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Abstract: In this work we obtain approximate solutions for Fredholm integral equations of the 

second kind by means of Petrov–Galerkin method, choosing “regular pairs” of subspaces, 

{��, ��}, which are simply characterized by the positive definitiveness of a correlation matrix. This 

choice guarantees the solvability and numerical stability of the approximation scheme in an easy 

way, and the selection of orthogonal basis for the subspaces make the calculations quite simple. 

Afterwards, we explore an interesting phenomenon called “superconvergence”, observed in the 

1970s by Sloan: once the approximations �� ∈ �� to the solution of the operator equation � − �� =

� are obtained, the convergence can be notably improved by means of an iteration of the method, 

��
∗ = � + ��� . We illustrate both procedures of approximation by means of two numerical 

examples: one for a continuous kernel, and the other for a weakly singular one. 

Keywords: Fredholm integral equations; numerical solutions; Petrov–Galerkin method; regular 

pairs; iterated methods 

 

1. Introduction 

Fredholm equations of the second kind are integral equations of the form 

�(�) − � �(�, �)�(�)��
�

�

= �(�)  ∀� ∈ [�, �] (1) 

with � an unknown function in a Banach space �. The kernel �: [�, �] × [�, �] → � and the right-

hand side �: [�, �] → � are given functions. 

They appear in different areas of applied mathematics, sometimes as equivalent formulation for 

boundary value problems with ordinary differential equations, and there are many problems of 

mathematical physics that are modelled with Fredholm integral equations with different kernels (see, 

for example, [1–3]). 

The equation may be written 

� − �� = � (2) 

by defining the operator �: � → �, �(�)(. ) = ∫ �(. , �)�(�)��
�

�
. 

If for the kernel �(�, �)  the operator �  is bounded, a sufficient condition to guarantee the 

existence and uniqueness of a solution of Equation (2) is that ‖�‖ < 1 (see [4], Theorem 2.14, p. 23). 

Petrov–Galerkin is a projection method often proposed to find numerical approximate solutions 

to this type of integral equation. The idea is to choose appropriate sequences of finite dimensional 

subspaces of �, {��}�∈� and {��}�∈�, the trial and test subspaces respectively, where the unknown 

� and the data � are to be projected. 
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In the case of being � a Hilbert space with inner product 〈. , . 〉, the Petrov–Galerkin method 

looks for �� ∈ �� such that 

〈�� − ���, �〉 = 〈�, �〉    ∀� ∈ �� (3) 

and, as ��  and ��  are subspaces of dimension �� < ∞, solving Equation (3) reduces to solve a 

linear algebraic system of equations represented by a �� × �� matrix. 

In [5] it is proved that, if �: � → � is a compact linear operator not having 1 as an eigenvalue, 

and the pair {��, ��} is a regular pair—a concept to be defined in the next section—Equation (3) has 

a unique solution �� which satisfies 

‖� − ��‖� ≤ �. ����∈��
‖� − �‖�   (4) 

where the constant C does not depend on �. 

Solvability and numerical stability of the approximation scheme are, in this way, assured, and 

the accuracy of the approximation ��  to the unique solution � of Equation (2) does not depend 

formally on ��, as can be noted in Equation (4). The goal is to choose test function subspaces �� that 

are easy to handle, while the quality of convergence of the method is preserved. 

In addition, the convergence can even be improved by means of an iteration of the method: once 

the approximations �� ∈ �� are obtained, a new sequence of approximate solutions ��
∗ ∈ �� can be 

built by means of a simple procedure (see [6–8]): 

��
∗ = � + ��� (5) 

In this work we choose pairs of simple subspaces {��, ��} generated by Legendre polynomials 

and show the goodness of the approximations in two numerical examples with known solution, one 

of them having singular kernel. We then improved the convergence by means of an iteration of the 

method and show why the approximation is better, even for small values of � ∈ �. 

2. Method 

Let (�, 〈. , . 〉)  be a Hilbert space, ‖. ‖  the associated norm, and �: � → �  a compact linear 

operator. It is shown in [4] that, if ‖�‖ < 1, there exists a solution � ∈ � to Equation (2) for � ∈ � a 

given function, and it is unique. We are interested in looking for a good approximation to � ∈ � 

satisfying Equation (2). 

