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Abstract: The objective of this research is to develop metaheuristic methods by using the differential
evolution (DE) algorithm for solving the U-shaped assembly line balancing problem Type 1
(UALBP-1). The proposed DE algorithm is applied for balancing the lines (manufacturing a single
product within a fixed given cycle time), where the aim is to minimize the number of workstations.
After establishing the method, the results from previous research studies were compared with the
results from this study. For the UALBP, two groups of benchmark problems were used for the
experiments: (1) For the medium-sized UALBP (21–45 tasks), it was found that the DE algorithm
DE/best/2 to Exponential Crossover 1 produced better solutions when compared to the other
metaheuristic methods: it could generate 25 optimal solutions from a total of 25 instances, and
the average time used for the calculation was 0.10 seconds/instance; (2) for the large-scale UALBP
(75–297 tasks), it was found that the basic DE algorithm and improved differential evolution algorithm
generated better solutions, and DE/best/2 to Exponential Crossover 1 generated the optimal solutions
and achieved the minimum solution search time when compared to the other metaheuristic methods:
it could generate 36 optimal solutions from a total of 62 instances, and the average time used for
the calculation was 4.88 seconds/instance. From the comparison of the DE algorithms, it was
found that the improved differential evolution algorithm generated optimal solutions with a better
solution search time than the search time of the basic differential evolution algorithm. The basic and
improved DE algorithm are the effective methods for balancing UALBP-1 when compared to the
other metaheuristic methods.

Keywords: U-shaped assembly line balancing; basic differential evolution algorithm; improved
differential evolution algorithm; optimal solutions

1. Introduction

Nowadays, the degree of competition in many industries is very high. Therefore, organizations
that respond quickly to changes in their customers’ needs, require less effort to control the storage of
their inventory, and spend less time in production will certainly achieve business advantages over their
competitors. Moreover, organizations need to show continuous improvement and development of their
products’ values in order to respond to the needs of their customers by reducing costs and improving
product quality during the production process. This has resulted in changes to the production system,
such as the change from the push system to the pull system, which has reduced the volume of each
batch size produced. The changes also include replacing the traditional production layout of straight
lines with U-shaped production lines or U-lines. When compared to the traditional production layout of
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straight lines, it was found that using U-lines was more advantageous in terms of balanced production
lines, improved worker visibility, better communications, fewer workstations, higher flexibility, shorter
operation travel, and easier material handling, among other benefits. Relevant research studies on
simple assembly line balancing using a single model and mixed model were first published in 1955,
and the subject has been researched intensively since then. Meanwhile, research studies on U-shaped
assembly line balancing have not received much interest from researchers, with few studies conducted.
Therefore, there are many interesting areas under the topic of U-shaped assembly line balancing that
require further research studies [1].

The assembly line balancing problem (ALBP) is considered a problem of the NP-hard class of
combinatorial optimization problems [2], which are complicated to solve. If using mathematics with
exact methods for finding optimal solutions, a lot of time will be spent on calculations and expenses,
especially of large-scale problems with more variables and limitations. Hence, many heuristic methods
for obtaining good solutions have been developed [3]. In the last 10 years, the development of the
heuristic methods known as metaheuristic methods has been of great interest to many researchers
because the methods were used to obtain results for the general assembly line balancing problem
(GALBP) and simple assembly line balancing problem (SALBP) [4]. The assembly line balancing
problem (ALBP) has come to be considered a classic problem that interests many researchers and
research studies on this problem have been carried out since 1955. Many researchers have developed
mathematics methods (exact methods) and heuristic methods, including metaheuristic methods. [5]
A new hybrid GSA-GA algorithm is presented for the constraint nonlinear optimization problems
with mixed variables. In it, firstly the solution of the algorithm is tuned up with the gravitational
search algorithm and then each solution is upgraded with the genetic operators such as selection,
crossover, and mutation [6]. The main objective of this paper is to present a hybrid technique named
as a PSO-GA for solving the constrained optimization problems. In this algorithm, particle swarm
optimization (PSO) operates in the direction of improving the vector while the genetic algorithm (GA)
has been used for modifying the decision vectors using genetic operators. However, only a small
number of metaheuristic methods have been developed for solving the problems discussed in this
study. Therefore, it is of interest to develop metaheuristic methods for solving the ALBP and thus
increase the chance of finding an effective solution of this problem [7]. The objective of this paper is
to solve the reliability redundancy allocation problems of series parallel system under the various
nonlinear resource constraints using the penalty guided based biogeography based optimization. In
the same year, [8] The main goal of the present paper is to present a penalty based cuckoo search (CS)
algorithm to get the optimal solution of reliability e redundancy allocation problems (RRAP) with
nonlinear resource constraints.

Hence, this research is a study on U-shaped assembly line balancing for the manufacture of
a single product with a given fixed cycle time (c), where the aim is to minimize the number of
workstations (m). The U-line assembly line balancing problem type 1 (UALBP-1) was studied, and a
new metaheuristic method was developed for finding the solution by using the differential evolution
algorithm (DE) [9]. The aim of this new method is to generate good solutions or the optimal solutions
to this classic problem.

The main contribution of this work includes: (1) background; (2) the assembly line balancing
problem; and (3) objective of the work.

2. Literature Review

2.1. U-Shape Assembly Line Balancing by Using Other Metaheuristic Methods

The previous studies on the UALBP were reviewed and are summarized in this section. The
first UALBP study in the literature was conducted in 1994 by [10]. In their study entitled “The U-line
Line Balancing Problem”, the mathematical formulation of the problem established by using dynamic
programming for the single-model U-line to minimize the number of stations, and the RPWT (ranked
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positional weight technique) for solving a large-sized UALBP (111 tasks), which contained problems
derived from previous research studies. These problems were more complicated than traditional
problems because the tasks could be placed from forward to backward, from backward to forward, or
from both directions simultaneously according to a sequential flowchart. A year later, [11] developed
three mathematical exact algorithms to solve the UALBP. The dynamic programming (DP) formulation
was used in the first algorithm, and the other two were breadth-first and depth-first branch and
bound (B&B) algorithms. The results of the calculation revealed that B&B was more effective than the
DP-based algorithm, and breadth-first spent less time on calculation than depth-first, but depth-first
could find the optimal solutions faster. Later, [12] conducted research entitled “The Mixed-Model
U-line Balancing Problem” and developed a heuristic method for solving the mixed-model UALBP
with a precedence graph of each batch size with 25 tasks. In the same year, [13] presented a formulation
for Integer Programming (IP) for finding the optimal balance to solve the UALBP. This formulation
solved the large-scale problems better than the traditional ones. Later, [14] proposed a DP formulation
for solving problems of numerous U-lines with a maximum of 22 tasks. The objective was to assign
the tasks to workstations in various ways, aiming to minimize the number of workstations and time
wasting [15,16]. This integrated model was solved with a black hole optimization based algorithm. The
quality of the heuristic solution was checked with special data sets. A year later, proposed a black hole
optimization (BHO) based algorithm dealing with a multi objective supply chain model is presented.
The sensitivity of the enhanced algorithm is tested with benchmark functions. Numerical results with
different datasets demonstrate the efficiency of the proposed model and validate the usage of Industry
4.0 inventions in first mile and last mile (FMLM) delivery.

