
Article

Mathematical Analysis of a Prey–Predator System: An
Adaptive Back-Stepping Control and Stochastic
Approach

Kalyan Das 1,*, M. N. Srinivas 2, V. Madhusudanan 3 and Sandra Pinelas 4

1 Department of Mathematics, National Institute of Food Technology Entrepreneurship and Management
(NIFTEM), HSIIDC Industrial Estate, Kundli-131028, Haryana, India

2 Department of Mathematics, School of Advanced Sciences, VIT, Vellore-632014, Tamil Nadu, India;
mnsrinivaselr@gmail.com

3 Department of Mathematics, S.A. Engineering College, Chennai, Tamil Nadu, India;
mvmsmaths@gmail.com

4 Departamento de Ciencias Exatas e Naturais, Academia Militar, Av. Conde Castro Guimaraes 2720-113,
Amadora, Portugal; sandra.pinelas@gmail.com

* Correspondence: daskalyan27@gmail.com

Received: 4 December 2018; Accepted: 30 January 2019; Published: 5 February 2019

Abstract: In this paper, stochastic analysis of a diseased prey–predator system involving adaptive
back-stepping control is studied. The system was investigated for its dynamical behaviours, such as
boundedness and local stability analysis. The global stability of the system was derived using the
Lyapunov function. The uniform persistence condition for the system is obtained. The proposed
system was studied with adaptive back-stepping control, and it is proved that the system stabilizes
to its steady state in nonlinear feedback control. The value of the system is described mostly by the
environmental stochasticity in the form of Gaussian white noise. We also established some conditions
for oscillations of all positive solutions of the delayed system. Numerical simulations are illustrated,
and sustained our analytical findings. We concluded that controlled harvesting on the susceptible
and infected prey is able to control prey infection.

Keywords: prey–predator system; persistence; adaptive back-stepping control; global stability;
stochastic analysis

1. Introduction

Theoretical research and field observations have established the prevalence of various infectious
diseases amongst the majority of the ecosystem population. In the ecological system, the impact
of such infectious diseases is an important area of research for ecologists and mathematicians. The
processes of merging ecology and epidemiology in the past few decades have been challenging
and interesting. By nature, species are always dependent on other species for its food and living
space. It is responsible for spreading infectious diseases and also competes against and is predated
by other species. The dynamical behavior of such systems is analyzed using mathematical models
that are described by differential equations. Mathematical epidemic models have gained much
attention from researchers after the pioneering work of Kermack and McKendrick [1] on the SIRS
(Susceptible-Infective-Removal-Susceptible) system, in which the evolution of a disease which gets
transmitted upon contact is described. The influence of epidemics on predation was first studied by
Anderson and May [2,3]. Hadler and Freedman [4] considered the prey–predator model in which
predation is more likely on infected prey. In their model, they considered that predators only became
infected from infected prey by predation. Haque and Venturino [5,6] discussed the models of diseases
spreading in symbolic communities. Mukhopadhyay [7] studied the role of harvesting and switching
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on the dynamics of disease propagation and/or eradication. The role of prey infection on the stability
aspects of a prey–predator models with different functional responses was studied by Bairagi et al.
[8]. Han et al. [9] analyzed four epidemiological models for SIS (Susceptible-Infectious-Susceptible)
and SIR (Susceptible-Infectious-Recovered) diseases with standard and mass action incidents. Das
[10] showed that parasite infection in predator populations stabilized prey–predator oscillations.
Pal and Samanta [11] studied the dynamical behavior of a ratio-dependent prey–predator system
with infection in the prey population. They proved that prey refuge had a stabilizing effect on the
prey–predator interaction. Numerous examples of the prey–predator relationship with infection in the
prey population have been found in various studies [12–17].

Adaptation is a fundamental characteristic of living organisms, such as in the prey–predator
system and other ecological models, since they attempt to maintain physiological equilibrium in
the midst of changing environmental conditions. Adaptive control is an active field in the design
of control systems that helps deal with uncertainties. Back-stepping is a technique for designing
stability controls for a nonlinear dynamical system, and this approach is a recursive method for
stabilizing the origin of the system. The control process terminates when the final external control
reaches. El-Gohary and Al-Ruzaiza [18,19] discussed the chaos and adaptive control of a three-species,
continuous-time prey–predator model. Recently, Madhusudanan et al. [20] studied back-stepping
control in a diseased prey–predator system. They proved that the system was globally asymptotically
stable at the origin with the help of nonlinear feedback control. Numerous examples of control
techniques in the prey–predator system have been found in various studies [21,22].

The rest of the paper is structured as follows. In Section 2, we formulate a mathematical model
with an assumption, and the positivity and boundedness of the deterministic model is also discussed.
Section 3 deals with the existence of equilibrium points with a feasible condition. In Section 4, local
stability analysis of equilibrium points is discussed. Section 5 deals with global stability analysis of
the interior equilibrium point E3(x∗, y∗, z∗). We discuss the condition for permanence of the system
in Section 6. In Section 7, we introduce adaptive back-stepping control in the prey–predator system.
In Section 8, we compute the population intensity of fluctuation due to the incorporation of noise,
which leads to chaos in reality. In Section 9, we propose and analyze a delayed prey–predator system.
Numerical simulation of the proposed model is presented in Section 10. Finally, the discussion is
presented in Section 11 and conclusions are presented in the final section.

2. Mathematical Model

In this section, a continuous-time prey–predator system with susceptible, infected prey and a
predator is considered. It is assumed that the susceptible prey population was developed on the basis
of logistic law, and that only infected prey are predated. The disease is inherited only from the prey
population, and they remain infected and do not recover.

The model becomes:
dx
dt

= x
(

1− x
K

)
− axy

1 + x
− h1x,

dy
dt

=
axy

1 + x
− byz− h2y, (1)

dz
dt

= f yz− dz.

Here, the parameters x(t), y(t), and z(t) denote the susceptible prey, infected prey, and predator
populations, respectively. The parameters a, d, b, f , h1, and h2 denote the rate of transmission from the
susceptible to infected prey population, death rate of predators, searching efficiency of the predator,
conversion-efficiency rate of the predator, and constant harvesting rate of susceptible prey and infected
prey, respectively. Now, we will analyze system (1) with the following initial conditions:

x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0. (2)
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2.1. Positiveness and Boundedness of the System

In theoretical eco-epidemiology, boundedness of the system implies that the system is biologically
well-behaved. The following theorems ensure the positivity and boundedness of the system (1):

Theorem 1. All solutions of (x(t), y(t), z(t)) of system (1) with the initial condition (2) are positive for all
t ≥ 0.

