on the interval 
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Equation (55) results in Equation (56). 
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where 
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The solution of the integral has been given in the appendix. 

For implementing boundary condition (20), multiplying   2
2sin u
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      to Equation 

(20) and integration over 2 2,j j
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Equation (59) is obtained via the simplification of Equation (58). 
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The solution of the integral has been given in the appendix. 
The correlation technique is used for boundary condition (21) and  1 cos n   is multiplied to 

Equation (21) and integration is taken over  ,  . 
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Simplifying Equation (62) yields (63). 
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Also, by multiplying Equation (21) to  1 sin n   and integration over interval  ,   the 

following expression is obtained: 
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Simplification of Equation (65) causes the formation of Equation (66). 
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The correlation technique is used and boundary condition (22) is multiplied by 

  2
2sin u

j
 

     . Integration over interval 2 2,j j
       results in Equation (68). 
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Simplifying (68) results in (69).  
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Solution of the integral are given in the appendix. 
Correlation technique is implemented for boundary condition (23) and it is multiplied by 

  2
2cos v

j
 

     . Integration over interval 2 2,j j
      yields Equation (71). 
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Simplifying Equation (71) results in Equation (72). 
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where 
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Integration over interval 
2 2,j j
       on boundary condition (23) causes Equation (74). 
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From Equation (74), Equation (75) will be deduced. 
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2.8. Overlapping Winding 

In overlapping winding, each slot is divided into two sub-domains as represented in Figure 3c. 
The upper and lower sub-domains respectively are indicated with slb  and slt  indices. Hence 
Equation (69) will be as follows: 
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Also, Equations (72) and (75) will be modified as (77) and (78) respectively. 

   
 

 

2

, , ,

1

,
0

1
,

0, 0

u v
U

u v sl soso j so j slb jso
u u c vv

u s
slm so

so j
c

R RR
a b u v b

R R R

v b

 
 

 
  









                    
 


 (77) 
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b slm sl t so slmb J R R J R R
 


       (78) 

where  2 2 2slm sl soR R R   is the radii of middle of the slot which divides it into two equal 

areas. 0
j

bJ  and 0
j

tJ  are current densities in the lower and upper sub-domains in a slot. 

3. Quantities 

3.1. Flux Density 

The air-gap flux density vector is one of the most important quantities required for the 
calculation of other quantities. For obtaining the air-gap flux density, Equation (5) is expanded and 
Relations (78) and (79) in 2-D polar coordinates are deduced. 
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3.2. Inductances 

For calculation of the inductances, just the flux produced by armature is considered. Inductances 
between phase k  and k   are obtained as follows: 

,
,

&

j j
k k

j k j k j

L
i

 


   

   (81) 

where 1, 2, ,j Q   and 1, 2, ,j Q    are the indices of the coils. ji   is the current of phase 

'k  and ,j j   is the flux linked by coil j , which is produced by coil j  . If 'k k , self-inductance 

of the phase is calculated. 

3.3. Back-EMF 

In order to calculate the no-load back-EMF of a phase, the permanent magnet flux linked by coils 
must be calculated by Equation (82). 

d  B S  (82) 

According to Faraday’s law, induced voltage in jth coil obtain by Equation (83). 

j
j t

d
E N

d





  (83) 

where tN  is the number of turns of the coil,   and   are the angular velocity and rotor position 
respectively. The total back-EMF of a phase depends on coils connections.  

3.4. Instantaneous Electromagnetic Torque 

Instantaneous torque consists of cogging torque ( cogT ), electromagnetic torque ( emT ) and 

reluctance torque ( relT ). 

( ) ( ) ( ) ( )cog em relT t T t T t T t    (84) 

By using Maxwell stress tensor, the instantaneous electromagnetic torque can be obtained as 
follows: 

0

1
( ) rT t B B ds

    (85) 

By expanding Equation (85), Relations (86) and (87) will be obtained. 
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where ,
a
r PMB  and ,

a
PMB  respectively are the radial and tangential flux density components in the 

air-gap, due to the PMs. Also ,
a
r ARB  and ,

a
ARB  are the radial and tangential magnetic flux density 

components due to the armature reaction in the air-gap. The parameter cR  is the radius of the 
middle of inner air-gap. 