The principles proposed could be effective methods for ALB and Rebalancing the UALBP.
Later, [17] developed a heuristic method for solving the UALBP with nine U-lines, where there were
18 tasks in each U-line with the same cycle time. The time between work and the time between U-lines
were used in the consideration. A year later, [18] produced a thesis called “Incorporating Ergonomics
Criteria into Assembly Line Balancing” and developed three heuristic methods: (1) multiple ranking
heuristic, (2) combinatorial genetic algorithm (GA), and (3) problem-space GA. These methods were
developed by employing the criteria for ergonomic designs (such as a reduction in cycle time and the
loss of grip strength due to fatigue at workstations) for the consideration of solutions of the I-shaped
and U-shaped line ALB in order to obtain the lowest values. Consequently, many industrial factories
benefited from the results of the study in terms of both production and ergonomics. Later, [19] carried
out a study entitled “ULINO: Optimally balancing U-shaped JIT assembly lines” by implementing
a B&B method that was developed from the simple assembly line balancing optimization method
(SALOME). The SALOME method, which had been previously used for solving straight-line problems,
was used for solving U-line problems with 297 tasks. This new method was called ULINO (U-line
optimizer). The method was based on depth-first branch and bound and dominance rules. The purpose
was to minimize the number of workstations, cycle time, or both. In 2003, a method for obtaining the
optimal solution of UALB with parallel stations was developed by using multiple lower bounding and
a new heuristic method for finding the upper bounding. The results from the two developed methods
were improved over the traditional methods.

A year later, [20] applied the genetic algorithm (GA), which had been used for solving the SALBP,
for solving the UALBP-1. Then, the optimal solutions from previous studies were compared. The
results from the study showed that the GA could generate the optimal solutions or nearest solutions
in the very first rounds of the experiment. Later, [21] published “A Shortest Route Formulation of
Simple U-Type Assembly Line Balancing Problem”, which applied the theory of the shortest route
formulation. The theory was proposed by [22] for solving the SALBP. However, the principles of the
theory were further developed to solve the UALBP. In addition, some examples of the calculations
of this method were published in many research articles and, In the same year, [23] achieved the
goal of developing an equation formulation for the UALBP that was based on the integer linear
programming formulation developed for the UALBP, as well as an equation formulation for the SALBP.
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The principles were flexible, helping in decision making in the UALBP for cases with many conditions.
In the same year, [24] carried out research called “The Stochastic U-line Balancing Problem: A Heuristic
Procedure”. The authors explained the reason why the U-lines were popular: it was because the JIT
(just-in-time) production system played a major role in production. Therefore, U-shaped assembly
lines were replacing the traditional straight assembly lines. The issue that was emphasized as needing
consideration in the UALBP was the unreliability of the task time due to workers and other factors
with unpredictable timing.

The developed heuristic approach was divided into two parts: finding basic solutions and
improving basic feasible solutions. The results of the calculation revealed the effectiveness of the
method used. In another study, conducted by [25], simulated annealing (SA) was developed for
solving the UALBP. This method is widely used at present. The aim of this method is to minimize the
number of workstations (Type-I). The effectiveness of the principles was evaluated by a solution search
for large-scale problems and by comparing the results with ULINO (U-Line optimizer), which was
B&B based on the heuristic procedure. In addition, [26] the authors proposed recommendations for
further research studies as follows: (1) SA methods should be used for more difficult problems, such as
mixed-/multi-model lines, stochastic task time, and U-line with other characteristics; (2) the principles
of other metaheuristic methods should be utilized for solving the UALBP; (3) exact methods for solving
U-line problems at a large scale should be developed; (4) the principles of other metaheuristic methods
should be used for solving problems of Type-II (min. c, given m). Since the study, many researchers
have explored methods for solving the UALBP by developing GA metaheuristic methods. In [27],
a GA was presented for solving the UALBP by using the Just-In-Time (JIT) approach for solving
the UALBP. The results were better than those of the traditional approaches that were employed for
solving the UALBP. Therefore, the GA was used for solving UALBP. The results from the verification
showed that greater effectiveness was achieved. The criteria used for consideration were the number
of workstations of assembly lines and the variation of the workloads. The results from the experiment
showed that the proposed method was effective because the workstations were well grouped and the
workload formats were improved.

Moreover, many researchers used metaheuristic methods for solving the UALBP. They proposed
the ant colony system (ACS) algorithm for finding solutions and proposed four heuristic methods:
the method of Kilbridge and Wester (K&W), ranked positional weight (RPW), maximum task time
(Max. T. T.), and total maximum number of following tasks (Max. N.F.). The four methods were then
compared to the metaheuristic method of ACS for finding solutions, and it was found that the ACS
method generated better solutions than the four heuristic methods. Later, other researchers studying
methods for solving the UALBP developed a heuristic method and metaheuristic method by using
the max-min ant system (MMAS) of max. task time and min. task time, together with a local search
method for solving the SALBP and UALBP. For the SALBP, a large-scale benchmark problem set with
45–111 tasks and the large-scale benchmark problem set of Lapierre’s Tabu Search (TS) with 297 tasks
were tested. For solving the UALBP, experiments were conducted on the benchmark problem set using
Max. RPW and the medium-sized UALBP with 21–45 tasks, and the benchmark problem set with
some given information consisted of a large-scale problem with 75–297 tasks. From the results of the
study, it was concluded that the developed Max-Min Ant system was the most efficient method when
compared to the heuristic method and Max. RPW method. From the experiments, Min. task time
generated the worst solution. When compared to other methods, and when there was a change that
increased cycle time, the results showed that there was no effect on the capacity of the Max-Min Ant
system for finding the solution. Therefore, it was concluded that the developed method was highly
efficient. After that, other methods for solving the UALBP were researched by other researchers.