For each � ∈ �� let us consider subspaces �� ⊂ �, �� ⊂ �, with dim(��) = dim(��) = �� < ∞. 

The Petrov–Galerkin method for Equation (2) is a numerical method to find �� ∈ ��  satisfying 

Equation (3). 

For the method to be useful, it is necessary to establish conditions under which Equation (3) has 

a unique solution �� ∈ �� and lim
�→�

‖� − ��‖� = 0 for � the unique solution of Equation (2). 

It is easy to show that the condition 

��
� ∩ �� = {0} (6) 

ensures the existence of a unique solution �� ∈ �� for Equation (3). From [4] (p. 243), convergence 

can be expected only if 

∀� ∈ �, ∃{��, � ∈ �} ⊂ ��: ���
�→�

�� = �  (7) 

so, from now on, the sequences of subspaces {��}�∈� and {��}�∈� are both chosen verifying this 

condition of denseness. 

Following [5], and denoting by {��, ��} the sequences of subspaces, the pair {��, ��} is said to 

be ‘’regular’’ if there exists a linear surjective operator Π�: �� → �� satisfying 

i. ∃�� ∈ �/∀� ∈ ��: ‖�‖ ≤ ���〈�, Π��〉 

ii. ∃�� ∈ �/∀� ∈ ��: ‖Π��‖ ≤ ��‖�‖ 

It is easy to show that the surjectivity of Π� and (i.) assure the condition of Equation (6). 
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From [5] (p. 411), the following theorem summarizes the conditions for the existence and 

uniqueness of the solutions of Equation (3) and their convergence to the solution of Equation (2): 

Theorem 1. Let � be a Hilbert space and �: � → � a compact linear operator not having 1 as eigenvalue. 

Suppose ��  and ��  are finite dimensional subspaces of � , with ���(��) = ���(��) , verifying that 

{��, ��} is a regular pair and, for each � ∈ �, there exist sequences {��, � ∈ �} ⊂ �� and {��, � ∈ �} ⊂ �� 

so that ���
�→�

�� = �  and ���
�→�

�� = � . Then, there exists �� ∈ �  such that, for � > �� , equation 〈�� −

���, �〉 = 〈�, �〉 ∀� ∈ ��  has a unique solution �� ∈ ��  for any given � ∈ � , that satisfies ‖� − ��‖ ≤

�. ����∈��
‖� − �‖, where � ∈ � is the unique solution of � − �� = � and C is constant not dependent of n. 

From [9], the characterization of a regular pair is simple by means of the so called “correlation 

matrix”. Let  {��
�, � = 1, … , ��}  and {��

�, � = 1, … , ��}  be bases of ��  and �� , respectively, and 

define the �� × ��  matrices [�(��)]�� ≔ 〈��
�, ��

�〉 , [�(��)]�� ≔ 〈��
�, ��

�〉 , the correlation matrix 

[�(��, ��)]�� ≔ 〈��
�, ��

�〉, and [��(��, ��)]�� =
�

�
([�(��, ��)]�� + [�(��, ��)]��), for ���, � = 1, … , ��. 

Note that for the real case, �(��)  and �(��)  are positive definite and ��(��, ��)  is the 

symmetric part of the correlation matrix. We have proven (see [10]) the following 

Proposition 1. If ��(��, ��) is positive definite, {��, ��} is a regular pair. 

For conciseness, we assume [a, b] = [0,1] from here on. 

Let us consider � = ��([0,1]). 

For the interval [0,1] , ��
�  is the subspace of polynomials of degree less than �  on each 

subinterval ��,� = (
�

�� ,
���

�� ), � = 0,1, … , 2� − 1;  dim (��
�) = �2�  and ��

� ⊂ ��
� … ⊂ ⋃ ��

� ≔ ���
��� . 

������ = ��([0,1])  since every continuous functions with compact support on [0,1]  can be 

approximated by steps functions on subintervals of the form (
�

�� ,
���

�� ), � = 0,1, … , 2� − 1, and they are 

dense in ��([0,1]). The condition of Equation (7) of denseness is, so, satisfied. 