3.5. Unbalanced Magnetic Force 

The radial and tangential components of the local traction exerted on the rotor surface can be 
obtained by Maxwell stress tensor as follows: 

 2 2

0

1

2r rf B B
   (88) 

0

1
rf B B 

  (89) 

By transforming these local tractions to the Cartesian plane, and summation of the same 
directions, Equations (90)–(93) will be obtained. 

cos sinx rf f f     (90) 

sin cosy rf f f     (91) 
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x x xL
F t f r d dz L f r d

 

 
 

  
     (92) 

 
/2
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L

y y yL
F t f r d dz L f r d

 

 
 

  
     (93) 

Finally, the amplitude of the unbalanced magnetic force can be obtained by Equation (94). 

     2 2
r x yF F t F t F t    (94) 

4. Results  

In order to investigate the efficacy of the model, a case study with the parameters listed in Table 
3 has been used. 

Also, the winding configuration for this case study has been shown in Figure 5. 
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Table 3. Parameters used in the case study. 

Parameters Unit Symbol Value 

Number of phases  q 3 

Number of the pole-pair  p  4 

Number of slots  Q  9 

Outer radius of the slots (mm) slR  18 

Outer radius of the slot-opening (mm) soR  29 

Stator radius (mm) sR  31 

Magnet radius (mm) mR  32 

Radius of the rotor back iron (mm) rR  38 

Axial length (m) Ls 0.1 

Span of the slot (rad)   0.6 

Span of the slot-opening (rad)   0.3 

Pole arc to pole pith of the magnet  p  0.85 

Ratio of the rotor back iron to the pole pitch  r  0.85 

Remanence of magnet (T) remB  1 

Relative permeability of the magnet  r  1.05 

Number of harmonics in each sub-domain  N, U, V, W 100 

 

1A 
  

1B 
  

2A 
  

3A 
  

2B 
  

3B 
  2A 

  

3A 
  
1A 

  

1B 
  

2B 
  

3B 
  

1C 
  

2C 
  

3C 
  

1C 
  2C 

  

3C 
  

 
Figure 5. The machine topology and winding configuration. 

4.1. Flux Density 

The radial and tangential magnetic flux density components due to the open-circuit and 
armature reaction are respectively depicted in Figures 6–9. The numerical results obtained from FEM 
are shown respectively in each figure and confirm the accuracy of the proposed model. 
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Figure 6. Radial magnetic flux density due to just PMs in the middle of the air-gap, when the rotor 
position is set to zero. 
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Figure 7. Tangential magnetic flux density due to just PMs in the middle of the air-gap, when the 
rotor position is set to zero. 
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Figure 8. Radial magnetic flux density due to just armature winding in the middle of the air-gap, 
when the current density of phase A is zero, current density of phase B is 4.33 A/mm2 and phase C is 
4.33 A/mm2. 
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Figure 9. Tangential magnetic flux density due to just armature winding in the middle of the air-gap, 
when the current density of phase A is zero, current density of phase B is 4.33 A/mm2 and phase C is 
4.33 A/mm2. 

4.2. Torque 

Instantaneous electromagnetic torque, reluctance torque and cogging torque of the machine 
have been depicted in Figures 10–12. Both analytic and numeric methods show good agreement 
which confirms the efficacy of the proposed model. 

 
Figure 10. Electromagnetic torque vs. rotor position. 
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Figure 11. Reluctance torque vs. rotor position. 

 
Figure 12. Cogging torque vs. rotor position. 

4.3. Back-EMF and Inductance 

Results of the phase back-EMF and line back-EMF are shown in Figure 13. Again it is shown that 
both analytic and numeric results have good conformity. 