2.2. U-Shape Assembly Line Balancing by Using Differential Evolution Algorithm

Assembly line balancing (ALB) by using the differential evolution algorithm for solving the
ALBP has been studied by many researchers. In [28], the differential evolution algorithm was studied
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and proposed for solving the SALBP from the benchmark problem (retrieved from http://www.
assembly-line-balancing.de) with 7–111 tasks. The purpose was to find the minimum number of
workstations with the condition that the time of each station must not exceed the production cycle
time and the preceding conditions must be met. The results of the study revealed that the proposed
method generated a good solution with a minimum search time. This generated an initial solution
from the sampling of real numbers, and the solution was further optimized. Later, [29] carried out
research by using the differential evolution (DE) algorithm for solving the SALPB-1. The proposed
heuristic is composed of four main steps: (1) initialization, (2) mutation, (3) crossover, and (4) selection
processes. In the study, the mutation and crossover processes were combined, and a new method was
found. The computational results based on many tests using a set of standard instances showed that
the proposed DE algorithm was very competitive for solving the SALPB-1.

2.3. Differential Evolution Algorithm for Solving Other Problems

Differential evolution (DE) algorithms have been used for solving other research problems which
aim to generate solutions as follows. The mutation DE algorithm was used in [24] and involved
the positions of the optimal vectors in the population of each batch and employed the crossover
or recombination of positions which were exchanged between vectors through the comparison of
the crossover rate (CR) with random positions. This method was found to be effective and, in
2011, [30] developed the DE algorithm for solving assignment problems by improving two main
crucial parameters in the DE process: the weighting factor (F) and crossover rate (CR). The improved
differential evolution (IDE) was used for allowing an adjustable F, and the CR changed in terms
of taxonomy steps. The sample problems were compared with the solutions of opposition-based
differential evolution (ODE) and adaptive differential evolution (JADE). The results revealed that
the developed IDE generated better solutions than the other two methods in terms of cost reduction
and increased performance in the system. A year later, [31] developed the Pareto Utility Discrete
Differential Evolution (PUDDE) algorithm for handling operator allocation problems (OAP) in order
to allocate jobs appropriately for the balance control of assembly lines when multiobjective functions
and conditions were formulated, and a decision based on only a single objective cannot be made.
The procedure, which included the discrete event simulation DES model, was used in the general
simulation, and PUDDE was employed for solving OAPs by improving the operator condition in two
ways: decreasing the number of operators or increasing the number of operators. The results from the
experiment concluded that PUDDE could find the solutions effectively. However, this method was
suitable for decreasing the number of operators. When compared to the traditional DE, the PUDDE
algorithm had a much better performance when finding objectives of multi-assembly lines in the
same problem.

From the literature and related research studies above, it can be concluded that the DE algorithm
was the method able to find the optimal solutions for large-scale complicated problems within the
possible solution area by using a short search time when compared to the other metaheuristic methods.
It was reported by [32] that DE algorithms with an evolution algorithm procedure were a new technique
for increasing the efficiency of and capacity for handling problems with nondifferentiable, nonlinear,
and multimodal objective functions, particularly large-scale complicated problems. It was found that
the speed of the solution search of DE was better than that of other methods. Therefore, the DE method
can be used for solving the ALBP and increasing the efficiency of the solution search for the ALBP.
Hence, DE was chosen for solving the UALBP-1 in the current study.

3. U-line Assembly Line Balancing Problem Pattern and Mathematical Model

Only the UALBP-1 was focused on in this study, and the details of the problem are as follows:

http://www.assembly-line-balancing.de
http://www.assembly-line-balancing.de


Math. Comput. Appl. 2018, 23, 79 6 of 21

3.1. U-line Assembly Line Balancing Problem (UALBP)

The UALBP-1 can be divided into three problem versions which are similar to the divisions of the
Simple Assembly Line Balancing Problem [10,19]:

1. UALBP-1: Given the cycle time (c), minimize the number of stations (m);
2. UALBP-2: Given the number of stations (m), minimize the cycle time (c).;
3. UALBP-E: Maximize the line efficiency (E) for c and m being variable.

U-line Assembly Line Balancing Problem (UALBP) Pattern: The UALBP of each task can be
located at only one station and is performed before its predecessor and after its successor tasks. The
total time of each station cannot exceed more than the cycle time according to the conditions of the
workstation assignment in the UALBP-1. The UALBP-1 can be explained using the benchmark problem
called the Jackson Problem, shown in Figure 1, which is illustrated as a precedence diagram of the
ALBP (11 tasks): the number inside each box represents the name of each task, and the number above
each box represents the time of that task. When applying the example of Figure 1 to the UALBP, given
c = 10, an optimal solution with m = 5 can be found, which is shown in Figure 2. The begging of process
line balancing, the task 1 and task 11 are in station 1. It can generate a feasible line balance with a cycle
time of c = 10 and with m = 5 stations given by the station loads S1 = {1, 11}, S2 = {2, 4, 5}, S3 = {6, 7, 9},
S4 = {3, 10}, and S5 = {8}. While no idle time occurs in stations 1, 2, 3, and 4, station 5 shows an idle
time of 4.
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3.2. Mathematical Model of the U-Shaped Assembly Line

This section presents the mathematical model for the UALBP-1, adapted from Bowman [34]. The
indices, parameters, and decision variables are as defined below.
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3.2.1. Indices

n denotes the index of a task, where n = 1 . . . . N
k denotes the index of workstation k, where k = 1 . . . M
N denotes the total number of tasks
M denotes the total number of workstations

3.2.2. Parameter

Pn denotes the processing time of task n
CT denotes the cycle time of a workstation
Pnj denotes the relationship of task n to task j

Fnj =

{
1 if task n is predecessor of task j
0 otherwise

3.2.3. Decision Variables

Xnk =

{
1 if task n is assigned to station k
0 otherwise

Yk =

{
1 if station k is opened
0 otherwise

Objective function:

Min Z =
M

∑
k=1

Yk (1)

subject to
M

∑
k=1

Xnk = 1 ∀n = 1 . . . N, (2)

M
∑

k=1
(K× Xjk)− (K× Xnk) ≥ 0

∀n = 1 . . . N, k = 1 . . . M, Fnj = 1
(3)

N
∑

n=1
Xnk×Pn ≤ CT ×Yk

∀k = 1 . . . M
(4)

Yk ≤ Yk−1 ∀k = 2 . . . M (5)

Equation (1) represents an objective function of the model to minimize the number of stations.
Equation (2) guarantees that task n must be assigned to exactly one workstation. Equation (3) ensures
that the precedence constraints are not violated on the U-line. Equation (4) ensures that the total
processing time used by all tasks assigned to a particular workstation must not exceed a prespecified
cycle time (CT). Finally, Equation (5) ensures that the station will be opened successively according to
the station number.

