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Abstract: In this article, we present a modified auxiliary equation method. We harness this modification in
three fundamental models in the biological branch of science. These models are the biological population
model, equal width model and modified equal width equation. The three models represent the population
density occurring as a result of population supply, a lengthy wave propagating in the positive x-direction,
and the simulation of one-dimensional wave propagation in nonlinear media with dispersion processes,
respectively. We discuss these models in nonlinear fractional partial differential equation formulas.
We used the conformable derivative properties to convert them into nonlinear ordinary differential
equations with integer order. After adapting, we applied our new modification to these models to obtain
solitary solutions of them. We obtained many novel solutions of these models, which serve to understand
more about their properties. All obtained solutions were verified by putting them back into the original
equations via computer software such as Maple, Mathematica, and Matlab.

Keywords: modified auxiliary equation method; conformable fractional derivatives; fractional
biological population model; fractional equal with model; fractional modified equal width equation

1. Introduction

Since the emergence of humanity, people have taken a great interest in understanding natural
phenomena, beginning from fire, lightning, thunder, earthquakes, and volcanoes, ranging all to way to
the nano-particle. In the beginning of the 18th century, many scientists demonstrated an interest in
studying these phenomena. The development of these studies continued until the middle of the 19th
century. Partial differential equations (PDEs) became an essential tool for studying other branches of
science, and many phenomena have been explained using PDEs. Many techniques for solving PDEs
have been developed by scientists and researchers in their efforts to explain these phenomena. Many
methods have been derived to obtain exact and approximate solutions of these models. The most
important results in determining explicit solutions of nonlinear partial differential equations (NLPDEs)
were derived in [1]. These types of methods are best known as continuous symmetry transformation
groups [2–6]. At present, we use computer software (e.g., Maple, Mathematica) to make this kind
of transformation. Since the 20th century, the investigation of the partial differential equation has
become an independent field. Partial differential equations have been applied to the study of many
phenomena in different fields, such as sound, heat, electrostatics, electrodynamics, fluid dynamics,
elasticity, quantum mechanics, solid state physics, fluid mechanics, hydrodynamics, optics, plasma
physics, chemical kinetics, biological phenomena, and more. It is known that there exist various
analytic solution methods for NPDEs [7–21]. However, in the general case, there is no central theory
for NPDEs. There is no unified method that can be applied to all types of nonlinear PDEs. For these
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reasons, we have to discover new methods for solving these kinds of models, and cannot just make
modifications to methods that were discovered more than 100 years ago. Recently, fractional nonlinear
partial differential equations have played an important role in the representation of many phenomena.
Fractional rule half differential equations are increasingly chronic in accordance with mannequin
problems between fluid flow, pay up and vile areas over the application. Fractional derivatives grant
spiffy arms for the story on devotion or ancestral houses concerning various substances then processes.
Half-order derivatives and integrals prove according to lie more useful for the method concerning
sure electrochemical problems than the first-rate models. Fractional differentiation and integration
operators are additionally chronic for extensions about the pervasion then suspense equations. Many
researchers tried in conformity with finding out extra properties expecting that form of derivatives.
They discovered partially about methods in accordance with changing the nonlinear fractional half
differential equations among everyday differential equation together with integer order. For more
important points in relation to these types of derivatives, we refer the reader to References [22–29].
In this paper, we use conformable derivative properties and apply them to three nonlinear biological
models. These models are a fractional biological population model [30–34], a fractional equal width
equation [35–38], and a fractional modified equal width equation [39–42], respectively.

The rest of this research paper is organized as follows: In Section 2, we give the headlines of the
modified auxiliary equation method. In Section 3, we employ a novel computation to get the solitary
solutions of the fractional biological population model, fractional equal width equation, and fractional
modified equal width equation. In Section 4, we study the obtained solutions and their novelty with
the previous method. In Section 5, we represent the conclusion of this study.

2. Fundamental Steps of the New Technique

Consider a nonlinear partial differential equation (NLPDE) with the following form:

F(u, ux, ut, ux x, ut t, ...) = 0, (1)

where F is a polynomial in u(x, t) and its partial derivatives in which the highest-order derivatives
and nonlinear terms are involved. In the following, we give the steps of this method:

Step 1. Using the wave transformation:

u(x, t) = u(θ), where [θ = x + y + c t].