Also, the self and mutual inductances have been depicted in Figure 14. 
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Figure 13. Back-electromotive force (EMF) of the first phase and first line. 
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Figure 14. Self and mutual inductance of a phase. 

4.4. Unbalanced Magnetic Force (UMF) 

Unbalanced magnetic forces due to the open-circuit, armature reaction, and both of them have 
been depicted in Figures 15–17. As evident from these figures, unbalanced forces due to the armature 
reaction exert considerable forces compared to those of the open circuit. 

Both analytic and numeric results are shown in Figures 15–17 and confirm the correctness of the 
proposed model. 
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Figure 15. Unbalanced magnetic forces just due to the PMs. 
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Figure 16. Unbalanced magnetic forces just due to the armature reaction. 
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Figure 17. Total unbalanced magnetic forces exerted on the rotor. 

5. Conclusion  

A 2-D analytical magnetic model is presented for brushless synchronous outer rotor machines 
with surface inset PMs. For this purpose, Maxwell’s equations in the form of the Laplace and Poisson 
equations are solved in predefined sub-domains of the 2-D polar coordinates. The general and 
particular solutions for each sub-region are presented so that they have the capability to satisfy the 
governing PDE and related boundary conditions. Finally, by imposing boundary conditions and 
solving simultaneous linear algebraic equations, all important quantities such as magnetic flux 
density, electromagnetic torque, UMF, back-EMF, and inductances are calculated and validated by 
those obtained by FEM. The results of the analytical model show the efficacy of the proposed 
approach. 
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Appendix A 

To define the left and right side current density in each slot for the two layers non-overlapping 
concentrated winding topology, we have: 

( )

/ 2r r
f w

i t
J

K A
 C  

(95) 

( )

/ 2l l
f w

i t
J

K A
 C  

(96) 

where 1[ ... ... ]j Q
r r r rJ J J J , 1[ ... ... ]j Q

l l l lJ J J J , ( ) [ ]a b ci t i i i , fK  is the filling factor and wA  is 
the slot area. On the other hand, rC  and lC  are as follows: 
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According to the winding topology, C is as follows: 
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where ( , ) 2i j C  or −2 means slot j accommodates two sides of two coils of phase i, which 
respectively carry positive or negative current. ( , ) 1i j C  or −1 means slot j accommodates one side 
of one coil of phase i, which respectively carry positive or negative current. Also, 0 means there is no 
coil of the phase thi in the slot. 
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For rn wp  : 

     

 

1
, , cos 3 / 2 cos / 2

4

sin / 2
2

kn kn
s p p

r kn
p

n w k w n w n
n

w n
p

 



    


  

        

  

 (104) 



Math. Comput. Appl. 2019, 24, 24  24 of 27 

 

     

 

1
, , sin 3 / 2 sin / 2

4

cos / 2
2

kn kn
c p p

r kn
p

n w k w n w n
n

w n
p

 



    


  

       

  

 (105) 

     
 

1
, , sin 3 / 2 sin / 2

2

cos / 2

kn kn
s p p

kn
p

n w k w n w n
w

w n

 



    


 

        

  
 (106) 

     
 

1
, , cos 3 / 2 cos / 2

2

sin / 2

kn kn
c p p

kn
p

n w k w n w n
w

w n

 



    

 

        

  
 (107) 

For u n  : 

 
       1

2 2

2 2 2 2

1 sin sin
, , 2

u

j j

s

n n
n u j u

u n

  
 

 

   



 (108) 

 
       1

2 2

2 2 2 2

1 cos cos
, , 2

u

j j

c

n n
n u j u

u n

  
 

 

   



 (109) 

 
       2

2 2

2 2 2 2

1 cos cos
, ,

u

j j

s

n nn
n u j

u n

  
  

   



 (110) 

 
       1

2
2 2

2 2 2 2

1 sin sin
, ,

u

j j

c

n nn
n u j

u n

  
  