Proof. From (1), it is observed that

dx
x

=

[(
1− x

K

)
− ay

1 + x
− h1

]
dt = φ1(x, y)dt,

where φ1(x, y) =
(

1− x
K

)
− ay

1 + x
− h1.

Integrating in the region [0, t], we get x(t) = x(0) exp (
∫

φ1(x, y)dt) > 0 for all t. From (1), it is
observed that

dy
y

=

[
ax

1 + x
− bz− h2

]
dt = φ2(x, z)dt,

where φ2(x, z) =
ax

1 + x
− bz− h2.

Integrating in region [0, t], we get y(t) = y(0) exp (
∫

φ2(x, z)dt) > 0 for all t. From (1), it is
observed that

dz
z

= [ f y− d]dt = φ3(y)dt,

where φ3(y) = f y− d.
Integrating in the region [0, t], we get z(t) = z(0) exp (

∫
φ3(y)dt) > 0 for all t. Hence, all solutions

starting from interior of the first octant (In<3
+) remain positive for the future.

Theorem 2. All the non-negative solutions of the model system (1) that initiate in <3
+ are uniformly bounded.

Proof. Let x(t), y(t), z(t) be any solution of system (1). Since from (1)
dx
dt
≤ x

(
1− x

K

)
, we have

lim
t→∞

sup x(t) ≤ K. Let ξ = x + y +
b
f

z; therefore,

dξ

dt
=

dx
dt

+
dy
dt

+
b
f

dz
dt

. (3)

Substituting Equation (1) in Equation (3), we get

dξ

dt
+ mξ = x

(
(1 + m− h1)−

x
K

)
+ (m− h2)y +

bz
f
(m− d) ≤ x

(
(1 + m− h1)−

x
K

)
,

dξ

dt
+ mξ ≤ µ since K(1 + m− h1) = µ,

where m and µ are positive constants. Applying Lemma on differential inequalities [23], we obtain

0 ≤ ξ(x, y, z) ≤ (µ/m)(1− e−mt) + (ξ(x(0), y(0), z(0))/emt)

and, for t→ ∞, we have 0 ≤ ξ(x, y, z) ≤ (µ/m). Thus, all solutions of system (1) enter into the region

Γ =
{
(x, y, z) ∈ <3

+ : 0 ≤ x ≤ K, 0 ≤ ξ ≤ (µ/m) + ε, ∀ε > 0
}

. (4)

This completes the proof.
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3. Equilibrium Points and Criteria for Existence

The possible steady states for system (1) and their existence conditions for each of them are as
follows:

1. The vanishing equilibrium point, E0 = (0, 0, 0), always exists.
2. The disease and predator free equilibrium point, E1 = (x̃, 0, 0), where x̃ = K(1− h1), exists

provided that h1 < 1.
3. The predator free equilibrium point, E2 = (x̂, ŷ, 0), where x̂ = (h2/(a − h2)) and

ŷ = [(K(a− h2)(1− h1)− h2)/((a− h2)
2K)], exists provided that a > h2, h1 < 1, K(a− h2)(1−

h1) > h2.
4. The steady state, E3 = (x∗, y∗, z∗), where y∗ = d/ f and z∗ = [((a− h2)x∗ − h2)/(b(1 + x∗))],

exists.

However, x∗ is a positive root of (5)

Ax∗2 + Bx∗ + C = 0, (5)

where A = f , B = K f h1 + f − K f , C = K f h1 + adK− K f .
By Discard’s rule of sign, Equation (5) has a unique positive root, if Kh1 + 1 < K, f h1 + ad > f .

4. Stability Analysis

In this section, we analyzed the local stability of system (1) that is examined by constructing the
Jacobian matrix relating to every equilibrium point. The Jacobian matrix of the system at any point
(x, y, z) is given by

J(x, y, z) =


1− 2x

K
− h1 −

ay
(1 + x)2

−ax
(1 + x)

0
ay

(1 + x)2
ax

1 + x
− bz− h2 −by

0 f z f y− d

 .

1. The variational matrix for the equilibrium point at E0(0, 0, 0) is

J(E0) =

1− h1 0 0
0 −h2 0
0 0 −d

 .

The eigenvalues of J(E0) are λ1 = 1− h1, λ2 = −h2, λ3 = −d. All the eigenvalues are negative if
h1 > 1. Hence, E0 is locally asymptotically stable in the x–y–z direction.

2. The variational matrix for the equilibrium point at E1(K(1− h1), 0, 0) is

J(E1) =


h1 − 1

−aK(1− h1)

1 + K(1− h1)
0

0
aK(1− h1)

1 + K(1− h1)
− h2 0

0 0 −d

 .

The eigenvalues of J(E1) are λ1 = h1− 1, λ2 =
aK(1− h1)

1 + K(1− h1)
− h2, λ3 = −d. All the eigenvalues

are negative if h1 < 1 and aK(1− h1) < h2(1 + K(1− h1)). Hence, E1 is asymptotically stable in
the x–y–z direction.
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3. The variational matrix for the equilibrium point at E2(x̂, ŷ, 0) is

J(E2) =


1− 2x̂

K
− aŷ

(1 + x̂)2 − h1 −h2 0

K(a− h2)(1− h1)− h2

Ka
0 −bŷ

0 0 f ŷ− d

 .

The eigenvalues of J(E3) are negative if it satisfies f ŷ < d and K(1− h1)(1 + x̂)2 < (2x̂(1 + x̂)2 +

aKŷ). Hence, the equilibrium point E2 is locally asymptotically stable in the x–y–z direction.

Theorem 3. The co-existent equilibrium point E3(x∗, y∗, z∗) of system (1) exists. Then, E3 is locally
asymptotically stable if the following conditions satisfy

1. ax∗ < (bz∗ + h2)(1 + x∗) and
2. K(1− h1)(1 + x∗)2 < (2x∗(1 + x∗)2 + aKy∗).

Proof. The variational matrix at the interior point E3(x∗, y∗, z∗) is

J(E3) =

a11 a12 0
a21 a22 a23

0 a32 0

 ,

where
a11 = 1− 2x∗

K
− h1 −

ay∗

(1 + x∗)2 a12 =
−ax∗

1 + x∗
a21 =

ay∗

(1 + x∗)2 ,

a22 =
ax∗

1 + x∗
− bz∗ − h2 a23 = −by∗ a32 = f z∗.

The characteristic equations of Jacobian matrix J(E3) is given by λ3 + A1λ2 + A2λ + A3 = 0,
where

A1 = −a11 − a22, A2 = a11a22 − a12a21 − a23a32, A3 = a11a23a32

and
A1 A2 − A3 = a11a12a21 + a12a21a22 + a22a23a32 − a2

11a22 − a11a2
22.