4. General Differential Evolution Algorithm

4.1. Differential Evolution Algorithm

DE is a population-based random search method where an initial population of size N of
D-dimensional vector is randomly generated, and a new population is generated through the cycles of
calculations. A solution in DE algorithm is represented by D-dimensional vector, and each value in
the D-dimensional space is represented as a real number. The key idea behind DE which makes the
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algorithm from other evolutionary algorithms (EAs) is its mechanisms for generating new solutions,
called trial vectors, by mutation and crossover operation. In DE, each vector is served as a target
vector which is then combined with other vectors in the population to form a new vector, called a
mutant vector. Next, the mutant vector is crossover with its corresponding occurs only if the trial
vector outperforms its corresponding target vector. The evolution process of DE population continues
through repeated cycles of three main operator; mutation, crossover, and selection until some stopping
criteria are met [30].

The general procedure of DE consists of several steps: (1) construct a set of initial target vectors, (2)
perform a mutation process, (3) perform a recombination process, and (4) perform a selection process.
The design of the procedure application is shown in Figure 3.
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Figure 4.
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4.2. Procedure of UALB-1 by Using Differential Evolution Algorithm

The procedure of UALB-1 using the general differential evolution algorithm from the Bowman
problem set in Figure 4, which presents the precedence diagram of the ALBP (8 tasks), can be interpreted
as follows. The number in each circle represents the name of each task and the number above each circle
represents the time of that task. Before balancing assembly lines, the values used in the calculation
must be set. The variables are as follows: R = Round, NP = Numbers of tasks, F = Scaling factor,
and CR = Crossover rate. In this problem’s calculation, these suitable variables were set from the
experiment as R = 1, NP = 5, F = 0.8, CR = 0.8 [35], and CT (Cycle Time) = 20. The General Differential
Evolution Algorithm “DE/rand/1” and binomial crossover were used in the calculation as follows.

4.2.1. Calculation Using the General Differential Evolution Algorithm DE/rand/1 and Binomial
Crossover

(1) Initial population. In this step, a randomized real number between 0 and 1 for each task is
obtained. This is the formulation of the target vector or initial solutions for the decision value in
the workload allocation to the workstations, and the initial vector will be used further in Mutation
and crossover, as shown in Table 1. In the table, the initial population calculation is presented by a
randomized real number between 0 and 1 for each task. A target vector will be generated for each
task in order to generate the initial solution and decision value in the workload allocation to the
workstations. The workload allocation to the workstations must in line with the conditions of UALB by
arranging the random numbers in ascending order for workstation allocation. From the table, NP = 5
vectors. The benchmark problem is illustrated in Figure 4, and it is described in Table 1.

Table 1. Result of initial population NP = 5 vectors.

Vector 1

Station 1 2 3 4 5

Work 1, 8 6, 4 2 3, 5 7

Time 11, 3 12, 5 17 9, 8 10

Target Vector 0.30, 0.57 0.44, 0.61 0.72 0.53, 0.68 0.92

Vector 2

Station 1 2 3 4 5

Work 7, 5 1, 8 6 3 4, 2

Time 10, 8 11, 3 12 12 5, 11

Target Vector 0.57, 0.32 0.74, 0.92 0.21 0.44 0.69, 0.82

Vector 3

Station 1 2 3 4 5

Work 1, 8 7, 5 6, 4 3 2

Time 11, 3 10, 8 12, 5 9 17

Target Vector 0.51, 0.96 0.88, 0.67 0.84, 0.62 0.41 0.92

Vector 4

Station 1 2 3 4 5

Work 1, 8 7, 5 2 3, 4 6

Time 11, 3 10, 8 17 9, 5 12

Target Vector 0.13, 0.26 0.58, 0.81 0.64 0.42, 0.21 0.69

Vector 5

Station 1 2 3 4

Work 8, 6, 4 7, 5 3, 1 2

Time 3, 12, 5 10, 8 9, 11 17

Target Vector 0.84, 0.41, 0.59 0.91, 0.76 0.32, 0.98 0.48
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(2) Mutation. In this step, a position of the vector is mutated to obtain new solutions that differ
from the initial population number by targeting the mutation. The calculation for the mutant vector
(Vi,j,G+1) is shown in Equation (6), and an example of a mutation is illustrated in Table 2.

Vi,j,G = Xr1,j,G + F(Xr2,j,G − Xr3,j,G) (6)

where:

Vi,j,G = Mutant Vector

Xr1,j,G, Xr2,j,G, Xr3,j,G = Random vector from G round

F = Scaling factor (random real number between 0 and 2)

Table 2. Results of Mutation in Vector 1 by using DE/rand/1.

Vector 1

Position 1 2 3 4 5 6 7 8

Work 1 8 6 4 2 3 5 7

Time 11 3 12 5 17 9 8 10

Target
Vector 0.3 0.57 0.44 0.61 0.72 0.53 0.68 0.92

Vector 2

Position 1 2 3 4 5 6 7 8

Work 7 5 1 8 6 3 4 2

Time 10 8 11 3 12 12 5 11

Target
Vector 0.57 0.32 0.74 0.92 0.21 0.44 0.69 0.82

Vector 3

Position 1 2 3 4 5 6 7 8

Work 1 8 7 5 6 4 3 2

Time 11 3 10 8 12 5 9 17

Target
Vector 0.51 0.96 0.88 0.67 0.84 0.62 0.41 0.92

Mutant Vector 1 0.35 0.06 0.33 0.81 0.22 0.39 0.90 0.84

The results of the mutation in Vector 1 by using “DE/rand/1” are depicted in Table 2.
Table 2 presents the results of Mutation in Vector 1 by using the DE/rand/1 method, where Xr1,j,G,

Xr2,j,G, and Xr3,j,G are randomized to form Vectors 1, 2, and 3, respectively, and F = 0.8 is set so that at
position 6, Xr1,j,G = 0.53, Xr2,j,G = 0.44, and Xr3,j,G = 0.62 substituted into the equation as Vi,j,G = Xr1,j,G +
F(Xr2,j,G - Xr3,j,G) will be Vi,j,G = 0.53 + 0.8(0.44 − 0.62) = 0.39. Therefore, Mutant Vector 1’s position 6 is
0.39. After that, the calculation for every position is done until all eight positions are calculated.

(3) Crossover or Recombination. In this step, vector positions are exchanged. New vectors, both
better and worse, are generated. The Trial Vector (Ui,j,G+1) is formulated, and the Trial Vectors are
compared and exchanged as in Equation (7). The examples are presented in Tables 3 and 4.

Ui,j,G =

{
Vi,j,G i f Randi,j ≤ CR or j = Irand
Xi,j,G i f Randi,j > CR or j 6= Irand

(7)

where:

Vi,j,G = Mutant Vector

Xi,j,G = Target Vector

CR = Crossover Constant (real number in the range 0–1)
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rand j [0,1) = random real number between 0 and 1 in every position, j = 1, 2, 3, ..., G (G = number
of position).

Table 3. Results of Binomial Crossover in Vector 1 with the DE/rand/1 Method.