   



 (111) 

For u n  : 

          3
2 2

2

sin sin
, , cos

2

j j

s j

n n
n u j n

n

 


 
 



  
    (112) 

          3
2 2

2

cos cos
, , sin

2

j j

c j

n n
n u j n

n

 


 
 



  
     (113) 

 
        3

2 2 2sin cos cos
, ,

2 4

j j j

s

n n n
n u j

n

    


  

   
   (114) 

 
        3

2 2 2cos sin sin
, ,

2 4

j j j

c

n n n
n u j

n

    


  

   
   (115) 

For u v  : 

 
       1

2
2 2

2 2 2 2

1 sin sin2
,

u v v

s

u
u v

u v

 
    

  

   



 (116) 

 
       1

2
2 2

2 2 2 2

1 sin sin2
,

u v v

c

v
u v

u v

 
    

  

   



 (117) 



Math. Comput. Appl. 2019, 24, 24  25 of 27 

 

For u v  : 

 
        2 2 22 cos sin 3 sin

,
2s

u u v u v u v
u v

u

  




    
  (118) 

 
        2 2 22 cos sin 3 sin

,
2c

u u v u v u v
u v

v

  




    
  (119) 

References 

1. Zarko, D.; Ban, D.; Lipo, T. A. Analytical calculation of magnetic field distribution in the slotted air gap of 
a surface permanent-magnet motor using complex relative air-gap permeance. IEEE Trans. Magn. 2006, 42, 
1828–1837. 

2. Hur, J.; Yoon, S.; Hwang, D.; Hyun, D. Analysis of PMLSM using three dimensional equivalent magnetic 
circuit network method. IEEE Trans. Magn. 1997, 33, 4143–4145. 

3. Rahideh, A.; Vahaj, A.A.; Mardaneh, M.; Lubin, T. Two-Dimensional Analytical Investigation of the 
Parameters and the Effects of Magnetisation Patterns on the Performance of Coaxial Magnetic Gears. IET 
Electr. Syst. Transp. 2017, 7, 230–245. 

4. Moayed-Jahromi, H.; Rahideh, A.; Mardaneh, M. 2-D Analytical Model for External Rotor Brushless PM 
Machines. IEEE Trans. Energy Convers. 2016, 31, 1100–1109. 

5. Wu, L.J.; Zhu, Z.Q.; Staton, D.; Popescu, M.; Hawkins, D. An improved subdomain model for predicting 
magnetic field of surface-mounted permanent-magnet machines accounting for toothtips. IEEE Trans. 
Magn. 2011, 47, 1693–1704. 

6. Rahideh, A.; Korakianitis, T. Subdomain analytical magnetic field prediction of slotted brushless machines 
with surface mounted magnets. Int. Rev. Electr. Eng. 2012, 7, 3891–3909. 

7. Pourahmadi-Nakhli, M.; Rahideh, A.; Mardaneh, M. Analytical 2-D model of slotted brushless machines 
with cubic spoke-type permanent magnets. IEEE Trans. Energy Convers. 2018, 33, 373–382. 

8. Boughrara, K.; Ibtiouen, R.; Lubin, T. Analytical Prediction of Magnetic Field in Parallel Double Excitation 
and Spoke-Type Permanent-Magnet Machines Accounting for Tooth-Tips and Shape of Polar Pieces. IEEE 
Trans. Magn. 2012, 48, 2121–2137. 

9. Rahideh, A.; Korakianitis, T. Analytical magnetic field calculation of slotted brushless PM machines with 
surface inset magnets. IEEE Trans. Magn. 2012, 48, 2633–2649. 

10. Dubas, F.; Sari, A.; Kauffmann, J.M.; Espanet, C. Cogging torque evaluation through a magnetic field 
analytical computation in permanent magnet motors. In Proceedings of the 2009 International Conference 
on Electrical Machines and Systems, Tokyo, Japan, 15–18 November 2009; pp. 1–5. 