The sufficient conditions for A1 A2 − A3 > 0 are a11 ≤ 0, a22 ≤ 0, which implies

ax∗ < (bz∗ + hz)(1 + x∗), K(1− h1)(1 + x∗)2 < [2x∗(1 + x∗)2 + aKy∗].

5. Global Stability Analysis

In this section, we investigated the global stability behavior of the system (1) at the interior
equilibrium E3(x∗, y∗, z∗) by using the Lyapunov stability theorem.

Theorem 4. If (yx∗/y∗) < x < x∗ or x∗ < x < (yx∗/y∗), then E3(x∗, y∗, z∗) is globally asymptotically
stable.

Proof. Let us define

V(x, y, z) = P
(

x− x∗ − x∗ln
( x

x∗
))

+

(
y− y∗ − y∗ln

(
y
y∗

))
+Q

(
z− z∗ − z∗ln

( z
z∗
))

,
(6)
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where P, Q are positive constants to be chosen later.
Differentiating (6) along the solution of the system (1) with respect to t, we get

dV
dt

= P
(

x− x∗

x

)
dx
dt

+

(
y− y∗

y

)
dy
dt

+ Q
(

z− z∗

z

)
dz
dt

= P
(

1− x
K
− ay

1 + x
− h1

)
(x− x∗) + (y− y∗)

(
ax

1 + x
− bz− h2

)
+ Q(z− z∗)( f y− d)

= P
(
− 1

K
(x− x∗)− a

(
y

1 + x
− y∗

1 + x

))
(x− x∗)

+ (y− y∗)
(

ax
1 + x

− ax∗

1 + x∗
− b(z− z∗)

)
+ Q( f (z− z∗)(y− y∗)).

Choosing P = 1, Q = b/ f , and then simplified to

dV
dt

= − 1
K
(x− x∗)2 − a

(yx∗ − xy∗)
(1 + x)(1 + x∗)

(x− x∗).

Now,
dV
dt

< 0 if x∗ < x <
yx∗

y∗
or

yx∗

y∗
< x < x∗.

Then,
dV
dt

is negative definite. Consequently, V is a Lyapunov function with respect to all solutions
in the interior of the positive octant.

6. Permanence of the System

In this section, our main intuition is that the long time survival of species in an ecological system.
Many notions and terms are identified in the literature to discuss and analyze the long-term survival
of populations. Out of such, permanence and persistence are the ones to better analyze the system.
From an ecological point of view, permanence of a system means that the long-term survival of all
populations of the system.

Definition 1. The system (1) is said to be permanent if ∃ M ≥ m > 0, such that for any solution of
(x(t), y(t), z(t)) of system (1), (x(0), y(0), z(0)) > 0,

m ≤ lim
t→∞

(inf(x(t)) ≤ lim
t→∞

(sup(x(t)) ≤ M,

m ≤ lim
t→∞

(inf(y(t)) ≤ lim
t→∞

(sup(y(t)) ≤ M,

m ≤ lim
t→∞

(inf(z(t)) ≤ lim
t→∞

(sup(z(t)) ≤ M.

Now, we show that system (1) is uniformly persistent. The survival of all populations of the
system in the future time is nothing but persistence in the view of ecology.

In the mathematical point of view, persistence of a system means that a strictly positive solution
does not have omega limit points on the boundary of the non-negative cone.

Definition 2. A population is said to be uniformly persistent if there exists δ > 0, independent of x(0) where
x(0) > 0, such that

lim
t→∞

(inf(x(t))) > δ.

Theorem 5. The system (1) is uniformly persistent if

f ŷ− d > 0 holds. (7)
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Proof. We will prove this theorem by the method of Lyapunov average function.
Let the average Lyapunov function for the system (1) be σ(X) = xpyqzr, where p, q, r are positive
constants. Clearly, σ(X) is non-negative function defined in D of <3

+, where

<3
+ = {(x, y, z), x > 0, y > 0, (1 + x)2 − ayK > 0}.

Then, we have Ψ(X) =
σ̇(X)

σ(X)
= p

ẋ
x
+ q

ẏ
y
+ r

ż
z

,

Ψ(X) = p
((

1− x
K

)
− ay

1 + x
− h1

)
+ q

(
ax

1 + x
− bz− h2

)
+ r( f y− d). (8)

Furthermore, there are no periodic orbits in the interior of positive quadrant of x–y plane. Thus, to
prove the uniform persistence of the system, it is enough to show that Ψ(X) > 0 in <3

+ for a suitable
choice of p, q, r > 0 :

Ψ(E0) = p(1− h1)− q(h2)− rd > 0, (9)

Ψ(E1) = q
(

aK(1− h1)

1 + K(1− h1)
− h2

)
− rd > 0, (10)

Ψ(E2) = r( f ŷ− d) > 0. (11)

We noticed that, by increasing the value of p, while h1 < 1 , p(1 − h1) > (qh2 + rd), Ψ(E0) can
be made positive. Thus, the inequality (9) holds. If qaK(1− h1) > (qh2 + rd)(1 + K(1− h1)), then
Ψ(E1) is positive. Thus, the inequality (10) holds. If the inequality in Equation (7) holds, then (11) is
satisfied.

7. Introduction of Adaptive Back-Stepping Control in a Prey–Predator System

Adaptive back-stepping method is the back-stepping control and adaptive laws. The
back-stepping design is initiated with the first state equation whose state variable has the highest
integration order from the control input. The second state variable is considered as the virtual control
and the stabilizing function is replaced by it. This stabilizing function can stabilize the first state
variables and we set the error between the virtual control and stabilizing function as η. Then, for the
second state equation, we will design a new stabilizing law to replace the third state variable for the
second order system, and step back to control the signal. From the steps above, we can see that the
term back-stepping means that we use the latter state as a virtual control to stabilize the previous one.
The Lyapunov direct method is utilized from the stabilization method for the error between virtual
control and stabilizing function. The control Lyapunov function is to be used which will be a positive
definite and includes the quadratic form of the errors. In this section, the system with susceptible
prey, infected prey and a predator population controlled by back-stepping using a nonlinear feedback
control approach is studied. We initiate the study by assuming that system (1) can be written in the
suitable form by introducing nonlinear feedback control inputs u1, u2, u3 into the system to better
analyze the prey–predator interactions:

dx
dt

= x
(

1− x
K

)
− axy

1 + x
− h1x + u1, (12)

dy
dt

=
axy

1 + x
− byz− h2y + u2, (13)

dz
dt

= f yz− dz + u3, (14)
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where u1, u2, u3 are back-stepping nonlinear feedback controllers that are the functions of state variables
and will be suitable choices to make the trajectories of the whole system (12)–(14). As long as this
feedback stabilizes the system (1), lim

t→∞
||x(t)|| = 0 converges.