Using this transformation on (1), we convert the nonlinear partial differential equation into an
ordinary differential equation with the following form:

f (u, u′, u′′, . . . ) = 0. (2)

Step 2. Suppose that the solutions of ODE (2) have the following form:

u(θ) =
N

∑
i=1

ai Ki f (θ) + a0 +
N

∑
i=1

bi K−i f (θ), (3)

where (ai, a) are arbitrary constants that will be determined later, while f (θ) satisfies the following
ODE:

f ′(θ) =
1

ln(a)
(α K− f (θ) + β + σ K f (θ)). (4)

Step 3. Determine the positive integer N in Equation (3) by balancing the highest-order derivatives
and the nonlinear terms.
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Step 4. Substituting Equations (3) and (4) into Equation (2) and collecting all the terms of the same
power (Ki f (θ)) where (i = −N, . . . , N) and equating them to zero, we get a system of algebraic
equations that can be solved by Maple or Mathematica to get the values of ai, bi, and (α, β, σ).

Step 5. Substituting these values and the solutions of Equation (4) into Equation (3), we obtain the
exact solutions of Equation (1).

3. Applications

In this part, we apply a novel computational method to two fractional models.

• Fractional biological population model:
This model describes population dynamics. It also gives a simple example of how complex
interactions and processes work. The model has the following form:

Dϑ
t u = D2 ϑ

xx u2 + D2 ϑ
yy u2 + λ(u2 − s), 0 < ϑ < 1, (5)

where u impersonates the population density and λ(u2 − s) constitutes the population
changes because of deaths and births.

• Fractional equal width equation:
This model is usually used to describe complex physical phenomena in various fields, and has
the following formula:

Dϑ
t u + 2 h u Dϑ

x u− r D3 ϑ
xxtu = 0, 0 < ϑ < 1, (6)

where [h, r] are arbitrary constants.
• Fractional modified equal width equation:

This model refers to the replica of one-dimensional wave propagation in nonlinear form with
dispersion processes, and has the following formula:

Dϑ
t u + h u2 Dϑ

x u− r D3 ϑ
xxtu, 0 < ϑ < 1, (7)

where [h, r] are arbitrary constants.

Applying the conformable derivative definition and its properties to Equations (5) and (7) in
respective order [u(x, y, t) = u(θ)& θ = µ xκ

κ + i µ
yκ

κ + c tκ

κ ] & [u(x, t) = u(θ)& θ = xκ

κ + c tκ

κ ],
we transform the fractional PDE into an integer order ODE in the following order:

c u′ − λ u2 + λ s = 0, (8)

c u + h u2 − r c u′′ = 0, (9)

c u +
h
3

u3 − r c u′′ = 0. (10)

We balanced the terms in Equations (8)–(10) to get the balance value of each of them, obtaining
the value of balance equal to one in all of them. According to the novel method, the general solution of
Equations (8) and (10) is in the following form:

u(θ) = a0 + a1 K f (θ) + b1 K− f (θ), (11)

while the general solution of Equation (9) is in the next form:

u(θ) = a0 + a1 K f (θ) + a2 K2 f (θ) + b1 K− f (θ) + b2 K−2 f (θ). (12)



Math. Comput. Appl. 2019, 24, 1 4 of 13

3.1. Fractional Biological Population Model

Substitute Equation (11) and its derivatives into Equation (8). Collect all coefficients of the same
terms for K f (θ). Equating them to zero, we obtain system of algebraic equations. Solving this system
via any computer software (e.g., Maple, Mathematica), we obtain:

a0 →
β
√

s√
β2 − 4ασ

, a1 → 0, b1 →
2α
√

s√
β2 − 4ασ

, c→ − 2λ
√

s√
β2 − 4ασ

,

where [s > 0, α 6= 0, λ 6= 0, β2 6= 4 α σ].