As the basis of ��
�, we will choose Legendre polynomials of degree less than �, adapted to each 

of the subintervals ��,� : ��
� = span���

�,�
, � = 0,1, … , 2� − 1, � = 0,1, … , � − 1�  with ��

�,�(�) =

��
�,�(�) ���

�,�(�)�� , ��
�,�(�) = ��(2�(2� −  

����

�� )). χ��,�
, ��(�) the Legendre polynomial of degree � on 

[−1,1] and χ��,�
 the characteristic function of the subinterval ��,�. 

We rename ��
�,� ≔ ��

�,���  to simplify the notation and choose the sequences of subspaces 

�� = ��
� = span{��

�,�, ��
�,�, ��

�,�, ��
�,�, … , ��

����,�, ��
����,�}  and �� = ����

� = span{��
�,�, ��

�,�, , … , ��
������,�} , 

with dim(��) = 2. 2� = 2��� = 1. 2��� = dim(��) = �� . 

Note that the condition of Equation (6), ��
� ∩ �� = {0}, which assures the uniqueness of the 

solution of Equation (3) for each �, is fulfilled. 

Indeed, suppose that ��
�,�

∈ �� , for �  between 0  and 2��� − 1,  satisfies that ��
�,�

⊥ ��
�,�  and 

��
�,�

⊥ ��
�,�  for every � = 0, … , 2� − 1 ; then ∫ ��

�,�
.

���

����

�

����

��

�
�,�

�� =
��

�,�
.��

�
�,�

���� = 0  if �  is even or 

∫ ��
���,�

.
���

����

���

����

��

���
� ,�

�� =
��

���,�
.��

���
� ,�

���� = 0  if �  is odd, which is impossible, since ��
�,�

≠ 0  and ��
�,� ≠ 0 

for every � and every �. 

Renaming the elements of the basis as ��
�(�) ≔ ��

(���)���,�  for �  odd, ��
�(�) ≔ ��

(���)���,�(�) 

for � even and ��
�(�) ≔ ��

�,�
, it is easy to show that {��, ��} is a regular pair, since ��(��, ��) is a 

2��� × 2��� matrix with definite positive 2 × 2 blocks on its principal diagonal and 0s everywhere 

else (for details, see [10]). 

Once the approximations �� are obtained, an almost natural iteration procedure is possible to 

obtain new approximations of the real solution �. Since the equation being solved is � − �� = �, or 

� = � + ��, we can define ��
∗ = � + ���. This first iteration, applied to the Galerkin method, has 

been studied since the 1970s, because, under appropriated conditions of �  and �, it reveals an 
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interesting phenomenon called “superconvergence” (see [6] and [11], for instance), as the order of 

convergence can be notably improved. 

In [11] (p. 42), the existence of a unique solution ��
∗  for Equation (5) and the improvement of 

the order of convergence of the iterated approximation for any projection method are guaranteed. 

In [5] (p. 419), the superconvergence in the Petrov–Galerkin scheme applied to Fredholm 

equations of the second kind is explained and, under the same conditions of the Theorem 1 we have 

just enunciated, a theorem establishes that ��
∗  satisfies 

‖� − ��
∗ ‖� ≤ �. ess sup�∈[�,�]�inf�∈��

‖�(. , �) − �‖��. inf�∈��
‖� − �‖� (8) 

for � the unique solution in ��([0,1]) of Equation (1), showing that the improvement of the order 

of convergence by the iteration procedure is due to the approximation of the kernel � by elements 

� of test subspace ��. In our work, the elements of test subspaces �� = ����
�  are piecewise constant 

functions on the dyadic subintervals ��,� = (
�

�� ,
���

�� ), � = 0,1, … , 2� − 1. 

We will now follow an idea from [6] (p. 67). For � a Lipschitz function on an interval �, with 

Lipschitz constant �, let ��
�
 be the piecewise constant function defined by ��

�
(�) = �(�� +

�

�
) for � ∈

�� = [��, �� + ℎ], with � =∪ ��  a regular partition of � with norm ℎ. 

For any �� , if � ∈ �� ∶ |�(�) − ��
�
(�)| ≤

��

�
, so �� − ��

�
�

�
≤

��

�
. 