Theorem 6. A diseased prey–predator system (12)–(14) is globally asymptotically stable provided the following
adaptive nonlinear controls

u1 =
x2

K
− 2x + ĥ1x, (15)

u2 =
ax2

1 + x
− axη1

1 + x
+ ĥ2η1 − η1, (16)

u3 = (bη2
1 − f η1η2 + dη2 − η2), (17)

with the errors
η1 = y− ν1(x, y), (18)

η2 = z− ν2(x, y, z). (19)

Proof. Consider the parameter estimators

ea = a− â, eb = b− b̂, eh1 = h1 − ĥ1, eh2 = h2 − ĥ2, ed = d− d̂, e f = f − f̂ . (20)

Considering Equation (12), the Lyapunov function of x is given by

V1(x, ea, eh1) =
1
2

x2 +
1
2

e2
a +

1
2

e2
h1

. (21)

By using the derivative of (20),

ėa = − ˙̂a, ėb = − ˙̂b, ėh1 = − ˙̂h1, ėh2 = − ˙̂h2, ėd = − ˙̂d, ė f = − ˙̂f .

Differentiating (21) with respect to t, we have

V̇1 = x
[

x
(

1− x
K

)
− axy

1 + x
− h1x + u1

]
+ ea(− ˙̂a) + eh1(−

˙̂h1).

Considering y as a virtual controller, then y = ν1(x)

˙̂V1 = x
[

x
(

1− x
K

)
− axγ1

1 + x
− h1x + u1

]
+ ea(− ˙̂a) + eh1(

˙̂h1). (22)

Choosing ν1 = 0 and using the controller (15), Ref. (22) becomes

˙̂V1 = x(−x− xeh1) + ea( ˙̂a) + eh1(
˙̂h1). (23)

The updated law by the unknown parameter

˙̂a = ea and ˙̂h1 = −x2 + eh1 . (24)

Substituting (24) in (22), we get V̇1 = −x2 − e2
a − e2

h1
is the negative definite function, where

ν1 = 0 =⇒ η1 = y. (25)

Differentiating (25), we get

η̇1 = ẏ =
axy

1 + x
− byz− h2y + u2. (26)
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Now, Equation (13) along with Equation (26), we get that

ẋ = −x− axη1

1 + x
− eh1 x. (27)

Considering the Lyapunov function of (x, η1),

V2 = V1 +
1
2

η2
1 +

1
2

e2
b +

1
2

e2
h2

. (28)

Differentiating (28) with respect to t, we get

V̇2 = x
(
−x− axη1

1 + x
− eh1 x

)
+ η1

(
axη1

1 + x
− bη1z− h2η1 + u2

)
ea(− ˙̂a) + eh1(−

˙̂h1) + eb(− ˙̂b) + eh2(−
˙̂h2). (29)

Again, considering a new virtual controller z = ν2(x, y) where ν2 = 0, and using this in (24), we have

V̇2 = −x2 − e2
h1
− e2

a + eh2(−
˙̂
2h) + η1

(
−ax2

1 + x
+

axη1

1 + x
− h2η1 + u2

)
. (30)

Now, choosing the controller (16) along with (30), we get

V̇2 = −x2 − e2
a − e2

h1
+ eh2(

˙̂h2) + eb(− ˙̂b)− η2
1 . (31)

The updated law for the unknown parameter ˙̂b and ˙̂h2 is

˙̂b = eb and ˙̂h2 = −η2
1 + eh2 . (32)

Substituting (32) in (31), we get

V̇2 = −x2 − e2
b − e2

a − e2
h1
− e2

h2
− η2

1 , (33)

which is again a negative definite function where

ν2 = 0 =⇒ η2 = z. (34)

Differentiating (34) with respect to t, we have η̇2 = ż.
Now,

η̇1 =
axη1

1 + x
− bη1z− h2η1 + u2, (35)

where the controller (17) along with (35) gives

η̇1 = −bη1η2 − eh2 η1 +
ax2

1 + x
, (36)

η̇2 = f yz− dz + u3. (37)

Now, considering the Lyapunov function of (x, η1, η2),

V3 = V2 +
1
2

η2
2 +

1
2

e2
d +

1
2

e2
f . (38)
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Differentiating (38) with respect to t gives

V̇3 =− x2 − eh1(x2)− eh2 η2
1 − η2

1 − η2
1 + η2(−bη2

1 + f η1η2 − dη2 + u3)

+ ea(− ˙̂a) + eb(− ˙̂b) + e f (− ˙̂f ) + eh1(−
˙̂h1) + eh2(

˙̂h2) + ed(
˙̂d).

(39)

The unknown parameters ˙̂a, ˙̂b, ˙̂f , ˙̂h2 are updated by

˙̂a = ea, ˙̂b = eb, ˙̂f = e f , ˙̂h2 = −η2
1 + eh2 , ( ˙̂d) = +d. (40)

Substituting the updated parameters along with choosing the controller (17) and by updating law
(40) in Equation (39), we get V̇3 = −x2 − η2

1 − η2
2 − e2

a − e2
b − e2

f − e2
h1
− e2

h2
− e2

d is the negative definite
function. Thus, by the Lyapunov stability theorem, systems (10)–(12) is globally asymptotically stable
with adaptive back-stepping controllers.

8. Stochastic Analysis

All usual occurrences explicitly in the ecosystem are continuously under random fluctuations
of the environment. The stochastic examination of any ecosystem gives an enhanced vision on
the dynamic forces of the populace by means of population variances. In a stochastic model, the
model parameters oscillate about their average values [24–27]. Therefore, the steady state which
we anticipated as permanent will now oscillate around the mean state. The method to measure
the mean-square fluctuations of population is proposed by [24] and it was applied by [28] nicely.
Furthermore, many researchers like Samanta [29], Maiti, Jana and Samanta [30] have investigated
critically the stochastic analysis to interpret local as well as global stability using mean-square
fluctuations on population variances.