11. Dubas, F.; Espanet, C. Semi-analytical Solution of 2-D rotor eddy-current losses due to the slotting effect in 
SMPMM. In Proceedings of the 17th Conference on the Computation of Electromagnetic Fields 
COMPUMAG 2009, Florianopolis, Brasil, 22–26 November 2009; pp. 20–25. 

12. Lubin, T.; Mezani, S.; Rezzoug, A. 2-D exact analytical model for surface-mounted permanent magnet 
motors with semi-closed slots. IEEE Trans. Magn. 2011, 47, 479–492. 

13. Lubin, T.; Mezani, S.; Rezzoug, A. Two-dimensional analytical calculation of magnetic field and 
electromagnetic torque for surface-inset permanent magnet motors. IEEE Trans. Magn. 2012, 48, 2080–2091. 

14. Dubas, F.; Espanet, C. Analytical solution of the magnetic field in permanent-magnet motors taking into 
account slotting effect: No-load vector potential and flux density calculation. IEEE Trans. Magn. 2009, 45, 
2097–2109. 

15. Zhu, Z.Q.; Wu, L.J.; Xia, Z.P. An accurate subdomain model for magnetic field computation in slotted 
surface mounted permanent-magnet machines. IEEE Trans. Magn. 2010, 46, 1100–1115. 

16. Boughrara, K.; Chikouche, B. L.; Ibtiouen, R.; Zarko, D.; Touhami, O. Analytical model of slotted air-gap 
surface mounted permanent-magnet synchronous motor with magnet bars magnetized in the shifting 
direction. IEEE Trans. Magn. 2009, 45, 747–758. 

17. Bellara, A.; Amara, Y.; Barakat, G.; Dakyo, B. Two-dimensional exact analytical solution of armature 
reaction field in slotted surface mounted PM radial flux synchronous machines. IEEE Trans. Magn. 2009, 
45, 4534–4538. 



Math. Comput. Appl. 2019, 24, 24  26 of 27 

 

18. Dubas, F.; Espanet, C.; Miraoui, A. Field diffusion equation in high-speed surface mounted permanent 
magnet motors, parasitic eddy-current losses. In Proceedings of the 6th International Symposium on 
Advanced Electromechanical Motion Systems, Lausanne, Switzerland, 27–29 September 2005; pp. 1–6. 

19. Liu, Z.J.; Li, J.T. Analytical solution of air-gap field in permanent-magnet motors taking into account the 
effect of pole transition over slots. IEEE Trans. Magn. 2007, 43, 3872–3883. 

20. Zhu, Z.Q.; Howe, D.; Chan, C.C. Improved analytical model for predicting the magnetic field distribution 
in brushless permanent-magnet machines. IEEE Trans. Magn. 2002, 38, 229–238. 

21. Rahideh, A.; Korakianitis, T. Analytical magnetic field distribution of slotless brushless machines with inset 
permanent magnets. IEEE Trans. Magn. 2011, 47, 1763–1774.  

22. Dubas, F.; Rahideh, A. 2-D analytical PM eddy-current loss calculations in slotless PMSM equipped with 
surface-inset magnets. IEEE Trans. Magn. 2014, 50, 6300320. 

23. Rahideh, A.; Korakianitis, T. Analytical open-circuit magnetic field distribution of slotless brushless 
permanent magnet machines with rotor eccentricity. IEEE Trans. Magn. 2011, 47, 4791–4808. 

24. Rahideh, A.; Mardaneh, M.; Korakianitis, T. Analytical 2-D calculations of torque, inductance, and back-
EMF for brushless slotless machines with surface inset magnets. IEEE Trans. Magn. 2013, 49, 4873–4884. 

25. Rahideh, A.; Korakianitis, T. Analytical, armature reaction field distribution of slotless brushless machines 
with inset permanent magnets. IEEE Trans. Magn. 2012, 48, 2178–2191. 