Consequently, the solitary wave solutions of population density have the following formulae:
When β2 − 4 α σ < 0 and σ 6= 0, we get:

u(x, y, t) =
√

s√
β2 − 4ασ

β− 4ασ

β−
√

4ασ− β2 tan
(√

4ασ−β2

2κ (− 2λ
√

stκ√
β2−4ασ

+ µxκ + iµyκ)

)
 , (13)

u(x, y, t) =
√

s√
β2 − 4ασ

β− 4ασ

β−
√

4ασ− β2 cot
(√

4ασ−β2

2κ (− 2λ
√

stκ√
β2−4ασ

+ µxκ + iµyκ)

)
 . (14)

When β2 − 4 α σ > 0 and σ 6= 0, we get:

u(x, y, t) =
√

s√
β2 − 4ασ

β− 4ασ

β +
√

β2 − 4ασ tanh
(
−2λ
√

stκ+µ
√

β2−4ασ(xκ+iyκ)
2κ

)
 , (15)

u(x, y, t) =
√

s√
β2 − 4ασ

β− 4ασ

β +
√

β2 − 4ασ coth
(
−2λ
√

stκ+µ
√

β2−4ασ(xκ+iyκ)
2κ

)
 . (16)

When β2 + 4 α2 < 0 and α = −σ where (σ 6= 0), we get:

u(x, y, t) =
√

s√
β2 − 4ασ

β +
4α2

β−
√
−4α2 − β2 tan

(√
−4α2−β2

2κ (− 2λ
√

stκ√
4α2+β2

+ µxκ + iµyκ)

)
 , (17)

u(x, y, t) =
√

s√
β2 − 4ασ

β +
4α2

β−
√
−4α2 − β2 cot

(√
−4α2−β2

2κ (− 2λ
√

stκ√
4α2+β2

+ µxκ + iµyκ)

)
 . (18)

When β2 + 4 α2 > 0 and α = −σ where (σ 6= 0), we get:

u(x, y, t) =
√

s√
β2 − 4ασ

β +
4α2

β +
√

4α2 + β2 tanh
(
−2λ
√

stκ+µ
√

4α2+β2(xκ+iyκ)
2κ

)
 , (19)
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u(x, y, t) =
√

s√
β2 − 4ασ

β +
4α2

β +
√

4α2 + β2 coth
(
−2λ
√

stκ+µ
√

4α2+β2(xκ+iyκ)
2κ

)
 . (20)

When β2 − 4 α2 < 0 and α = σ where (α 6= 0), we get:

u(x, y, t) =
√

s√
β2 − 4ασ

β− 4α2

β−
√

4α2 − β2 tan
(√

4α2−β2

2κ (− 2λ
√

stκ√
β2−4α2

+ µxκ + iµyκ)

)
 , (21)

u(x, y, t) =
√

s√
β2 − 4ασ

β− 4α2

β−
√

4α2 − β2 cot
(√

4α2−β2

2κ (− 2λ
√

stκ√
β2−4α2

+ µxκ + iµyκ)

)
 . (22)

When β2 − 4 α2 > 0 and α = σ where (α 6= 0), we get:

u(x, y, t) =
√

s√
β2 − 4ασ

β− 4α2

β +
√

β2 − 4α2 tanh
(
−2λ
√

stκ+µ
√

β2−4α2(xκ+iyκ)
2κ

)
 , (23)

u(x, y, t) =
√

s√
β2 − 4ασ

β− 4α2

β +
√

β2 − 4α2 coth
(
−2λ
√

stκ+µ
√

β2−4α2(xκ+iyκ)
2κ

)
 . (24)

When α σ > 0 where (α 6= 0, & β = 0), we get:

u(x, y, t) =
α
√

s σ√
−α2σ2

cot

√ασ(− λ
√

stκ
√
−ασ

+ µxκ + iµyκ)

κ

 , (25)

u(x, y, t) = − α
√

s σ√
−α2σ2

tan

√ασ(− λ
√

stκ
√
−ασ

+ µxκ + iµyκ)

κ

 . (26)

When α σ < 0 where (α 6= 0, & β = 0), we get:

u(x, y, t) =
√

s coth
(
−λ
√

stκ + µ
√
−ασ(xκ + iyκ)