Now, this segment is meant for the extension of the deterministic model (1), which is formed by
adding a noisy term. There are several ways in which environmental noise may be incorporated in the
model system (1). External noise may arise from random fluctuations of a finite number of parameters
around some known mean values of the population densities around some fixed values. Since the
aquatic ecosystem always has unsystematic fluctuations of the environment, it is difficult to define
the usual phenomenon as a deterministic ideal. The stochastic investigation enables us to get extra
intuition about the continuous changing aspects of any ecological unit. The deterministic model (1)
with the effect of random noise of the environment results in a stochastic system (41)–(43) given in the
following discussion:

dx
dt

= x
(

1− x
K

)
− axy

1 + x
− h1x + α1ξ1(t), (41)

dy
dt

=
axy

1 + x
− byz− h2y + α2ξ2(t), (42)

dz
dt

= f yz− dz + α3ξ3(t), (43)

where α1, α2, α3 are the real constants and ξi(t) = [ξ1(t), ξ2(t), ξ3(t)] is a three-dimensional Gaussian
white noise process. E(ξi(t)) = 0, where i = 1, 2, 3; E[ξi(t)ξ j(t)] = δijδ(t− t′), where i = j = 1, 2, 3; δij
is the Kronecker delta function; δ is the Dirac delta function.
Let

x(t) = u1(t) + S∗; y(t) = u2(t) + P∗; z(t) = u3(t) + T∗, (44)

dx
dt

=
du1(t)

dt
;

dy
dt

=
du2(t)

dt
;

dz
dt

=
du3(t)

dt
. (45)

The linear parts of (41), (42) and (43) are (using (44) and (45))

u′1(t) = u1(t)S∗ − au2(t)S∗ + α1ξ1(t), (46)
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u′2(t) = au1(t)P∗ − bu3(t)P∗ + α2ξ2(t), (47)

u′3(t) = f u2(t)T∗ + α3ξ3(t). (48)

Taking the Fourier transform on both sides of (46), (47) and (48), we get

iωũ1(ω) = −S∗ũ1(ω)− aS∗ũ2(ω) + α1ξ1(ω), (49)

iωũ2(ω) = aP∗ũ1(ω)− bP∗ũ3(ω) + α2ξ2(ω), (50)

iωũ3(ω) = f T∗ũ2(ω) + α3ξ3(ω). (51)

The matrix form of (49)–(51) is
M(ω)ũ(ω) = ξ̃(ω), (52)

where

M(ω) =

iω + S∗ aS∗ 0
−aP∗ iω bP∗

0 − f T∗ iω

 ; ũ(ω) =

ũ1(ω)

ũ2(ω)

ũ3(ω)

 ; ξ̃(ω) =

η1ξ̃1(ω)

η2ξ̃2(ω)

η3ξ̃3(ω)

 .

Equation (52) can also be written into

ũ(ω) = [M(ω)]−1ξ̃(ω), (53)

where

[M(ω)]−1 =
1

R(ω) + iI(ω)

A1 D1 G1

B1 E1 H1

C1 F1 I1

 (54)

and
A1 = −ω2 + f b3T∗P∗; C1 = a f P∗T∗; D1 = iωα1S∗;

E1 = −ω2 + iωS∗; F1 = iω f T∗ + f T∗S∗; G1 = α1b3S∗P∗;

H1 = −iωbP∗ − bS∗P∗; I1 = −ω2 + iωS∗ + aα1P∗S∗.

Here,
|A1|2 = X2

1 + Y2
1 ; |B1|1 = X2

2 + Y2
2 ; |C1|2 = X2

3 + Y2
3 ;

|D1|2 = X2
4 + Y2

4 ; |E1|2 = X2
5 + Y2

5 ; |F1|2 = X2
6 + Y2

6 ;

|G1|2 = X2
7 + Y2

7 ; |H1|2 = X2
8 + Y2

8 ; |I1|2 = X2
9 + Y2

9 ,

where

X1 = −ω2 + f bT∗P∗; Y1 = 0; X2 = 0; Y2 = (aωP∗); X3 = a f P∗T∗;

Y3 = 0; X4 = 0; Y4 = ωα1S∗; X5 = ωS∗; X6 = ω f T∗; (55)

Y6 = f T∗S∗; X7 = 0; Y7 = α1bS∗P∗; X8 = bS∗P∗; Y8 = ωbP∗;

X9 = −ω2 + aα1S∗P∗; Y9 = ωS∗.

|M(ω)|2 = [R(ω)]2 + [I(ω)]2, where R(ω) = b3 f T∗P∗S∗ − S∗ω2 and I(ω) = ω2 + ωb3 f T∗P∗ +
α1aωS∗P∗.
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If the function Y(t) has a zero mean value, then the fluctuation intensity (variance) of its components
in the frequency interval [ω, ω + dω] is SY(ω)dω. SY(ω) is the spectral density of Y and is defined as

SY(ω) = lim
T̃→∞

∣∣Ỹ(ω)
∣∣2

T̃
. (56)

If Y has a zero mean value, the inverse transform of SY(ω) is the auto covariance function

CY(τ) =
1

2π

∞∫
−∞

SY(ω)eiωτdω. (57)

The corresponding variance of fluctuations in Y(t) is given by

σ2
Y = CY(0) =

1
2π

∞∫
−∞

SY(ω)dω (58)

and the auto-correlation function is the normalized auto-covariance

PY(τ) =
CY(τ)

CY(0)
. (59)

For a Gaussian white noise process, it is

Sξiξ j(ω) = lim
T̃→+∞

E
[
ξ̃i(ωξ̃ j(ω))

]
T̃

= lim
T̂→+∞

1
T̂

T̃
2∫

−T̃
2

T̃
2∫

−T̃
2

[
ξ̃i(t)ξ̃ j(t′)

]
e−iω(t−t′)dt dt′

=δij.

(60)

From (54), we have

ũi(ω) =
3

∑
j=1

Kij(ω)ξ̃ j(ω); i = 1, 2, 3. (61)

From (59), we have

Sui(ω) =
3

∑
j=1

ηj|Kij(ω)|2; i = 1, 2, 3, (62)

where
Kij(ω) = [M(ω)]−1.

Hence, by (61) and (62), the intensities of fluctuations in the variable ui (i = 1, 2, 3) are given by

σ2
ui
=

1
2π

3

∑
j=1

∞∫
−∞

ηj|Kij(ω)|2dω; i = 1, 2, 3 (63)

and by (54), we obtain

σ2
µ1

=
1

2π


∞∫
−∞

η1

∣∣∣∣ Adj(1)
|M(ω)|

∣∣∣∣2 dω +

∞∫
−∞

η2

∣∣∣∣ Adj(2)
|M(ω)|

∣∣∣∣2 dω +

∞∫
−∞

η3

∣∣∣∣ Adj(3)
|M(ω)|

∣∣∣∣2 dω

 , (64)
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σ2
µ2

=
1

2π


∞∫
−∞

η1

∣∣∣∣ Adj(4)
|M(ω)|

∣∣∣∣2 dω +

∞∫
−∞

η2

∣∣∣∣ Adj(5)
|M(ω)|

∣∣∣∣2 dω +

∞∫
−∞

η3

∣∣∣∣ Adj(6)
|M(ω)|

∣∣∣∣2 dω

 , (65)

