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Abstract: In this work we obtain approximate solutions for Fredholm integral equations of the
second kind by means of Petrov–Galerkin method, choosing “regular pairs” of subspaces, {Xn, Yn},
which are simply characterized by the positive definitiveness of a correlation matrix. This choice
guarantees the solvability and numerical stability of the approximation scheme in an easy way,
and the selection of orthogonal basis for the subspaces make the calculations quite simple. Afterwards,
we explore an interesting phenomenon called “superconvergence”, observed in the 1970s by Sloan:
once the approximations un ∈ Xn to the solution of the operator equation u− Ku = g are obtained,
the convergence can be notably improved by means of an iteration of the method, u∗n = g + Kun.
We illustrate both procedures of approximation by means of two numerical examples: one for a
continuous kernel, and the other for a weakly singular one.

Keywords: Fredholm integral equations; numerical solutions; Petrov–Galerkin method; regular pairs;
iterated methods

1. Introduction

Fredholm equations of the second kind are integral equations of the form

u(t)−
∫ b

a
k(t, s)u(s)ds = g(t) ∀t ∈ [a, b] (1)

with u an unknown function in a Banach space X. The kernel k : [a, b]× [a, b]→ R and the right-hand
side g : [a, b]→ R are given functions.

They appear in different areas of applied mathematics, sometimes as equivalent formulation
for boundary value problems with ordinary differential equations, and there are many problems of
mathematical physics that are modelled with Fredholm integral equations with different kernels (see,
for example, [1–3]).

The equation may be written
u− Ku = g (2)

by defining the operator K : X → X , K(u)(.) =
∫ b

a k(., s)u(s)ds.
If for the kernel k(t, s) the operator K is bounded, a sufficient condition to guarantee the existence

and uniqueness of a solution of Equation (2) is that ‖K‖ < 1 (see [4], Theorem 2.14, p. 23).
Petrov–Galerkin is a projection method often proposed to find numerical approximate solutions

to this type of integral equation. The idea is to choose appropriate sequences of finite dimensional
subspaces of X, {Xn}n∈N and {Yn}n∈N , the trial and test subspaces respectively, where the unknown
u and the data g are to be projected.
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In the case of being X a Hilbert space with inner product 〈., .〉, the Petrov–Galerkin method looks
for un ∈ Xn such that

〈un − Kun, v〉 = 〈g, v〉 ∀v ∈ Yn (3)

and, as Xn and Yn are subspaces of dimension dn < ∞, solving Equation (3) reduces to solve a linear
algebraic system of equations represented by a dn × dn matrix.

In [5] it is proved that, if K : X → X is a compact linear operator not having 1 as an eigenvalue,
and the pair {Xn, Yn} is a regular pair—a concept to be defined in the next section—Equation (3) has a
unique solution un which satisfies

‖u− un‖X ≤ C.in fx∈Xn‖x− u‖X (4)

where the constant C does not depend on n.
Solvability and numerical stability of the approximation scheme are, in this way, assured, and the

accuracy of the approximation un to the unique solution u of Equation (2) does not depend formally
on Yn, as can be noted in Equation (4). The goal is to choose test function subspaces Yn that are easy to
handle, while the quality of convergence of the method is preserved.

In addition, the convergence can even be improved by means of an iteration of the method:
once the approximations un ∈ Xn are obtained, a new sequence of approximate solutions u∗n ∈ Xn can
be built by means of a simple procedure (see [6–8]):

u∗n = g + Kun (5)

In this work we choose pairs of simple subspaces {Xn, Yn} generated by Legendre polynomials
and show the goodness of the approximations in two numerical examples with known solution, one of
them having singular kernel. We then improved the convergence by means of an iteration of the
method and show why the approximation is better, even for small values of n ∈ N.

2. Method

Let (X, 〈., .〉) be a Hilbert space, ‖.‖ the associated norm, and K : X → X a compact linear operator.
It is shown in [4] that, if ‖K‖ < 1, there exists a solution u ∈ X to Equation (2) for g ∈ X a given
function, and it is unique. We are interested in looking for a good approximation to u ∈ X satisfying
Equation (2).

For each n ∈ N0 let us consider subspaces Xn ⊂ X, Yn ⊂ X, with dim(Xn) = dim(Yn) = dn < ∞.
The Petrov–Galerkin method for Equation (2) is a numerical method to find un ∈ Xn satisfying
Equation (3).