Vector Position 1 2 3 4 5 6 7 8

1

Work 1 8 6 4 2 3 5 7

Time 11 3 12 5 17 9 8 10

Target
Vector 0.3 0.57 0.44 0.61 0.72 0.53 0.68 0.92

Vector Position 1 2 3 4 5 6 7 8

1

Mutant
Vector 0.35 0.06 0.33 0.81 0.22 0.39 0.90 0.84

rand(j) 0.40 0.40 0.06 0.96 0.47 0.40 0.94 0.33

Trial
Vector 0.35 0.06 0.33 0.61 0.22 0.39 0.68 0.84

Table 4. The results of UALB by using the Trial Vector from Table 3.

Vector 1

Station 1 2 3 4 5

Work 8, 6 1, 3 2 4, 5 7

Time 3, 12 11, 9 17 5, 8 10

Trial Vector 0.06, 0.33 0.35, 0.39 0.22 0.61, 0.68 0.84

Table 3 shows the results of binomial crossover in Vector 1 if CR = 0.8; therefore, the value of the
target vector will be used in the Trial Vector at positions 4 and 7. For other positions, the values of the
mutant vector are used.

From Table 4, when employing the trial vector obtained for UALB according to the preceding
conditions, the total time of each workstation must not exceed the production cycle time, which can
be satisfied by considering a Trial Vector with low values before assigning the tasks to workstations.
Therefore, a solution of 5 workstations is found.

(4) Selection. In this step, the next generation is selected (G + 1): only better solutions are selected
by comparing the results of the Target Vector with the Trial Vector for cases in which the number of
workstations of the Trial Vector is lower than/equal to that of the Target Vector. Therefore, the Trial
Vector is selected as the next generation, as in Equation (8):

Xi,j,G+1 =

{
Ui,j,G i f f (Ui,j,G) ≤ f (Xi,j,G)

Xi,j,G otherwise
(8)

where:

Ui,j,G = Trial Vector

Xi,j,G+1 = Target Vector in the next generation, i = 1,2,...n

In sum, from the selection step for selecting the next generation, the Trial Vector of the 5 assigned
workstations is found with the values higher than those of the Target Vector for 4 workstations.
Therefore, the Target Vector is selected as the optimal solution, and the process is repeated for the
next generation.
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4.2.2. Procedure of UALB-1 by Using the Improved Differential Evolution Algorithm

(1) Improved DE. In mutation process, a mutant vector (Vi,j,G) will be calculated from one or
more selected target vector (Xi,j,G). Traditionally, the mutation process of DE is performed using
Equations (6) [30]. Improved DE was developed by applying the four Mutation Equations DE/best/1,
DE/rand-to-best/1, DE/best/2, and DE/rand/2, as seen from Equations (9), (10), (11) and (12),
respectively, as follows:

Vi,j,G = Xbest,j,G + F(Xr1,j,G − Xr2,j,G) (9)

Vi,j,G = Xi,j,G + F
(

Xbest,j,G − Xi,j,G

)
+ F

(
Xr1,j,G − Xr2,j,G

)
(10)

Vi,j,G = Xbest,j,G + F
(
Xr1,j,G − Xr2,j,G

)
+ F

(
Xr3,j,G − Xr4,j,G

)
(11)

Vi,j,G = Xr1,G + F(Xr2,G − Xr2,G) + F(Xr4,G − Xr5,G) (12)

Let r1, r2, r3, r4, and r5 denote the vectors which are randomly selected from a set of target vectors
j. represent the best vector found so far in the algorithm. F is a predefined integer parameter (scaling
factor). In the proposed heuristics, F is set to 2; i is vector number which starts from 1 to NP, and j is
position of a vector which run from 1 to D.

(2) Improved DE. The result of mutation process is a set of mutant vector Vi,j,G (i run from
1 to NP). Then a mutant vector will apply recombination equations (13) and (14) to yield trial
vector (Ui,j,G) as a product of recombination processes. In traditional DE for UALBP–1, a binomial
recombination Equations (7) is applied in the basic differential evolution algorithm [30]. Improved
DE was developed by applying two crossover or recombination equations: Exponential Crossover 1
position and Exponential Crossover 2 position, as seen in Equations (13) and (14), as follows:

Ui,j,G =

{
Vi,j,G when randbi ≤ j

Xi,j,G i f randbi > j
(13)

Ui,j,G =

{
Vi,j,G when j ≤ randbi,1 and j ≥ randbi,2

Xi,j,G when randbi,1 < j < randbi,2
(14)

Let randbi, to be random number between 0 and 1, and CR is recombination probability which is
the predefined parameters in the proposed heuristics. randbi, randbi,1 and randbi,2 are random integer
numbers which are used to represent position of a vector and these random numbers ranges from 1
to D.

On the basis of the explanations in steps 1–4, the Improved Diff. is shown in Algorithm 1.
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Algorithm 1. Pseudo-code of the DE for (UALBP-1)

Setup initial DE parameter
Do while from first iteration to final iteration

Do while from first DE to final DE
Setup initial parameters: cycle time, remaining time, station number
Do while from first task to final task

Find start/following task with task time is less than or equal to
Remaining time, and proper precedence to data list
Input scaling factor, crossover rate and NP to data list
Select task randomly to list
Update remaining time/station number
Produce the four Mutation Equations

Vi,j,G = Xbest,j,G + F(Xr1,j,G − Xr2,j,G)

Vi,j,G = Xi,j,G + F
(

Xbest,j,G − Xi,j,G

)
+ F

(
Xr1,j,G − Xr2,j,G

)
Vi,j,G = Xbest,j,G + F

(
Xr1,j,G − Xr2,j,G

)
+ F

(
Xr3,j,G − Xr4,j,G

)
Vi,j,G = Xr1,G + F(Xr2,G − Xr2,G) + F(Xr4,G − Xr5,G)

Developed by applying the two Crossover or Recombination Equations

Ui,j,G =

{
Vi,j,G when randbi ≤ j

Xi,j,G i f randbi > j

Ui,j,G =

{
Vi,j,G when j ≤ randbi,1 and j ≥ randbi,2

Xi,j,G when randbi,1 < j < randbi,2

Produce new target vector (selection\process)

Xi,j,G+1 =

{
Ui,j,G i f f (Ui,j,G) ≤ f (Xi,j,G)

Xi,j,G otherwise

End do
End do
Select best solution from all DE in the iteration

End do
Show/select best solution from all DE in all iteration

5. Analysis of the Results from the Experiment on DE for Solving UALBP

The results obtained from the experiment on DE for solving the UALBP by using the basic
DE algorithm and improved DE algorithm were analyzed. Six methods from the 15 methods for
generating optimal solutions with the minimum search time were selected through the experiment.
Then, the selected methods were compared. The results from the experiment were compared with
other metaheuristic methods.