If the kernel � satisfies that �(. , �) = ��(. ) is a Lipschitz function  with Lipschitz constant �� 

for each � ∈ [0,1] , it is ��� − ��
�
�

�
≤ �

�

�

���� ��  and, then, inf�∈��
‖�� − �‖� ≤

��

����  for each � ∈

[0,1] and, consequently, ess sup�∈[�,�]�inf�∈��
‖�(. , �) − �‖�� ≤

�

���� ess sup�∈[�,�]��. 

Moreover, if ess sup�∈[�,�]�� < ∞ , from Equation (8), ‖� − ��
∗ ‖� ≤

�.
�

���� ess sup�∈[�,�]��. inf�∈��
‖� − �‖�, and the approximation is actually improved. 

3. Results 

We will offer two numerical examples of the goodness of the Petrov–Galerkin method and 

iterated Petrov–Galerkin method with regular pairs, applied to Fredholm integral equations of the 

second kind: one with a continuous kernel, and the other with a weakly singular kernel ([4], p. 29; 

[12], p.7). 

The kernel �: [�, �] × [�, �] → � is said to be weakly singular if it verifies 

|�(�, �)| ≤ �|� − �|���  ∀(�, �) ∈ [�, �] × [�, �], � ≠ � (9) 

with 0 < � < 1 and � ∈ �. 

Both for � a continuous kernel or a weakly singular one, �: ��([0,1]) → ��([0,1]) is compact 

operator (see [4], p. 28, Theorem 2.28; and [13], p. 582, Theorem 1, respectively). 

We have chosen “regular pairs” of subspaces, and orthogonal basis for them, reducing the 

difficulty of calculations. 

We worked with �� = ��
� = span{��

�, � = 1, … , 2���} and �� = ����
� = span{��

�, � = 1, … , 2���}, 

with ��
�(�) = √2�. χ����,�

 for �  odd, ��
�(�) = √3. 2�(2���� − � + 1). χ����,�

 for �  even and ��
�(�) =

√2���. χ����,���
. 

Note that the trial space �� is generated by piecewise constant and piecewise linear orthogonal 

functions; in [14], only piecewise linear (not orthogonal) functions are used. 

3.1. Numerical examples 

3.1.1. Example 1 

The equation 

�(�) −
1

2
� ����(�)�� = �(�)

�

�

  ∀�[0,1] (10) 

with �(�) = ��� − �

�
(1 + �����)(1 + �)��, has the exact solution �(�) = ���. 
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The linear operator �: ��([0,1]) → ��([0,1]), �[�](�) =
�

�
∫ ����(�)��

�

�
 is compact because 

�(�, �) = ��� is continuous, and ‖�‖ ≤ (∫ (∫ ��(�, �)��)��
�

�

�

�
)

�
� < 1, thus 1 is not an eigenvalue of � 

and convergence of the Petrov–Galerkin method to the (unique) exact solution is guaranteed. 

In Figure 1a we plot the exact solution together with the approximations ��, ��, �� and ��. The 

quadratic errors with respect to the exact solution �, �� = ‖� − ��‖�, are, respectively, ��~0.160157, 

��~0.043244, ��~0.011036 and ��~0.002773. 

In Figure 1b, the plots of the exact solution together with ��
∗, ��

∗  and ��
∗  are shown. The 

quadratic errors with respect to ��� are, in this case, ��
∗~0.005657, ��

∗~0.000849 and ��
∗~0.000139. 

Note that the plots of the iterated approximations and the real solution are indistinguishable. 

All the approximations were obtained by means of ad hoc designed algorithms, implemented 

with Wolfram Mathematica® 9. 

  

  

(a) (b) 

Figure 1. (a) Approximations to exact solution of Equation (10) before iteration: Purple for � = 0, blue 

for � = 1, green for � = 2, yellow for � = 3, and, dashed in red, the exact solution. The quadratic 

errors with respect to the exact solution are, respectively, ��~0.160157, ��~0.043244, ��~0.011036 

and ��~0.002773 ; (b) the approximations for � = 1, 2  and 3 after iteration are graphically 

indistinguishable from the exact solution of the equation (10). The quadratic errors with respect to 

��� are, in this case, ��
∗~0.005657, ��

∗~0.000849 and ��
∗~0.000139. 