κ

)
, (27)

u(x, y, t) =
√

s tanh
(
−λ
√

stκ + µ
√
−ασ(xκ + iyκ)

κ

)
. (28)

When β = 0 and α = −σ, we get:

u(x, y, t) =
α
√

s√
α2

tanh

α(− λ
√

stκ
√

α2 + µ(xκ + iyκ))

κ

 . (29)
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When β = κ, α = 2 κ and σ = 0 we get:

u(x, y, t) =

κ
√

s

(
2e

2λ
√

stκ√
κ2 + eµ(xκ+iyκ)

)
√

κ2

(
−2e

2λ
√

stκ√
κ2 + eµ(xκ+iyκ)

) . (30)

When β = 0 and α = σ, we get:

u(x, y, t) =
α
√

s√
−α2

cot

Cκ +
√
−αλ
√

stκ
√

α
+ αµ(xκ + iyκ)

κ

 . (31)

When σ = 0, we get:

u(x, y, t) =
β
√

s√
β2

1− 2α

α− β exp
(

β
κ (− 2λ

√
stκ√

β2
+ µxκ + iµyκ)

)
 . (32)

3.2. Fractional Equal Width Model

Substitute Equation (12) and its derivatives into Equation (9). Collect all coefficients of the same
terms for K f (θ). Equating them to zero, we obtain a system of algebraic equations. Solving this system
via any computer software (e.g., Maple, Mathematica), we obtain:

a0 → −
c(
√
(β2 − 4ασ)2 + 8ασ + β2)

2h
√
(β2 − 4ασ)2

, a1 → 0, a2 → 0, b1 → −
6αβc

h
√
(β2 − 4ασ)2

,

b2 → −
6α2c

h
√
(β2 − 4ασ)2

, r → − 1√
16α2σ2 − 8αβ2σ + β4

,

where [h 6= 0, α β c 6= 0, α2 c 6= 0, β2 6= 4 α σ].

Consequently, the solitary wave solutions of population density have the following formulae:
When β2 − 4 α σ < 0 and σ 6= 0, we get:

u(x, t) =

c(−
√
(β2 − 4ασ)2 − β2 + 24αβσ

β−
√

4ασ−β2 tan(

√
4ασ−β2(ctκ+xκ )

2κ )

+ 8ασ(− 6ασ

(β−
√

4ασ−β2 tan(

√
4ασ−β2(ctκ+xκ )

2κ ))2
− 1))

2h
√
(β2 − 4ασ)2

, (33)

u(x, t) =

c(−
√
(β2 − 4ασ)2 − β2 + 24αβσ

β−
√

4ασ−β2 cot(

√
4ασ−β2(ctκ+xκ )

2κ )

+ 8ασ(− 6ασ

(β−
√

4ασ−β2 cot(

√
4ασ−β2(ctκ+xκ )

2κ ))2
− 1))

2h
√
(β2 − 4ασ)2

. (34)

When β2 − 4 α σ > 0 and σ 6= 0, we get:

u(x, t) =

c(−
√
(β2 − 4ασ)2 − β2 + 24αβσ

β+
√

β2−4ασ tanh(

√
β2−4ασ(ctκ+xκ )

2κ )

+ 8ασ(− 6ασ

(β+
√

β2−4ασ tanh(

√
β2−4ασ(ctκ+xκ )

2κ ))2
− 1))

2h
√
(β2 − 4ασ)2

, (35)

u(x, t) =

c(−
√
(β2 − 4ασ)2 − β2 + 24αβσ

β+
√

β2−4ασ coth(

√
β2−4ασ(ctκ+xκ )

2κ )

+ 8ασ(− 6ασ

(β+
√

β2−4ασ coth(

√
β2−4ασ(ctκ+xκ )

2κ ))2
− 1))

2h
√
(β2 − 4ασ)2

. (36)
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When β2 + 4 α2 < 0 and α = −σ where (σ 6= 0), we get:

u(x, t) =

c(−
√
(4α2 + β2)2 − β2 + 8α2(1− 3(2α2+β2−β

√
−4α2−β2 tan(

√
−4α2−β2(ctκ+xκ )