DE for solving the UALBP: the basic DE algorithm and improved DE algorithm consisted of six
methods as follows:

1. DE/rand/1 to Binomial Crossover (Basic)
2. DE/rand/1 to Exponential Crossover 1 Position (improved)
3. DE/rand/1 to Exponential Crossover 2 Position (improved)
4. DE/ rand-to-best/1 to Binomial Crossover (improved)
5. DE/Best/2 to Exponential Crossover 1 Position (improved)
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6. DE/Best/2 to Exponential Crossover 2 Position (improved)

The ALBP can be solved by applying the Java program (operated on a computer with Core i3,
2.3 GHz, 2 GB RAM, and the operating system Windows 7). The metaheuristic methods developed,
including the Basic UALB and Improved UALB for solving the U-shaped Assembly Line Balancing
Problem Type 1 (UALBP-1), used the data retrieved from http://www.assembly-line-balancing.de

The variables used in the calculation for ALB were defined as follows: R = Round, NP = Number
of tasks, F = Scaling factor, and CR = Crossover rate. In this problem’s calculation, these variables were
set at R = 30, NP = 30, F = 0.8, and CR = 0.8 [35]. Then, the experiment for finding the optimal solutions
was conducted as follows.

1) The benchmark problems of Sawyer (30 tasks, 8 instances) and Arcus 1 (83 tasks, 16 instances)
were used. The results of the experiment on the UALBP-1 by using the basic DE algorithm and
improved DE algorithm are depicted in Table 5.

Table 5. The results of the experiment on the UALBP-1 by using the basic DE algorithm and improved
DE algorithm with the Sawyer and Arcus 1 problems.

Problem c m*
DE1* DE2** DE3*** DE4**** DE5***** DE6******

m Cal Time
(s) m Cal Time

(s) m Cal Time
(s) m Cal Time

(s) m Cal Time
(s) m Cal Time

(s)

Sawyer
30

25 14 14 1.87 14 0.67 14 0.11 14 1.87 14 0.07 14 0.08

27 13 13 1.11 13 0.44 13 0.13 13 0.98 13 0.12 13 0.09

30 11 11 1.23 11 0.83 11 0.42 11 0.77 11 0.08 11 0.10

33 10 10 1.11 10 0.67 10 0.67 10 0.44 10 0.18 10 0.11

36 10 10 1.34 10 0.55 10 0.55 10 0.34 10 0.05 10 0.15

41 8 8 1.96 8 0.59 8 0.59 8 0.50 8 0.04 8 0.19

54 6 6 1.61 6 0.78 6 0.38 6 0.61 6 0.09 6 0.38

75 5 5 1.94 5 0.53 5 0.07 5 0.57 5 0.06 5 0.35

Arcus 183

3786 21 21 0.91 21 0.31 21 0.54 21 0.31 21 0.30 21 0.14

3985 20 20 0.89 20 0.89 20 0.17 20 0.89 20 0.06 20 0.11

3786 21 21 0.91 21 0.31 21 0.54 21 0.31 21 0.30 21 0.14

4454 18 18 0.85 18 0.55 18 0.31 18 0.55 18 0.10 18 0.98

4732 17 17 0.46 17 0.98 17 0.89 17 0.46 17 0.28 17 0.16

5048 16 16 0.31 16 0.77 16 0.64 16 0.31 16 0.08 16 0.25

5408 15 15 0.89 15 0.44 15 0.06 15 0.89 15 0.12 15 0.06

5824 14 14 0.64 14 0.34 14 1.98 14 0.64 14 0.04 14 1.98

5853 13 13 0.06 13 0.50 13 0.24 13 0.06 13 0.06 13 0.24

6309 13 13 1.98 13 0.61 13 0.55 13 1.98 13 0.09 13 0.55

6842 12 12 0.64 12 0.57 12 0.54 12 0.24 12 0.19 12 0.54

6883 12 12 0.79 12 0.99 12 0.47 12 0.59 12 0.38 12 0.16

7571 11 11 0.74 11 0.44 11 0.98 11 0.54 11 0.35 11 0.25

8412 10 10 1.97 10 0.34 10 1.98 10 0.47 10 0.22 10 0.06

8898 9 9 1.89 9 0.50 9 0.24 9 0.51 9 0.45 9 1.66

10816 7 7 1.98 7 0.61 7 0.55 7 0.98 7 0.71 7 0.78

Total Optimal
Solutions Found from
24 Problem Instances

24 1.16 24 0.61 24 0.53 24 0.67 24 0.17 24 0.40

Notes: m is the number of station (m* is the optimal). c is the cycle time. DE1* = DE/rand/1 to Binomial Crossover.
DE2** = DE/rand/1 to Exponential Crossover 1 position. DE3*** = DE/rand/1 to Exponential Crossover 2 position.
DE4**** = DE/rand-to-best/1 to Exponential Crossover 1 position. DE5***** = DE/best/2 to Exponential Crossover
1 position. DE6****** = DE/best/2 to Exponential Crossover 2 position.

From Table 5, the results from the experiment on the UALBP-1 by using the basic method and
improved DE algorithm with the Sawyer and Arcus 1 problems show that all six DE algorithms
generated the optimal solution of 24 instances from a total of 24 instances. The DE or DE/Best/2

http://www.assembly-line-balancing.de
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Exponential Crossover 1 position was the best method to calculate the optimal solutions with the
minimum average times (0.17 seconds).

The comparison of the basic and improved DE algorithm using the optimal solution search time
with the Sawyer problem (30 tasks, 8 instances) is shown in Figure 5.
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Figure 5. Comparison of Basic and Improved DE Algorithm Using Optimal Solution Search Time with
Sawyer Problem.

Figure 5 shows that the improved DE algorithm DE/Best/2 to Exponential Crossover 1 with
the Sawyer problem (30 tasks, 8 instances) was the best method for generating the optimal solutions
with the minimum solution search time when compared to the other DE methods, and the average
optimal solution search time was 0.09 seconds. The comparison between the basic and improved DE
algorithms in terms of optimal solution search time with the Arcus 1 problem (83 tasks, 16 instances) is
presented in Figure 6.
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From Figure 6, it is seen that the Improved DE algorithm DE/Best/2 to Exponential Crossover 1
was the best method for generating optimal solutions with the minimum solution search time when
compared to the other DE methods. The average optimal solution search time was 0.22 seconds.