σ2
µ1

=
1

2π


∞∫
−∞

η1

∣∣∣∣ Adj(7)
|M(ω)|

∣∣∣∣2 dω +

∞∫
−∞

η2

∣∣∣∣ Adj(8)
|M(ω)|

∣∣∣∣2 dω +

∞∫
−∞

η3

∣∣∣∣ Adj(9)
|M(ω)|

∣∣∣∣2 dω

 . (66)

From (55), (64), (65) and (66),

σ2
u1

=
1

2π


∞∫
−∞

1
R2(ω) + I2(ω)

[
α1(X2

1 + Y2
1 ) + α2(X2

2 + Y2
2 ) + α3(X2

3 + Y2
3 )
]

dω

 , (67)

σ2
u2

=
1

2π


∞∫
−∞

1
R2(ω) + I2(ω)

[
α1(X2

4 + Y2
4 ) + α2(X2

5 + Y2
5 ) + α3(X2

6 + Y2
6 )
]

dω

 , (68)

σ2
u3

=
1

2π


∞∫
−∞

1
R2(ω) + I2(ω)

[
α1(X2

7 + Y2
7 ) + α2(X2

8 + Y2
8 ) + α3(X2

9 + Y2
9 )
]

dω

 , (69)

where
|M(ω)| = R(ω) + iI(ω).

If we are interested in the dynamics of stochastic process (41)–(69) with either α1 = 0 or α2 = 0 or
α3 = 0, the population variances are

if α1 = 0, α2 = 0, then σ2
u1 =

α3

2π

∞∫
−∞

(X2
3 + Y2

3 )

R2(ω) + I2(ω)
dω; σ2

u2 =
α3

2π

∞∫
−∞

(X2
6 + Y2

6 )

R2(ω) + I2(ω)
dω;

σ2
u3 =

α3

2π

∞∫
−∞

(X2
9 + Y2

9 )

R2(ω) + I2(ω)
dω.

If α2 = 0, α3 = 0, then σ2
u1 =

α1

2π

∞∫
−∞

(X2
1 + Y2

1 )

R2(ω) + I2(ω)
dω; σ2

u2 =
α1

2π

∞∫
−∞

(X2
4 + Y2

4 )

R2(ω) + I2(ω)
dω;

σ2
u3 =

α1

2π

∞∫
−∞

(X2
7 + Y2

7 )

R2(ω) + I2(ω)
dω.

If α3 = 0, α1 = 0, then σ2
u1 =

α2

2π

∞∫
−∞

(X2
2 + Y2

2 )

R2(ω) + I2(ω)
dω; σ2

u2 =
α2

2π

∞∫
−∞

(X2
5 + Y2

5 )

R2(ω) + I2(ω)
dω;

σ2
u3 =

α2

2π

∞∫
−∞

(X2
8 + Y2

8 )

R2(ω) + I2(ω)
dω.

Equations (67)–(69) give three variations of the inhabitants. The integrations over the real line can
be estimated, which gives the variations of the inhabitants.

9. Mathematical Model with Delay

In this section, we establish some conditions for oscillations of all positive solutions of the delay
system

dx
dt

(t) = x (t)
(

1− h1 −
x (t− τ)

K
− ay (t− τ)

1 + x (t− τ)

)
, (70)

dy
dt

(t) = y (t)
(
−h2 +

ax (t− τ)

1 + x (t− τ)
− bz (t− τ)

)
, (71)

dz
dt

(t) = z (t) (−d + f y (t− τ)) . (72)

Here, the parameter τ ∈ R+ is the delay. This proposed system is concerned not only with the present
number of predator and prey but also with the number of predator and prey in the past. If t is the
present time, then (t-τ) is the past.
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According to Krisztin [31], a solution of (70)–(72), (x(t), y(t), z(t)) is called oscillatory if every
component has arbitrary large zeros; otherwise, (x(t), y(t), z(t)) is said to be a non-oscillatory solution.
Whenever all solutions of (70)–(72) are oscillatory, we will say that (70)–(72) is an oscillatory system.

In [32], Kubiaczyk and Saker studied the oscillatory behavior of the delay differential equation

x′(t) + px(t)− qx(t)
r + xn(t− τ)

= 0,

where p, q, r, τ ∈ R+. Using similar methods to liberalize each equation of the delay system, we will
establish conditions for oscillations of all positive solutions of the system.

Now, we will analyze the system of (70)–(72) with the following initial conditions:

x(θ) ≥ 0, y(θ) ≥ 0, z(θ) ≥ 0, θ ∈ (−τ, 0), (τ 6= 0). (73)

Using the same arguments that we got in Theorem 1, we can establish the following theorem:

Theorem 7. All solutions of (x(t), y(t), z(t)) of systems (70)–(72) with the initial condition (73) are positive
for all t ≥ 0.

Easily, we can see that the equilibrium point remains the same when we have the delay system.
However, it is important to know the oscillatory behavior of the solutions around the equilibrium
points.

Theorem 8. If there exist a λ ∈ R such that

min
λ∈R

(
λ3 − αλ2e−λτ − (dσ + βγ) λe−2λτ + dσαe−3λτ

)
> 0, (74)

where α = − x∗
k , β = − ad

f (1+x∗) , γ = ax∗
1+x∗ and σ = −dz∗; then, all solutions of the system (70)–(72) oscillate

around E3.

Proof. Let us consider the system (70)–(72). Let

x(t) = x∗eφ1(t), (75)

y(t) = y∗eφ2(t), (76)

z(t) = z∗eφ3(t). (77)

Then, (x(t), y(t), z(t)) oscillate around (x∗, y∗, z∗) if (φ1(t), φ2(t), φ3(t)) oscillate around (0, 0, 0) .
From (70)–(72) and (75)–(77), we have

dφ1

dt
(t) = 1− h1 −

x∗eφ1(t−τ)

K
− ay∗eφ2(t−τ)

1 + x∗eφ1(t−τ)

= 1− h1 −
x∗

K
− ay∗

1 + x∗eφ1(t−τ)
− x∗

K

(
eφ1(t−τ) − 1

)
− ay∗

1 + x∗eφ1(t−τ)

(
eφ2(t−τ) − 1

)
,
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dφ2

dt
(t) = −h2 +

ax∗eφ1(t−τ)

1 + x∗eφ1(t−τ)
− bz∗eφ3(t−τ)

= −h2 +
ax∗

1 + x∗eφ1(t−τ)
− bz∗ +

ax∗

1 + x∗eφ1(t−τ)

(
eφ1(t−τ) − 1

)
−bz∗

(
eφ3(t−τ) − 1

)
,

dφ3

dt
(t) = −d + f y∗ + f y∗

(
eφ2(t−τ) − 1

)
.