26. Atallah, K.; Zhu, Z.Q.; Howe, D.; Birch, T.S. Armature reaction field and winding inductances of slotless 
permanent-magnet brushless machines. IEEE Trans. Magn. 1998, 34, 3737–3744. 

27. Pfister, P.D.; Perriard, Y. Slotless permanent-magnet machines: General analytical magnetic field 
calculation. IEEE Trans. Magn. 2011, 47, 1739–1752. 

28. Holm, S.R.; Polinder, H.; Ferreira, J.A. Analytical modeling of a permanent-magnet synchronous machine 
in a flywheel. IEEE Trans. Magn. 2007, 43, 1955–1967. 

29. Liu, Z.J.; Li, J.T. Accurate prediction of magnetic field and magnetic forces in permanent magnet motors 
using an analytical solution. IEEE Trans. Energy Convers. 2008, 23, 717–726. 

30. Liu, Z.J.; Li, J.T.; Jiang, Q. An improved analytical solution for predicting magnetic forces in permanent 
magnet motors. J. Appl. Phys. 2008, 103, 07F135. 

31. Amara, Y.; Reghem, P.; Barakat, G. Analytical prediction of eddy-current loss in armature windings of 
permanent magnet brushless AC machines. IEEE Trans. Magn. 2010, 46, 3481–3484. 

32. Pfister, P.; Yin, X.; Fang, Y. Slotted Permanent-Magnet Machines: General Analytical Model of Magnetic 
Fields, Torque, Eddy Currents, and Permanent-Magnet Power Losses Including the Diffusion Effect. IEEE 
Trans. Magn. 2016, 52, 1–13. 

33. Wu, L.J.; Zhu, Z.Q.; Staton, D.; Popescu, M.; Hawkins, D. Subdomain model for predicting armature 
reaction field of surface-mounted permanent-magnet machines accounting for tooth-tips. IEEE Trans. 
Magn. 2011, 47, 812–822. 

34. Gysen, B.L.J.; Meessen, K.J.; Paulides, J.J.H.; Lomonova, E.A. General formulation of the electromagnetic 
field distribution in machines and devices using fourier analysis. IEEE Trans. Magn. 2010, 46, 39–52. 

35. Zhu, Z.Q.; Howe, D.; Xia, Z.P. Prediction of open-circuit airgap field distribution in brushless machines 
having an inset permanent magnet rotor topology. IEEE Trans. Magn. 1994, 30, 98–107. 

36. Jian, L.; Chau, K.T.; Gong, Y.; Yu, C.; Li, W. Analytical calculation of magnetic field in surface-inset 
permanent-magnet motors. IEEE Trans. Magn. 2009, 45, 4688–4691.  

37. Zhu, Z.Q.; Ishak, D.; Howe, D.; Chen, J. Unbalanced magnetic forces in permanent-magnet brushless 
machines with diametrically asymmetric phase windings. IEEE Trans. Ind. Appl. 2007, 43, 1544–1553. 

38. Sprangers, R.L.J.; Paulides, J.J.H.; Gysen, B.L.J.; Lomonova, E.A. Magnetic Saturation in Semi-Analytical 
Harmonic Modeling for Electric Machine Analysis. IEEE Trans. Magn. 2016, 52, 1–10. 

39. Dubas, F.; Boughrara, K. New scientific contribution on the 2-D subdomain technique in polar coordinates: 
Taking into account of iron parts. Math. Comput. Appl. 2017, 22, 42. 

40. Dubas, F.; Boughrara, K. New scientific contribution on the 2-D subdomain technique in Cartesian 
coordinates: Taking into account of iron parts. Math. Comput. Appl. 2017, 22, 17. 

41. Djelloul-Khedda, Z.; Boughrara, K.; Dubas, F.; Kechroud, A.; Tikellaline, A. Analytical Prediction of Iron-
Core Losses in Flux-Modulated Permanent-Magnet Synchronous Machines. IEEE Trans. Magn. 2019, 55, 1–
12. 