For the method to be useful, it is necessary to establish conditions under which Equation (3) has a
unique solution un ∈ Xn and lim

n→∞
‖u− un‖X = 0 for u the unique solution of Equation (2).

It is easy to show that the condition

Xn
⊥ ∩ Yn = {0} (6)

ensures the existence of a unique solution un ∈ Xn for Equation (3). From [4] (p. 243), convergence can
be expected only if

∀x ∈ X, ∃{xn, n ∈ N} ⊂ Xn : lim
n→∞

xn = x (7)

so, from now on, the sequences of subspaces {Xn}n∈N and {Yn}n∈N are both chosen verifying this
condition of denseness.

Following [5], and denoting by {Xn, Yn} the sequences of subspaces, the pair {Xn, Yn} is said to
be ‘’regular” if there exists a linear surjective operator Πn : Xn → Yn satisfying
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i. ∃C1 ∈ R/∀x ∈ Xn : ‖x‖ ≤ C1
√
〈x, Πnx〉

ii. ∃C2 ∈ R/∀x ∈ Xn : ‖Πnx‖ ≤ C2‖x‖

It is easy to show that the surjectivity of Πn and (i.) assure the condition of Equation (6).
From [5] (p. 411), the following theorem summarizes the conditions for the existence and

uniqueness of the solutions of Equation (3) and their convergence to the solution of Equation (2):

Theorem 1. Let X be a Hilbert space and K : X → X a compact linear operator not having 1 as eigenvalue.
Suppose Xn and Yn are finite dimensional subspaces of X, with dim(Xn) = dim(Yn), verifying that {Xn, Yn}
is a regular pair and, for each x ∈ X, there exist sequences {xn, n ∈ N} ⊂ Xn and {yn, n ∈ N} ⊂
Yn so that lim

n→∞
xn = x and lim

n→∞
yn = x. Then, there exists n0 ∈ N such that, for n > n0, equation

〈un − Kun, v〉 = 〈g, v〉 ∀v ∈ Yn has a unique solution un ∈ Xn for any given g ∈ X, that satisfies
‖u− un‖ ≤ C.in fx∈Xn‖x− u‖, where u ∈ X is the unique solution of u− Ku = g and C is constant not
dependent of n.

From [9], the characterization of a regular pair is simple by means of the so called “correlation
matrix”. Let {ϕn

i , i = 1, . . . , dn} and {ψn
j , j = 1, . . . , dn} be bases of Xn and Yn, respectively, and

define the dn × dn matrices [G(Xn)]ij := 〈ϕn
i , ϕn

j 〉, [G(Yn)]ij := 〈ψn
i , ψn

j 〉, the correlation matrix

[G(Xn, Yn)]ij := 〈ϕn
i , ψn

j 〉, and [G+(Xn, Yn)]ij =
1
2 ([G(Xn, Yn)]ij + [G(Xn, Yn)]ji), for i, j = 1, . . . , dn.

Note that for the real case, G(Xn) and G(Yn) are positive definite and G+(Xn, Yn) is the symmetric
part of the correlation matrix. We have proven (see [10]) the following

Proposition 1. If G+(Xn, Yn) is positive definite, {Xn, Yn} is a regular pair.

For conciseness, we assume [a, b] = [0, 1] from here on.
Let us consider X = L2([0, 1]).
For the interval [0, 1], Sm

n is the subspace of polynomials of degree less than m on each subinterval
Ij,n = ( j

2n , j+1
2n ), j = 0, 1, . . . , 2n − 1; dim(Sm

n ) = m2n and Sm
0 ⊂ Sm

1 . . . ⊂ ∪∞
n=0Sm

n Sm. Sm = L2([0, 1])
since every continuous functions with compact support on [0, 1] can be approximated by steps functions
on subintervals of the form ( j

2n , j+1
2n ), j = 0, 1, . . . , 2n − 1, and they are dense in L2([0, 1]). The condition

of Equation (7) of denseness is, so, satisfied.
As the basis of Sm

n , we will choose Legendre polynomials of degree less than m, adapted
to each of the subintervals Ij,n: Sm

n = span{pj,n
i , j = 0, 1, . . . , 2n − 1, i = 0, 1, . . . , m− 1} with

pj,n
i (x) = Qj,n

i (x)/‖Qj,n
i (x)‖, Qj,n

i (x) = Li(2n(2x − 2j+1
2n )). χIj,n

, Li(x) the Legendre polynomial
of degree i on [−1, 1] and χIj,n

the characteristic function of the subinterval Ij,n.