Let
f (u) = eu − 1.

Note that

u f (u) > 0 for u > 0, and lim
u→0

f (u)
u

= 1. (78)

Moreover, since (x∗, y∗, z∗) is the equilibrium point E3, we have

1− h1 −
x∗

K
− ay∗

1 + x∗
= 0, − h2 +

ax∗

1 + x∗
− bz∗ = 0, and − d + f y∗ = 0.

Thus, the linearized system associated with the system (75)–(77) is given by

dm1

dt
(t) = − x∗

K
m1 (t− τ)− ay∗

1 + x∗
m2 (t− τ) , (79)

dm2

dt
(t) =

ax∗

1 + x∗
m1 (t− τ)− bz∗m3 (t− τ) , (80)

dm3

dt
(t) = f y∗m2 (t− τ) , (81)

and every solution of (79)–(81) oscillates if and only if the characteristic equation has no real roots (see
Theorem 5.1.1 in [21]), i.e.,

det [λI − A] 6= 0 (82)

for all λ ∈ R. Equation (82) is equivalent to the equation

λ3 + αλ2e−λτ − (dσ + βγ) λe−2λτ + dσαe−3λτ = 0,

where α = x∗
k , β = − ad

f (1+x∗) , γ = ax∗
1+x∗ and σ = dz∗. In fact,

lim
λ→+∞

(
λ3 + αλ2e−λτ − (dσ + βγ) λe−2λτ + dσαe−3λτ

)
= +∞

and
lim

λ→−∞

(
λ3 + αλ2e−λτ − (dσ + βγ) λe−2λτ + dσαe−3λτ

)
= +∞, since dσα > 0.

Then, by (74) and (78), systems (79)–(81) will start oscillating and then all the solutions of systems
(75)–(77) will also oscillate.

Example 1. Let the parameters of systems (70)–(72) be a = 1.5, d = 0.2, b = 0.3, f = 0.65, h1 = 0.5,
h2 = 0.3, K = 9 and τ = 2. In this case, condition (74) becomes

min
λ∈R

(
λ3 + 0.3995837778λ2e−λτ + 0.234339529λe−2λτ + 0.046546037e−3λτ

)
> 0.045

and consequently all solutions of the system oscillate around the equilibrium point
(3.596254004, 0.307692308, 2.912157597) .
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10. Numerical Simulations

Analytical studies can never complete without numerical verification of the results. Moreover,
it may be noted that, as the parameters of the model are not based on the real world observation,
the main features described by the simulations presented in this section should be considered from a
qualitative rather than a quantitative point of view. We choose the parameters of system (1) as a = 1.5,
b = 0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 8 with the initial densities x(0) = 2, y(0) = 1.8,
z(0) = 1 and observe the dynamical behaviour of system (1). Figure 1a shows that the equilibrium
point E1 is locally asymptotically stable and the corresponding phase-portrait is shown in Figure 1b.
Figure 2a shows that the equilibrium point E2 is locally asymptotically stable and the corresponding
phase-portrait is shown in Figure 2b. Figure 3a shows that the co-existence equilibrium point E3 is
locally asymptotically stable and the corresponding phase portrait is shown in Figure 3b. From Figure
4a–4d, if all other parameters are fixed and varying transmission rate a = 1.5 to a = 2, we observe
that oscillation settles down into a stable situation for all three of the species. Stability around this
state implies extinction of the infected prey. This study interestingly suggests that the harvesting of
both prey prevent limit cycle oscillations and the combined effect of both harvests also prevent disease
propagation in the system. We also conclude that the inclusion of stochastic perturbation creates
a significant change in the intensity of populations because change of responsive noise parameters
causes chaotic dynamics with low, medium and high variances of oscillations (see Figures 5–7).
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Figure-1( a) and Figure-1(b) represents the variation of the population against time and

phase portrait between prey and predator species respectively with the parameters a = 1.5, b =

0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 8.
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Figure-2( a) and Figure-2(b) represents the variation of the population against time and

phase portrait between prey and predator species respectively with the parameters a = 1.5, b =

0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 9.
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Figure-3(a) and Figure-3(b) represents the variation of the population against time and phase

portrait between prey and predator species respectively with the parameters a = 1.5, b =

0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 9.

24

(b)

Figure 1. (a) time series evolution of the populations of the system (1); (b) phase-space trajectories
corresponding to the stabilities of the population with the parameters a = 1.5, b = 0.3, f = 0.65, h1 =

0.5, h2 = 0.3, d = 0.2, K = 8.
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Figure-1( a) and Figure-1(b) represents the variation of the population against time and

phase portrait between prey and predator species respectively with the parameters a = 1.5, b =

0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 8.
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Figure-3(a) and Figure-3(b) represents the variation of the population against time and phase

portrait between prey and predator species respectively with the parameters a = 1.5, b =

0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 9.
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to a = 2 we observe that oscillation settle down into stable situation all the three species

persistent. Stability around this state implies extinction of the infected prey. This study

interestingly suggests that harvesting of both preys prevent limit cycle oscillations and com-

bined effect of both harvesting also prevent disease propagation in the system.
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Figure-1( a) and Figure-1(b) represents the variation of the population against time and

phase portrait between prey and predator species respectively with the parameters a = 1.5, b =

0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 8.
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Figure-2( a) and Figure-2(b) represents the variation of the population against time and

phase portrait between prey and predator species respectively with the parameters a = 1.5, b =

0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 9.
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Figure-3(a) and Figure-3(b) represents the variation of the population against time and phase

portrait between prey and predator species respectively with the parameters a = 1.5, b =

0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 9.
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Figure 2. (a) time series evolution of the populations of system (1); (b) phase-space trajectories
corresponding to the stabilities of the population with the parameters a = 1.5, b = 0.3, f = 0.65, h1 =

0.5, h2 = 0.3, d = 0.2, K = 9.
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persistent. Stability around this state implies extinction of the infected prey. This study
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bined effect of both harvesting also prevent disease propagation in the system.
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Figure-1( a) and Figure-1(b) represents the variation of the population against time and

phase portrait between prey and predator species respectively with the parameters a = 1.5, b =

0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 8.
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Figure-2( a) and Figure-2(b) represents the variation of the population against time and

phase portrait between prey and predator species respectively with the parameters a = 1.5, b =

0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 9.
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Figure-3(a) and Figure-3(b) represents the variation of the population against time and phase

portrait between prey and predator species respectively with the parameters a = 1.5, b =