Math. Comput. Appl. 2019, 24, 24  27 of 27 

 

42. Djelloul-Khedda, Z.; Boughrara, K.; Dubas, F.; Ibtiouen, R. Nonlinear Analytical Prediction of Magnetic 
Field and Electromagnetic Performances in Switched Reluctance Machines. IEEE Trans. Magn. 2017, 53, 1–
11. 

43. Djelloul-Khedda, Z.; Boughrara, K.; Dubas, F.; Kechroud, A.; Souleyman, B. Semi-Analytical Magnetic Field 
Predicting in Many Structures of Permanent-Magnet Synchronous Machines Considering the Iron 
Permeability. IEEE Trans. Magn. 2018, 54, 1–21. 

44. Roubache, L.; Boughrara, K.; Dubas, F.; Ibtiouen, R. New Subdomain Technique for Electromagnetic 
Performances Calculation in Radial-Flux Electrical Machines Considering Finite Soft-Magnetic Material 
Permeability. IEEE Trans. Magn. 2018, 54, 1–15. 

45. Ben Yahia, M.; Boughrara, K.; Dubas, F.; Roubache, L.; Ibtiouen, R. Two-Dimensional Exact Subdomain 
Technique of Switched Reluctance Machines with Sinusoidal Current Excitation. Math. Comput. Appl. 2018, 
23, 59. 

46. Roubache, L.; Boughrara, K.; Dubas, F.; Ibtiouen, R. Elementary subdomain technique for magnetic field 
calculation in rotating electrical machines with local saturation effect. Int. J. Comput. Math. Electr. Electron. 
Eng. 2018, doi:10.1108/COMPEL-11-2017-0481. 

47. Boughrara, K.; Dubas, F.; Ibtiouen, R. 2-D Exact Analytical Method for Steady-State Heat Transfer 
Prediction in Rotating Electrical Machines. IEEE Trans. Magn. 2018, 54, 1–19. 

48. Hannon, B.; Sergeant, P.; Dupré, L. Two-dimensional Fourier-based modeling of electric machines. In 
Proceedings of the 2017 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 21–
24 May 2017; pp. 1–8. 

49. Lubin, T.; Rezzoug, A. 3-D Analytical Model for Axial-Flux Eddy-Current Couplings and Brakes Under 
Steady-State Conditions. IEEE Trans. Magn. 2015, 51, 1–12. 

50. Lubin, T.; Rezzoug, A. Improved 3-D Analytical Model for Axial-Flux Eddy-Current Couplings with 
Curvature Effects. IEEE Trans. Magn. 2017, 53, 1–9. 

51. Zarko, D.; Ban, D.; Lipo, T.A. Analytical solution for cogging torque in surface permanent magnet motors 
using conformal mapping. IEEE Trans. Magn. 2008, 44, 52–65.  

52. Boughrara, K.; Zarko, D.; Ibtiouen, R.; Touhami, O.; Rezzoug, A. Magnetic field analysis of inset and 
surface-mounted permanent-magnet synchronous motors using Schwarz–Christoffel transformation. IEEE 
Trans. Magn. 2009, 45, 3166–3178.  

53. Clemens, M.; Lang, J.; Teleaga, D.; Wimmer, G. Transient 3D magnetic field simulations with combined 
space and time mesh adaptivity for lowest order Whitney finite element formulations. IET Sci. Meas. 
Technol. 2009, 3, 377–383. 

54. Liang, Y.; Bian, X.; Yang, L.; Wu, L. Numerical calculation of circulating current losses in stator 
transposition bar of large hydro-generator. IET Sci. Meas. Technol. 2015, 9, 485–491. 

55. Mohammed, O.A.; Liu, S.; Liu, Z. FE-based physical phase variable model of PM synchronous machines 
under stator winding short circuit faults. IET Sci. Meas. Technol. 2007, 1, 12–16. 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