We rename qi,n
l := pi,n+1

l to simplify the notation and choose the sequences of subspaces Xn =

S2
n = span{p0,n

0 , p0,n
1 , p1,n

0 , p1,n
1 , . . . , p2n−1,n

0 , p2n−1,n
1 } and Yn = S1

n+1 = span{q0,n
0 , q1,n

0 , , . . . , q2n+1−1,n
0 },

with dim(Xn) = 2.2n = 2n+1 = 1.2n+1 = dim(Yn) = dn.
Note that the condition of Equation (6), Xn

⊥ ∩ Yn = {0}, which assures the uniqueness of the
solution of Equation (3) for each n, is fulfilled.

Indeed, suppose that qj,n
0 ∈ Yn, for j between 0 and 2n+1 − 1, satisfies that qj,n

0 ⊥pi,n
0 and qj,n

0 ⊥pi,n
1

for every i = 0, . . . , 2n − 1; then
∫ j+1

2n+1
j

2n+1
qj,n

0 .p
j
2 ,n
0 dx =

qj,n
0 .p

j
2 ,n
0

2n+1 = 0 if j is even or
∫ j+2

2n+1
j+1

2n+1
qj+1,n

0 .p
j+1

2 ,n
0 dx =

qj+1,n
0 .p

j+1
2 ,n

0
2n+1 = 0 if j is odd, which is impossible, since qj,n

0 6= 0 and pi,n
0 6= 0 for every j and every i.

Renaming the elements of the basis as ϕn
i (x) := p(i−1)2−1,n

0 for i odd, ϕn
i (x) := p(i−2)2−1,n

1 (x)
for i even and ψn

j (x) := qj,n
0 , it is easy to show that {Xn, Yn} is a regular pair, since G+(Xn, Yn) is a

2n+1 × 2n+1 matrix with definite positive 2× 2 blocks on its principal diagonal and 0s everywhere else
(for details, see [10]).
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Once the approximations un are obtained, an almost natural iteration procedure is possible to
obtain new approximations of the real solution u. Since the equation being solved is u− Ku = g,
or u = g + Ku, we can define u∗n = g + Kun. This first iteration, applied to the Galerkin method,
has been studied since the 1970s, because, under appropriated conditions of K and g, it reveals
an interesting phenomenon called “superconvergence” (see [6,11], for instance), as the order of
convergence can be notably improved.

In [11] (p. 42), the existence of a unique solution u∗n for Equation (5) and the improvement of the
order of convergence of the iterated approximation for any projection method are guaranteed.

In [5] (p. 419), the superconvergence in the Petrov–Galerkin scheme applied to Fredholm equations
of the second kind is explained and, under the same conditions of the Theorem 1 we have just
enunciated, a theorem establishes that u∗n satisfies

‖u− u∗n‖2 ≤ C.ess sups∈[0,1]
[
infψ∈Yn‖k(., s)− ψ‖2

]
.infx∈Xn‖x− u‖2 (8)

for u the unique solution in L2([0, 1]) of Equation (1), showing that the improvement of the order of
convergence by the iteration procedure is due to the approximation of the kernel k by elements ψ

of test subspace Yn. In our work, the elements of test subspaces Yn = S1
n+1 are piecewise constant

functions on the dyadic subintervals Ij,n = ( j
2n , j+1

2n ), j = 0, 1, . . . , 2n − 1.
We will now follow an idea from [6] (p. 67). For f a Lipschitz function on an interval I,

with Lipschitz constant L, let ψ 1
2

be the piecewise constant function defined by ψ 1
2
(t) = f (ti +

h
2 ) for

t ∈ Ii = [ti, ti + h], with I = ∪ Ii a regular partition of I with norm h.
For any Ii, if t ∈ Ii : | f (t)− ψ 1

2
(t)| ≤ hL

2 , so ‖ f − ψ 1
2
‖∞ ≤ hL

2 .
If the kernel k satisfies that k(., s) = ks(.) is a Lipschitz function with Lipschitz constant Ls for

each s ∈ [0, 1], it is ‖ks − ψ 1
2
‖∞ ≤ 1

2
1

2n+1 Ls and, then, infψ∈Yn‖ks − ψ‖∞ ≤ Ls
2n+2 for each s ∈ [0, 1] and,

consequently, ess sups∈[0,1]
[
infψ∈Yn‖k(., s)− ψ‖2

]
≤ 1

2n+2 ess sups∈[0,1]Ls.