6. The Results from the Comparison of DE Algorithm and Other Metaheuristic Methods

From the experimental results, it can be seen that the DE algorithm DE/Best/2 to Exponential
Crossover 1 was the method for the optimal solution search when finding the number of workstations
and minimizing the solution search time. Therefore, the DE algorithm DE/Best/2 to Exponential
Crossover 1 was compared with other metaheuristic methods in order to determine the efficiency
of the optimal solution search. MMAS (no local search) was used for the comparison [36] with the
benchmark problems of the medium-sized UALBP-1 (21–45 tasks), which is presented in Table 3, and
of the large-scale UALBP-1 (75–297 tasks), which is presented in Table 6.

Table 6. The Results of Using the Proposed DE Compared with Using MMAS (No Local Search) in
UALBP-1 Benchmark Problems with the Medium-Sized UALBP-1 (21–45 tasks).

Problems Size Cycle
Time

IP*
Solution

MMAS** DE1***

m* m % cal. Time
(s) E m % cal. Time

(s) E

Mitchell 21

14 8 8 0 1.50 93.75 8 0 0.05 93.75

15 8 8 0 1.63 87.75 8 0 0.03 87.75

21 5 5 0 5.43 100.00 5 0 0.01 100.00

Heskiaoff 28

114 9 10 11.11 30.00 79.33 9 11.11 0.04 89.82

128 8 9 12.50 30.00 81.28 8 12.50 0.08 88.89

138 8 8 0 1.71 92.75 8 0 0.09 92.75

205 5 5 0 1.68 99.99 5 0 0.07 99.99

216 5 5 0 2.36 94.81 5 0 0.13 94.81

256 4 4 0 5.52 100.00 4 0 0.16 100.00

324 4 4 0 2.35 79.01 4 0 0.09 79.01

342 3 3 0 2.45 99.81 3 0 0.12 99.81

Sawyer 30

25 14 14 0 1.22 92.57 14 0 0.07 92.57

27 13 13 0 0.96 92.31 13 0 0.12 92.31

30 11 11 0 7.48 98.18 11 0 0.08 98.18

33 10 10 0 20.15 98.18 10 0 0.18 98.18

36 10 10 0 2.08 90.00 10 0 0.05 90.00

41 8 8 0 14.67 98.78 8 0 0.04 98.78

54 6 6 0 5.56 100.00 6 0 0.09 100.00

75 5 5 0 2.97 86.84 5 0 0.06 86.84

Kilbridge
and

Wester
45

57 10 10 0 1.33 96.84 10 0 0.11 96.84

79 7 8 14.28 30.00 90.67 7 0 0.12 99.82

92 6 7 16.67 30.00 89.28 6 0 0.14 100.00

110 6 6 0 1.48 83.64 6 0 0.10 83.64

138 4 4 0 4.08 100.00 4 0 0.14 100.00

184 3 3 0 6.73 100.00 3 0 0.15 100.00

Total Optimal Solution (or Lower
Bound) Found from 25 Problem

Instances
21 2.18/inst. 9.19/inst. 95.51/inst. 25 0.94/inst.0.10/inst. 97.84/inst.

Notes: E = ∑ t
mc × 100; E = Efficiency of Balance. m* is the optimal solution (data set) MMAS** (no local search).

DE1*** = DE/best/2 to Exponential 1 position. m is the number of stations. % is the average relative deviation from
the best-known solution.

From Table 6, the experimental results of the ULAB benchmark problems with the medium-sized
UALBP-1 (21–45 tasks) by using the DE algorithm DE/Best/2 to Exponential Crossover 1 with
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MMAS (no local search) (operated on a computer with Pentium 4, 3.0 GHz, 512 MB RAM, and the
operating system Window XP) are presented. Four sets of the medium-sized UALBP (21–45 tasks) were
tested: Mitchell’s, Heskiaoff’s, Sawyer’s, and Kilbridge and Wester’s problems, which were retrieved
from http://www.assembly-line-balancing.de. Twenty-five instances resulted from calculating the
minimum number of workstations, as depicted in the table. It was found that the DE algorithm
DE/Best/2 to Exponential Crossover 1 can generate 25 optimal solutions from 25 instances. The
method can find optimal solutions better than MMAS (no local search), which can generate 21 optimal
solutions from 25 instances. The average solution search time of DE/Best/2 to Exponential Crossover
1 was 0.10 seconds, which is less than the solution search time of MMAS (no local search), which was
9.19 seconds.

Table 7 presents the experimental results of the ULAB benchmark problem with the large-scale
UALBP-1 (75–297 tasks) by using the DE algorithm DE/Best/2 to Exponential Crossover 1 with
MMAS (no local search) (operated on a computer with Pentium 4, 3.0 GHz, 512 MB RAM, and
the operating system Window XP). Three sets of the large-scale UALBP (75–297 tasks) were used:
Wee-mag’s, Arcus 1’s, and Scholl’s problems were used, and the problems were retrieved from
http://www.assembly-line-balancing.de. Sixty-two instances resulted from calculating the minimum
number of workstations, as presented in the Table. It was found that the DE algorithm DE/Best/2 to
Exponential Crossover 1 can generate 36 optimal solutions from 62 instances. The method can find
optimal solutions better than MMAS (no local search), which can generate 35 optimal solutions from 62
instances. The average solution search time of DE/Best/2 to Exponential Crossover 1 was 4.88 seconds,
which is less than the solution search time of MMAS (no local search), which was 5.70 seconds.

Table 7. The Results of Using the Proposed DE Compared to Using MMAS (No Local Search) [36] in
UALBP-1 Benchmark Problems with the Large-Scale UALBP-1 (75–297 tasks).

Problems Size Cycle
Time

IP*

Solution
MMAS** DE1***

m* m % cal. Time
(s) E m % cal.

Time(s) E

Wee-mag 75

28 63 63 0 1.19 93.75 63 0 0.12 93.75

29 63 63 0 1.19 87.75 63 0 0.14 87.75

30 62 62 0 1.23 100.00 62 0 0.07 100.00

31 62 62 0 1.14 89.82 62 0 0.05 89.82

32 61 61 0 1.16 88.89 61 0 0.10 88.89

33 61 61 0 1.22 92.75 61 0 0.28 92.75

34 61 61 0 1.22 99.99 61 0 0.08 99.99

35 60 60 0 1.22 94.81 60 0 0.12 94.81

36 60 60 0 1.25 100.00 60 0 0.04 100.00

37 60 60 0 1.23 79.01 60 0 0.06 79.01

38 60 60 0 1.19 99.81 60 0 0.22 99.81

39 60 60 0 1.14 92.57 60 0 0.08 92.57

40 60 60 0 1.25 92.31 60 0 0.19 92.31

41 59 59 0 1.19 98.18 59 0 0.10 98.18

42 55 55 0 1.16 98.18 55 0 0.11 98.18

43 50 50 0 1.30 90.00 50 0 0.15 90.00

45 38 38 0 4.31 98.78 38 0 0.19 98.78

46 34 34 0 3.59 100.00 34 0 0.38 100.00

52 31 31 0 2.59 86.84 31 0 0.35 86.84

54 31 31 0 1.17 96.84 31 0 0.22 96.84

http://www.assembly-line-balancing.de
http://www.assembly-line-balancing.de
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Table 7. Cont.