3.1.2. Example 2 

The equation 

�(�) −
1

√3
�

�(�)

�|� − �|�
�� =

�

�

�(�)  ∀� ∈ [0,1] (11) 

with �(�) = �� − �� −
�

���√�
( 32�

��

� + (1 − �)
�

� (21 + 24� + 32��) +
���

�
�

��

� +
(���)

�
�

�
 (77 + 84� + 96�� +

128��)), has the exact solution �(�) = �� − ��. 

The kernel �(�, �) =
�

√�

�

�|���|�  is weakly singular, with � =
�

�
, according to (9). 

Theorem 1 from [13] (p. 582) guarantees the compactness of the operator �: ��([0,1]) →

��([0,1]), �[�](�) =
�

√�
∫

�(�)

�|���|� ��
�

�
, because the necessary and sufficient conditions are verified: 

sup�∈[�,�]‖�(�, . )‖� = sup�∈[�,�](
�

�
∫

��

�|���|

�

�
)

�

� ≤
�

√�
< ∞ and lim

�→�
‖�(�, . ) − �(�, . )‖� = 0 for � ∈ [0,1]. 

It is ‖�‖ ≤ (∫ (∫ ��(�, �)��)��
�

�

�

�
)

�
� < 1, thus 1 is not an eigenvalue of � and convergence of the 

method to the (unique) exact solution is guaranteed. 

In Figure 2a we plot the exact solution together with the approximations ��, ��, ��, �� and �� 

obtained with Mathematica®, and in Figure 2b, the exact solution together with ��
∗, ��

∗ and ��
∗ , the 

last one being practically indistinguishable from the exact solution. By comparing quadratic errors, 
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the improvement of the approximation can be appreciated: for � = 2, �� = ‖� − ��‖� < 0.0046 and 

��
∗ = ‖� − ��

∗‖� < 0.00023. 

  

(a) (b) 

Figure 2. (a) Approximations to exact solution of Equation (11) before iteration: purple for � = 0, blue 

for � = 1, green for � = 2, yellow for � = 3, orange for � = 4, and, dashed in red, the exact solution; 

(b) the same approximations after the iteration. For � = 2 , the approximation is graphically 

indistinguishable from the exact solution of the Equation (11), and the quadratic errors is reduced 

from �� = ‖� − ��‖� < 0.0046 to ��
∗ = ‖� − ��

∗‖� < 0.00023. 

4. Discussion 

The Petrov–Galerkin method is applied by choosing appropriate subspaces for projecting. The 

choice of a “regular pair” of subspaces (easily characterized by the positive definitiveness of a 

correlation matrix), and orthogonal basis for them, reduce the difficulty of calculations. Iteration is 

shown to be a very simple way for improving convergence in a remarkable way, and better orders of 

convergence can be shown, even for a weakly singular kernel. It is necessary to say that, in this second 

numerical example, we have had difficulties with the fluid implementation of the computational 

algorithms because of the improper integrals involved. However, not so many computations were 

necessary since with � = 2 we have obtained very good results. In [14,15], the authors propose 

discrete methods to face the numerical difficulties arising from the calculation of improper integrals 

involved in the case of weakly singular kernel. 

It is appropriate to point out that, in recent papers, different discrete Galerkin approaches were 

proposed to solve integral equations. In particular, meshless discrete Galerkin methods were 

successfully developed for solving Fredholm and Hammerstein integral equations for various bases. 

See, for example, [16] for an effective and stable method to estimate the solution to Hammerstein 

integral equations with free shape parameter radial basis functions, constructed on scattered points; 

[17,18], for effective computational meshless methods for solving Fredholm integral equations of the 

second kind with logarithmic and weakly singular kernels, using radial basis functions, meshless 

product integration and collocation methods; and [19,20], for efficient meshless methods for solving 

non-linear weakly singular Fredholm integral equations, combining discrete collocation method with 

locally supported radial basis functions and thin-plate splines. 

Finally, a plausible line for our future work could be to explore and take advantages of some of 

these discrete methods of approximation to avoid the difficulties of calculations arising from the 

improper integrals when solving Fredholm integral equations of the second kind with weakly 

singular kernels. 
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