Moreover, if ess sups∈[0,1]Ls < ∞, from Equation (8), ‖u− u∗n‖2 ≤ C. 1
2n+2 ess sups∈[0,1]Ls.infx∈Xn‖x−

u‖2, and the approximation is actually improved.

3. Results

We will offer two numerical examples of the goodness of the Petrov–Galerkin method and iterated
Petrov–Galerkin method with regular pairs, applied to Fredholm integral equations of the second kind:
one with a continuous kernel, and the other with a weakly singular kernel ([4], p. 29; [12], p.7).

The kernel k : [a, b]× [a, b]→ R is said to be weakly singular if it verifies

|k(s, t)| ≤ M|s− t|α−1 ∀(s, t) ∈ [a, b]× [a, b], s 6= t (9)

with 0 < α < 1 and M ∈ R.
Both for k a continuous kernel or a weakly singular one, K : L2([0, 1])→ L2([0, 1]) is compact

operator (see [4], p. 28, Theorem 2.28; and [13], p. 582, Theorem 1, respectively).
We have chosen “regular pairs” of subspaces, and orthogonal basis for them, reducing the

difficulty of calculations.
We worked with Xn = S2

n = span{ϕn
i , i = 1, . . . , 2n+1} and Yn = S1

n+1 = span{ψn
j , j = 1, . . . , 2n+1},

with ϕn
i (x) =

√
2n. χIi−1,n

for i odd, ϕn
i (x) =

√
3.2n(2n+1x− i + 1). χIi−1,n

for i even and ψn
j (x) =

√
2n+1. χIj−1,n+1

.
Note that the trial space Xn is generated by piecewise constant and piecewise linear orthogonal

functions; in [14], only piecewise linear (not orthogonal) functions are used.
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3.1. Numerical Examples

3.1.1. Example 1

The equation

u(t)− 1
2

∫ 1

0
estu(s)ds = g(t) ∀t[0, 1] (10)

with g(t) = tet − 1
2 (1 + tet+1)(1 + t)−2, has the exact solution u(t) = tet.

The linear operator K : L2([0, 1])→ L2([0, 1]), K[u](t) = 1
2

∫ 1
0 estu(s)ds is compact because

k(t, s) = est is continuous, and ‖K‖ ≤ (
∫ 1

0 (
∫ 1

0 k2(t, s)ds)dt)
1
2 < 1, thus 1 is not an eigenvalue of

K and convergence of the Petrov–Galerkin method to the (unique) exact solution is guaranteed.
In Figure 1a we plot the exact solution together with the approximations u0, u1, u2 and u3.

The quadratic errors with respect to the exact solution u, εn = ‖u − un‖2, are, respectively,
ε0 ∼ 0.160157, ε1 ∼ 0.043244, ε2 ∼ 0.011036 and ε3 ∼ 0.002773.

In Figure 1b, the plots of the exact solution together with u∗1 , u∗2 and u∗3 are shown. The quadratic
errors with respect to tet are, in this case, ε∗0 ∼ 0.005657, ε∗1 ∼ 0.000849 and ε∗2 ∼ 0.000139.

Note that the plots of the iterated approximations and the real solution are indistinguishable.
All the approximations were obtained by means of ad hoc designed algorithms, implemented

with Wolfram Mathematica® 9.
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Figure 1. (a) Approximations to exact solution of Equation (10) before iteration: Purple for n = 0,
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errors with respect to the exact solution are, respectively, ε0 ∼ 0.160157, ε1 ∼ 0.043244, ε2 ∼ 0.011036
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indistinguishable from the exact solution of the equation (10). The quadratic errors with respect
to tet are, in this case, ε∗1 ∼ 0.005657, ε∗2 ∼ 0.000849 and ε∗3 ∼ 0.000139.