0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 9.
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to a = 2 we observe that oscillation settle down into stable situation all the three species

persistent. Stability around this state implies extinction of the infected prey. This study

interestingly suggests that harvesting of both preys prevent limit cycle oscillations and com-

bined effect of both harvesting also prevent disease propagation in the system.
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Figure-1( a) and Figure-1(b) represents the variation of the population against time and

phase portrait between prey and predator species respectively with the parameters a = 1.5, b =

0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 8.
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Figure-2( a) and Figure-2(b) represents the variation of the population against time and

phase portrait between prey and predator species respectively with the parameters a = 1.5, b =

0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 9.
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Figure-3(a) and Figure-3(b) represents the variation of the population against time and phase

portrait between prey and predator species respectively with the parameters a = 1.5, b =

0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 9.
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(b)

Figure 3. (a) time series evolution of the populations of system (1); (b) phase-space trajectories
corresponding to the stabilities of the population with the parameters a = 1.65, b = 0.3, f = 0.65,
h1 = 0.5, h2 = 0.3, d = 0.2, K = 9.
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Figure 4(a) to 4(c) and Figure 4(d) represents the variation of the population against time

and phase portrait between prey and predator species respectively with the parameters a =

2, b = 0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 9.
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Figure 5(a) represents the variations of populations against time with the parameters
α = 1, α2 = 2, α3 = 3.
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Figure 4(a) to 4(c) and Figure 4(d) represents the variation of the population against time

and phase portrait between prey and predator species respectively with the parameters a =

2, b = 0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 9.
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Figure 5(a) represents the variations of populations against time with the parameters
α = 1, α2 = 2, α3 = 3.
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Figure 4(a) to 4(c) and Figure 4(d) represents the variation of the population against time

and phase portrait between prey and predator species respectively with the parameters a =

2, b = 0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 9.
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Figure 5(a) represents the variations of populations against time with the parameters
α = 1, α2 = 2, α3 = 3.
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Figure 4(a) to 4(c) and Figure 4(d) represents the variation of the population against time

and phase portrait between prey and predator species respectively with the parameters a =

2, b = 0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 9.
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Figure 5(a) represents the variations of populations against time with the parameters
α = 1, α2 = 2, α3 = 3.
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Figure 4. (a)–(c) time series evolution of the populations of system (1); (d) phase-space trajectories
corresponding to the stabilities of the population with the parameters a = 2, b = 0.3, f = 0.65, h1 = 0.5,
h2 = 0.3, d = 0.2, K = 9.
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Figure 4(a) to 4(c) and Figure 4(d) represents the variation of the population against time

and phase portrait between prey and predator species respectively with the parameters a =

2, b = 0.3, f = 0.65, h1 = 0.5, h2 = 0.3, d = 0.2, K = 9.
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Figure 5(a) represents the variations of populations against time with the parameters
α = 1, α2 = 2, α3 = 3.
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Figure 5(b)represents the phase portrait diagram of prey and predator under random noise
with the parameters α = 1, α2 = 2, α3 = 3.
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Figure 6(a)represents the variations of populations against time with the parameters
α1 = 6, α2 = 8, α3 = 8.

26

(b)

Figure 5. (a) the oscillations of populations against time with low intensities (low noise) of parameters
α1 = 1, α2 = 2, α3 = 3; (b) the phase-portrait diagram of populations under random low noise of
parameters α1 = 1, α2 = 2, α3 = 3.
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Figure 5(b)represents the phase portrait diagram of prey and predator under random noise
with the parameters α = 1, α2 = 2, α3 = 3.
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Figure 6(a)represents the variations of populations against time with the parameters
α1 = 6, α2 = 8, α3 = 8.

26

(a)

0
6

20

6

40

pr
ed

at
or

4
4

60

Inf. prey sus.prey

80

22
0

0 -2

Figure 6(b) represents the phase portrait diagram of prey and predator under random noise
with the parameters α1 = 6, α2 = 8, α3 = 8.
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Figure 7(a) represents the variations of populations against time with the parameters
α = 10, α2 = 20, α3 = 30.
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Figure 6. (a) the oscillations of populations against time with medium intensities (medium noise)
of parameters α1 = 6, α2 = 8, α3 = 8; (b) the phase-portrait diagram of populations under random
medium noise of parameters α1 = 6, α2 = 8, α3 = 8.
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Figure 6(b) represents the phase portrait diagram of prey and predator under random noise
with the parameters α1 = 6, α2 = 8, α3 = 8.
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Figure 7(a) represents the variations of populations against time with the parameters
α = 10, α2 = 20, α3 = 30.
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Figure 7(b) represents the variation of species against the time with the parameters
α = 10, α2 = 20, α3 = 30.

11. Concluding Remarks

In this paper we have studied stability of disease model of susceptible, infected prey and

predator around interior steady state. The positivity of the solutions and boundedness of

the system together with stability analysis of boundary equilibrium provided all necessary

information to establish persistence of the system. The deterministic situation theoretical

epidemiologist are usually guided by an implicit assumption that most epidemic models, we

observe in nature correspond to stable equilibrium of models. In theorem 3, we given con-

dition for stable co-existence in theorem 4 we prove the global stability by using Lyapunov

function. Also the condition for which all three species will persist worked out. The control-

lability conditions and the conditions for global asymptotic stability have been obtained by

using the adaptive backstop control approach by using suitable Lyapunov function. We also

conclude that the inclusion of stochastic perturbation creates a significant change in the in-

tensity of populations due to change of responsive parameters causes chaotic dynamics with

low, medium and high variances of oscillations from figures (5(a)-5(b), 6(a)-6(b), 7(a)-7(b)).

28

(b)

Figure 7. (a) the oscillations of populations against time with high intensities (high noise) of parameters
α1 = 10, α2 = 20, α3 = 30; (b) the phase-portrait diagram of populations under random high noise of
parameters α1 = 10, α2 = 20, α3 = 30.

11. Conclusions

In this paper, we have studied stability of a diseased model of susceptible, infected prey and
predators around an interior steady state. The positivity of the solutions and boundedness of the system
together with stability analysis of boundary equilibrium providing all the necessary information to
establish persistence of the system. The deterministic situation theoretical epidemiologists are usually
guided by an implicit assumption that most epidemic models (we observe in nature) correspond to
stable equilibrium of models. In Theorem 3, we gave the condition for stable co-existence. In Theorem
4, we proved the global stability by using a Lyapunov function. We also worked out the condition
for which all three species will persist. The controllability conditions and the conditions for global
asymptotic stability have been obtained by using the adaptive back-stepping control approach by
using a suitable Lyapunov function. We also studied the stochastic perturbation of model (1), which
generates a significant change in the intensity of populations due to low, medium and high variances
of oscillations.
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