Problems Size Cycle
Time

IP*

Solution
MMAS** DE1***

m* m % cal. Time
(s) E m % cal.

Time(s) E

Wee-mag 75 56 30 30 0 1.55 99.82 30 0 0.45 99.82

Arcus 1 83

3786 21 21 0 1.03 100.00 21 0 0.30 100.00

3985 20 20 0 1.00 83.64 20 0 0.06 83.64

4206 19 19 0 1.08 89.82 19 0 0.07 89.82

4454 18 18 0 1.03 88.89 18 0 0.10 88.89

4732 17 17 0 1.02 92.75 17 0 0.28 92.75

5048 16 16 0 1.05 99.99 16 0 0.08 99.99

5408 15 15 0 1.08 94.81 15 0 0.12 94.81

5824 14 14 0 1.10 100.00 14 0 0.04 100.00

5853 13 14 7.69 1.05 79.01 13 0 0.06 89.63

6309 13 13 0 1.07 99.81 13 0 0.09 99.81

6842 12 12 0 1.03 92.57 12 0 0.19 92.57

6883 12 12 0 1.03 92.31 12 0 0.38 92.31

7571 11 11 0 1.04 98.18 11 0 0.35 98.18

8412 10 10 0 1.05 98.18 10 0 0.22 98.18

8898 9 9 0 1.03 90.00 9 0 0.45 90.00

10816 7 8 14.29 1.04 98.78 8 14.29 0.71 98.78

Scholl 297

1394 50 51 2.00 12.08 100.00 51 2.00 12.28 100.00

1452 48 49 2.08 16.10 86.84 49 2.08 11.08 86.84

1483 47 48 2.13 11.30 96.84 48 2.13 11.30 96.84

1515 46 47 2.17 11.55 99.82 47 2.17 11.55 99.82

1548 45 46 2.22 11.92 89.82 46 2.22 11.92 89.82

1584 44 45 2.27 11.63 88.89 45 2.27 11.63 88.89

1620 43 44 2.33 11.91 92.75 44 2.33 11.91 92.75

1659 42 43 2.38 11.97 99.99 43 2.38 11.97 99.99

1699 41 42 2.44 12.28 94.81 42 2.44 12.28 94.81

1742 40 41 2.50 11.08 100.00 41 2.50 11.08 100.00

1787 39 40 2.56 11.96 79.01 40 2.56 11.96 79.01

1834 38 39 2.63 11.45 99.81 39 2.63 11.55 99.81

1883 37 38 2.70 12.22 92.57 38 2.70 12.30 92.57

1935 36 37 2.77 12.30 92.31 37 2.77 12.10 92.31

>1991 >35 >36 >2.86 >12.10 >98.18 >36 >2.86 >11.55 >98.18

2049 34 35 2.94 11.55 98.18 35 2.94 12.03 98.18

2111 33 34 3.03 12.30 90.00 34 3.03 12.85 90.00

Scholl 297

2177 32 33 3.13 12.10 98.78 33 3.13 11.55 98.78

2247 31 32 3.23 11.55 100.00 32 3.23 11.92 100.00

2322 30 31 3.33 12.03 86.84 31 3.33 11.63 86.84

2402 29 30 3.45 12.85 96.84 30 3.45 11.91 96.84

2488 28 29 3.57 12.84 99.82 29 3.57 11.97 99.82

2580 27 28 3.70 12.81 92.57 28 3.7 12.28 92.57

2680 26 27 3.85 11.77 92.31 27 3.85 11.08 92.31

2787 25 26 4.00 12.63 98.18 26 4.00 11.99 98.18

Total Optimal Solution (or Lower Bound)
Found from 62 Problem Instances 35 1.49/inst. 5.70/inst. 94.61/inst. 36 0.94/inst. 4.88/inst. 95.51/inst.

Notes: E = ∑ t
mc × 100 E = Efficiency of Balance. m* is the optimal solution (data set). MMAS** (no local search).

DE1*** = DE/best/2 to Exponential 1 position. m is the number of stations. % is the average relative deviation from
the best-known solution.
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7. Conclusions and Suggestions

Recently, the U-shaped line has been utilized in many production lines in place of the traditional
straight-line configuration due to the use of the just-in-time principle. The shape of U-lines improves
visibility and allows for the construction of stations containing tasks on both sides of the line. This
arrangement, combined with cross-trained operators, provides greater flexibility in station construction
than is available with a comparable straight production line. The UALBP and the DE algorithm
of the metaheuristic for assigning tasks to stations are presented in this paper. The performance
of the metaheuristic was applied to solve a large number of benchmark problems obtained from
previously published research. The computational results indicate that one of the metaheuristic rules
(DE algorithm) can be satisfied by the proposed algorithm, and the computational requirements are
not high. This study has taken a step in the direction of finding good metaheuristic rules for solving
the UALBP-1. For further research, it would be interesting to use other metaheuristics, (e.g., bee
algorithm, particle swarm optimization, simulated annealing, etc.) and find more flexible solutions of
the larger UALBP.

The improved DE algorithm DE/Best/2 to Exponential Crossover 1 was the most effective method
with the minimum search time for finding optimal solutions, and the basic DE algorithm was the worst
because it spent the maximum amount of time searching for optimal solutions when compared to the
other DE methods. In the optimal solution search for the number of workstations, it was found that
every method received the same answer when compared to the other DE methods.

The comparison of the method in this paper, UALBP-1 by using the DE algorithm, with other
metaheuristic methods for the medium-sized UALBP (21–45 tasks) and large-scale UALBP (75–297
tasks) leads to the conclusion that the basic DE algorithm and the improved DE algorithm is better at
generating optimal solutions in the search for workstations and spends less time searching for optimal
solutions than MMAS (no local search).

Further studies should develop the DE algorithm methods with more difficult problems, such as
the mixed-/multi-model line, stochastic task time, and U-lines with other characteristics, as well as
develop other metaheuristic principles for solving the large-scale UALBP and develop the principles
of other metaheuristic methods or other types of methods for solving the UALBP-2, i.e., given the
number of stations (m), minimize the cycle time (Min. c, given m), and the UALBP-E, i.e., maximize
the line efficiency (E) for c and m being variable (Max. E, given c, m).

In addition, the proposed DE algorithms in this study [37] can be applied to solve more realistic
assembly line balancing problem in many industries; garment, automobile, electronical appliance; etc.
for productivity improvement by minimizing the workstations and labor costs.
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