2κ ))

(β−
√
−4α2−β2 tan(

√
−4α2−β2(ctκ+xκ )

2κ ))2
))

2h
√
(4α2 + β2)2

, (37)

u(x, t) =

c(−
√
(4α2 + β2)2 − β2 + 8α2(1− 3(2α2+β2−β

√
−4α2−β2 cot(

√
−4α2−β2(ctκ+xκ )

2κ ))

(β−
√
−4α2−β2 cot(

√
−4α2−β2(ctκ+xκ )

2κ ))2
))

2h
√
(4α2 + β2)2

. (38)

When β2 + 4 α2 > 0 and α = −σ where (σ 6= 0), we get:

u(x, t) =

c(−
√
(4α2 + β2)2 − β2 + 8α2(1− 3(2α2+β2+β

√
4α2+β2 tanh(

√
4α2+β2(ctκ+xκ )

2κ ))

(β+
√

4α2+β2 tanh(

√
4α2+β2(ctκ+xκ )

2κ ))2
))

2h
√
(4α2 + β2)2

, (39)

u(x, t) =

c(−
√
(4α2 + β2)2 − β2 + 8α2(1− 3(2α2+β2+β

√
4α2+β2 coth(

√
4α2+β2(ctκ+xκ )

2κ ))

(β+
√

4α2+β2 coth(

√
4α2+β2(ctκ+xκ )

2κ ))2
))

2h
√
(4α2 + β2)2

. (40)

When β2 − 4 α2 < 0 and α = σ where (α 6= 0), we get:

u(x, t) =

c(−
√
(β2 − 4α2)2 − β2 + 8α2(

3(−2α2+β2−β
√

4α2−β2 tan(

√
4α2−β2(ctκ+xκ )

2κ ))

(β−
√

4α2−β2 tan(

√
4α2−β2(ctκ+xκ )

2κ ))2
− 1))

2h
√
(β2 − 4α2)2

, (41)

u(x, t) =

c(−
√
(β2 − 4α2)2 − β2 + 8α2(

3(−2α2+β2−β
√

4α2−β2 cot(

√
4α2−β2(ctκ+xκ )

2κ ))

(β−
√

4α2−β2 cot(

√
4α2−β2(ctκ+xκ )

2κ ))2
− 1))

2h
√
(β2 − 4α2)2

. (42)

When β2 − 4 α2 > 0 and α = σ where (α 6= 0), we get:

u(x, t) =

c(−
√
(β2 − 4α2)2 − β2 + 8α2(

3(−2α2+β2+β
√

β2−4α2 tanh(

√
β2−4α2(ctκ+xκ )

2κ ))

(β+
√

β2−4α2 tanh(

√
β2−4α2(ctκ+xκ )

2κ ))2
− 1))

2h
√
(β2 − 4α2)2

, (43)

u(x, t) =

c(−
√
(β2 − 4α2)2 − β2 + 8α2(

3(−2α2+β2+β
√

β2−4α2 coth(

√
β2−4α2(ctκ+xκ )

2κ ))

(β+
√

β2−4α2 coth(

√
β2−4α2(ctκ+xκ )

2κ ))2
− 1))

2h
√
(β2 − 4α2)2

. (44)

When α σ > 0 where (α 6= 0, & β = 0), we get:

u(x, t) = −
c(
√

α2σ2 + ασ(3 cot2(
√

α
√

σ(ctκ+xκ)
κ ) + 2))

2h
√

α2σ2
, (45)
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u(x, t) = −
c(
√

α2σ2 + ασ(3 tan2(
√

α
√

σ(ctκ+xκ)
κ ) + 2))

2h
√

α2σ2
. (46)

When α σ < 0 where (α 6= 0, & β = 0), we get:

u(x, t) = −
c(
√

α2σ2 + ασ(3 cot2(
√

α
√

σ(ctκ+xκ)
κ ) + 2))

2h
√

α2σ2
, (47)

u(x, t) = −
c(
√

α2σ2 + ασ(3 tan2(
√

α
√

σ(ctκ+xκ)
κ ) + 2))