3.1.2. Example 2

The equation

u(t)− 1√
3

∫ 1

0

u(s)
4
√
|t− s|

ds = g(t) ∀t ∈ [0, 1] (11)

with g(t) = t2− t3− 4
231
√

3
(32t

11
4 + (1− t)

3
4 (21+ 24t+ 32t2) + 128

5 t
15
4 + (1−t)

3
4

5 (77+ 84t+ 96t2 + 128t3)),

has the exact solution u(t) = t2− t3.
The kernel k(t, s) = 1√

3
1

4
√
|t−s|

is weakly singular, with α = 3
4 , according to (9).
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Theorem 1 from [13] (p. 582) guarantees the compactness of the operator
K : L2([0, 1])→ L2([0, 1]), K[u](t) = 1√

3

∫ 1
0

u(s)
4
√
|t−s|

ds , because the necessary and sufficient conditions

are verified: supt∈[0,1]‖k(t, .)‖2 = supt∈[0,1](
1
3

∫ 1
0

ds√
|t−s|

)
1
2 ≤ 2√

3
< ∞ and lim

t→τ
‖k(t, .)− k(τ, .)‖2 = 0

for τ ∈ [0, 1].

It is ‖K‖ ≤ (
∫ 1

0 (
∫ 1

0 k2(t, s)ds)dt)
1
2 < 1, thus 1 is not an eigenvalue of K and convergence of the

method to the (unique) exact solution is guaranteed.
In Figure 2a we plot the exact solution together with the approximations u0, u1, u2, u3 and u4

obtained with Mathematica®, and in Figure 2b, the exact solution together with u∗0 , u∗1 and u∗2 , the last
one being practically indistinguishable from the exact solution. By comparing quadratic errors,
the improvement of the approximation can be appreciated: for n = 2, ε2 = ‖u− u2‖2 < 0.0046 and
ε∗2 = ‖u− u∗2‖2 < 0.00023.
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successfully developed for solving Fredholm and Hammerstein integral equations for various bases. 
See, for example, [16] for an effective and stable method to estimate the solution to Hammerstein 
integral equations with free shape parameter radial basis functions, constructed on scattered points; 
[17,18], for effective computational meshless methods for solving Fredholm integral equations of the 
second kind with logarithmic and weakly singular kernels, using radial basis functions, meshless 
product integration and collocation methods; and [19,20], for efficient meshless methods for solving 
non-linear weakly singular Fredholm integral equations, combining discrete collocation method with 
locally supported radial basis functions and thin-plate splines. 

Finally, a plausible line for our future work could be to explore and take advantages of some of 
these discrete methods of approximation to avoid the difficulties of calculations arising from the 
improper integrals when solving Fredholm integral equations of the second kind with weakly 
singular kernels. 
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Figure 2. (a) Approximations to exact solution of Equation (11) before iteration: purple for n = 0,
blue for n = 1, green for n = 2, yellow for n = 3, orange for n = 4, and, dashed in red, the exact
solution; (b) the same approximations after the iteration. For n = 2, the approximation is graphically
indistinguishable from the exact solution of the Equation (11), and the quadratic errors is reduced from
ε2 = ‖u− u2‖2 < 0.0046 to ε∗2 = ‖u− u∗2‖2 < 0.00023.

4. Discussion

The Petrov–Galerkin method is applied by choosing appropriate subspaces for projecting.
The choice of a “regular pair” of subspaces (easily characterized by the positive definitiveness of
a correlation matrix), and orthogonal basis for them, reduce the difficulty of calculations. Iteration is
shown to be a very simple way for improving convergence in a remarkable way, and better orders of
convergence can be shown, even for a weakly singular kernel. It is necessary to say that, in this second
numerical example, we have had difficulties with the fluid implementation of the computational
algorithms because of the improper integrals involved. However, not so many computations were
necessary since with n = 2 we have obtained very good results. In [14,15], the authors propose discrete
methods to face the numerical difficulties arising from the calculation of improper integrals involved
in the case of weakly singular kernel.

It is appropriate to point out that, in recent papers, different discrete Galerkin approaches
were proposed to solve integral equations. In particular, meshless discrete Galerkin methods were
successfully developed for solving Fredholm and Hammerstein integral equations for various bases.
See, for example, [16] for an effective and stable method to estimate the solution to Hammerstein
integral equations with free shape parameter radial basis functions, constructed on scattered
points; [17,18], for effective computational meshless methods for solving Fredholm integral equations
of the second kind with logarithmic and weakly singular kernels, using radial basis functions, meshless
product integration and collocation methods; and [19,20], for efficient meshless methods for solving
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non-linear weakly singular Fredholm integral equations, combining discrete collocation method with
locally supported radial basis functions and thin-plate splines.

Finally, a plausible line for our future work could be to explore and take advantages of some
of these discrete methods of approximation to avoid the difficulties of calculations arising from
the improper integrals when solving Fredholm integral equations of the second kind with weakly
singular kernels.
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