2h
√

α2σ2
. (48)

When β = 0 and α = −σ, we get:

u(x, t) = −
c(
√

α4 + α2 − 3α2sech2( α(ctκ+xκ)
κ ))

2
√

α4h
. (49)

When β = κ, α = 2 κ and σ = 0 we get:

u(x, t) = − c(24κ2(ectκ+xκ − 2) + (
√

κ4 + κ2)(ectκ+xκ − 2)2 + 48κ2)

2h
√

κ4(ectκ+xκ − 2)2
. (50)

When β = 0 and α = σ, we get:

u(x, t) = −
c(
√

α4 + α2(3 cot2( αctκ+Cκ+αxκ

κ ) + 2))

2
√

α4h
. (51)

When σ = 0, we get:

u(x, t) =
c(β2(− 12αβe

β(ctκ+xκ )
κ

(α−βe
β(ctκ+xκ )

κ )2
− 1)−

√
β4)

2
√

β4h
. (52)

3.3. Fractional Modified Equal Width Equation

Substitute Equation (11) and its derivatives into Equation (10). Collect all coefficients of the same
terms for K f (θ). Equating them to zero, we obtain a system of algebraic equations. Solving this system
via any computer software (e.g., Maple, Mathematica), we obtain:

a0 →
√

3β
√

c√
4αhσ− β2h

, a1 →
2
√

3
√

cσ√
−h(β2 − 4ασ)

, b1 → 0, r → − 2
β2 − 4ασ

,

where [c > 0, σ 6= 0, h 6= 0, β2 6= 4 α σ].

Consequently, the solitary wave solutions of population density have the following formulae:
When β2 − 4 α σ < 0 and σ 6= 0, we get:

u(x, t) =

√
3
√

c
√

4ασ− β2 tan(
√

4ασ−β2(ctκ+xκ)
2κ )√

−h(β2 − 4ασ)
, (53)

u(x, t) =

√
3
√

c
√

4ασ− β2 cot(
√

4ασ−β2(ctκ+xκ)
2κ )√

−h(β2 − 4ασ)
. (54)
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When β2 − 4 α σ > 0 and σ 6= 0, we get:

u(x, t) =

√
3
√

ch(β2 − 4ασ)3/2 tanh(
√

β2−4ασ(ctκ+xκ)
2κ )

(−h(β2 − 4ασ))3/2 , (55)

u(x, t) =

√
3
√

ch(β2 − 4ασ)3/2 coth(
√

β2−4ασ(ctκ+xκ)
2κ )

(−h(β2 − 4ασ))3/2 . (56)

When β2 + 4 α2 < 0 and α = −σ where (σ 6= 0), we get:

u(x, t) =

√
3
√

c
√
−4α2 − β2 tan(

√
−4α2−β2(ctκ+xκ)

2κ )√
−h(4α2 + β2)

, (57)

u(x, t) =

√
3
√

c
√
−4α2 − β2 cot(

√
−4α2−β2(ctκ+xκ)

2κ )√
−h(4α2 + β2)

. (58)

When β2 + 4 α2 > 0 and α = −σ where (σ 6= 0), we get:

u(x, t) =

√
3
√

ch(4α2 + β2)3/2 tanh(
√

4α2+β2(ctκ+xκ)
2κ )

(−h(4α2 + β2))3/2 , (59)

u(x, t) =

√
3
√

ch(4α2 + β2)3/2 coth(
√

4α2+β2(ctκ+xκ)
2κ )

(−h(4α2 + β2))3/2 . (60)

When β2 − 4 α2 < 0 and α = σ where (α 6= 0), we get:

u(x, t) =

√
3
√

c
√

4α2 − β2 tan(
√

4α2−β2(ctκ+xκ)
2κ )√

h(4α2 − β2)
, (61)

u(x, t) =

√
3
√

c
√

4α2 − β2 cot(
√

4α2−β2(ctκ+xκ)
2κ )√

h(4α2 − β2)
. (62)

When β2 − 4 α2 > 0 and α = σ where (α 6= 0), we get:

u(x, t) = −
√

3
√

c
√

β2 − 4α2 tanh(
√

β2−4α2(ctκ+xκ)
2κ )√

h(4α2 − β2)
, (63)

u(x, t) = −
√

3
√

c
√

β2 − 4α2 coth(
√

β2−4α2(ctκ+xκ)
2κ )√

h(4α2 − β2)
. (64)

When α σ > 0 where (α 6= 0, & β = 0), we get:

u(x, t) =

√
3
√

c
√

ασ tan(
√

ασ(ctκ+xκ)
κ )

√
αhσ

, (65)
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u(x, t) = −
√

3
√

c
√

ασ cot(
√

ασ(ctκ+xκ)
κ )

√
αhσ

. (66)

When α σ < 0 where (α 6= 0, & β = 0), we get:

u(x, t) =

√
3
√

α
√

c
√

σ tan(
√

α
√

σ(ctκ+xκ)
κ )

√
αhσ

, (67)

u(x, t) = −
√

3
√

c
√
−ασ coth(

√
−ασ(ctκ+xκ)

κ )
√

αhσ
. (68)

When β = 0 and α = −σ, we get:

u(x, t) = −
√

3α
√

c coth( α(ctκ+xκ)
κ )√

α2(−h)
. (69)

When β = σ = κ and α = 0 we get:

u(x, t) = −
√

3
√

cκ coth( 1
2 (ctκ + xκ))√
−hκ2

. (70)

When α = 0, we get:

u(x, t) = −
√

3β
√

c(σe
β(ctκ+xκ )

κ + 2)√
β2(−h)(σe

β(ctκ+xκ )
κ − 2)

. (71)

When β = 0 and α = σ, we get:

u(x, t) =

√
3α
√

c tan( αctκ+Cκ+αxκ

κ )
√

α2h
. (72)

4. Results and Discussion

We examined a modified auxiliary equation method on three fundamental models in biological
science. We discussed two approaches to the comparison of our solutions and results in [43]. The first
kind is a numerical comparison which depends on a number of solutions for each paper. We obtained
many solutions for each model, but Guner and Bekir found just a few for each of these models. The
second kind of comparison is the novelty of solutions. We obtained many solutions, covering all
solutions obtained in [43] as well as other different solutions to those obtained in the mentioned paper.
The novelty of this paper lies in the progress in these models. Guner and Bekir used a modified
Riemann–Liouville derivative in imitation of changing the nonlinear fractional partial differential
equations (NFPDEs) among an integer rule over normal differential equations (IOODEs). Many papers
have confirmed the error in this kind of derivative.

5. Conclusions

In this paper, we applied well-established conformable derivative properties to three basic models
in biological science. We also introduced a novel technique (modified auxiliary equation method or
modified Khater method). We used this method on the converting ordinary equation of each model
such that these models are fractional nonlinear partial differential equations. We obtained many
novel solutions for each model. These solutions give more details and explanations of these models.
We plotted solitary wave, bistable wave, and contour plots for some of our obtained solutions in
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Figures 1–3 to give more explanations about these solutions. The accuracy of all obtained solutions
was examined by putting them into their original equations using Mathematica 9.

HaL

-2

0

2

x

-0.05

0.00

0.05
t

0

5

10

u11

-4 -2 2 4

x

1.98

2.00

2.02

2.04

u11

HbL

-3 -2 -1 0 1 2 3

-0.10

-0.05

0.00

0.05

0.10

HcL

Figure 1. (a) Solitary wave, (b) bistable wave amplitude, and (c) contour plots for Equation (13) in the
respective interval {x,−2.05, 2.05}, {t,−0.08, 0.08}.
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Figure 2. (a) Solitary wave, (b) the bistable wave amplitude and (c) contour plots for Equation (33) in
the respective interval {x,−2.05, 2.05}, {t,−0.08, 0.08}.
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Figure 3. (a) Solitary wave, (b) the bistable wave amplitude and (c) contour plots for Equation (53) in
the respective interval {x,−2.05, 2.05}, {t,−0.08, 0.08}.
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