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Abstract: In this paper, we attempt to determine the optimal duration of an anti-epidemic control
strategy which targets susceptible people, under the isoperimetric condition that we could not control
all individuals of this category due to restricted health resources. We state and prove the local
and global stability conditions of free and endemic equilibria of a simple epidemic compartmental
model devised in the form of four ordinary differential equations which describe the dynamics of
susceptible-controlled-infected-removed populations and where it is taken into account that the
controlled people cannot acquire long-lived immunity to move towards the removed compartment
due to the temporary effect of the control parameter. Thereafter, we characterize the sought optimal
control and we show the effectiveness of this limited control policy along with the research of the
optimal duration that is needed to reduce the size of the infected population. The isoperimetric
constraint is defined over a fixed horizon, while the objective function is defined over a free horizon
present under a quadratic form in the payoff term. The complexity of this optimal control problem
requires the execution of three numerical methods all combined together at the same time, namely,
the forward–backward sweep method to generate the optimal state and control functions, the secant
method adapted to the isoperimetric restriction, and, finally, the fixed point method to obtain the
optimal final time.

Keywords: epidemic model; optimal control; isoperimetric constraint; free horizon; fixed point method

1. Introduction

1.1. Background

Many epidemiological models have been interested in the study of the dynamics of susceptible,
infected and removed individuals who belong to a sample of a population threatened by an
infection. Many theoretical models in epidemiology have been devised to show the effect of different
anti-epidemic control strategies when they are followed to prevent transmission of a particular type
of infection to the susceptible population. As examples of these control approaches, we can cite
Refs. [1,2] where the authors introduced an awareness control function in their models and which
aimed to prevent the susceptible people from Human Immunodeficiency Virus infection and Acquired
Immune Deficiency Syndrome (HIV/AIDS) epidemic. Roy et al. [3] treated the idea of awareness
control programs in HIV/AIDS prevention after the addition of a new variable in their models and
which defines the number of individuals in the aware class. Other examples of control models have
used vaccination of the susceptible individuals as a control policy, while considering the number
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of vaccinated people as additional compartment in their systems (see [3–7]). Most optimal control
strategies suggested for preventing an infection to spread consider a fixed final time. However, health
policy-makers need very often to know when it is appropriate to stop their anti-epidemic measures
as this information is important for managing their medical resources [8], and then, it becomes not
reasonable in such situations to study dynamics of an epidemic under control without an estimation of
the final time. The present paper tries to find the optimal value of this mentioned variable through a
free horizon optimal control approach applied to an epidemic model with four compartments, namely
classes of susceptible, controlled, infected and removed people.

1.2. Formulation of the Problem of Interest for this Investigation

Here, we devise a simple generalized model where the control utilized has only a temporary
effect on the immunity of the targeted population so the susceptible people under control do not
acquire long-lived immunity to move to the removed class, while taking into account the presence
of an equation which describes the evolution of the number of the controlled people. First, we study
the local and global stability of our epidemic model, which is devised in the form of four ordinary
differential equations, and wherein a control is introduced as a constant parameter; and, second,
we seek the optimal duration needed for reaching the goal of our strategy while determining the
optimal value of this control when it is changed to a function of time under the hypothesis that this
anti-epidemic preventive measure can reach only a specific fraction of susceptible people due to the
limited health resources. We should note that authors of [8,9] tried to find the optimal final time in a
first case through their plots and checked the values where this optimal function verified the obtained
additional necessary condition, and in two other cases via discrete numerical schemes. We believe
this work is more interesting, as it provides a more precise numerical method. In fact, as the necessary
condition on final time also represents here a fixed point equation, the incorporation of the fixed point
method better facilitates our task, as this technique seems more accurate and convincing since it meets
the theoretical aspect of the found condition.

1.3. Literature Survey

Zhou and Fan [10] discussed different forms of functions introduced in epidemic models to explore
the impact of limited medical resources in the transmission of infectious diseases. Abdelrazec et al. [11]
introduced, in a mathematical model of dengue fever, a function in place of the recovery rate for
similar purpose. More recently, Yu et al. proposed an optimal control approach to investigate the
optimal distribution policy of the limited vaccination resources based on the research of a parameter
introduced in their model and which minimizes the basic reproduction number [12].

1.4. Scope and Contribution of this Study

We present here an optimal control approach which treats the problem of limited resources
differently to the three above-mentioned references. In fact, our method considers a constraint,
so-called “isoperimetric”, which is used on the control function as done in [13] for the resolution of
a dosage problem, on the fraction of controlled variables as done in [14] in the case of an epidemic
model, or when adapted to a discrete-time SIRS epidemic model as in [15], and it supposes also that
the final time or horizon of the objective function is free (non-fixed) as used in many applications
(see, for example, Ref. [8], which discusses the problem of optimal duration needed for reaching
the intravesical therapy goal, and Ref. [9], where it is explained why such considerations are very
important to health-policy makers and managers in the health sector when there is an epidemic that is
controlled through awareness of the susceptible class).

1.5. Organization of the Paper

Based on the theory of mathematical epidemiology in [16], the spread of an epidemic can be
described mathematically by SIR models which in turn have been developed later to extended forms
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such as SEIR [17], SIRS [18], or SIS [19], where each letter refers to a class of individuals. A class
of controlled people can also be considered, as done in [20] where authors added a vaccination
compartment in a model of pertussis and tuberculosis, and in [21] where they studied nonfatal
diseases, and [22,23] in case of influenza. Sharomi and Malik [24] represented an other form of SIR
model with an additional equation corresponding to the vaccinated category in the case the vaccination
is not 100% effective; such considerations can also be found in [4]. Based on similar assumptions as in
the two last mentioned references, we devise our present model.

In the following parts of the paper, we start with the presentation of our mathematical model and
study its stability in cases of free and endemic equilibria. Furthermore, we seek the optimal value
of the free horizon considered in the objective function, along with the determination of the optimal
value of the control function. Finally, we discuss our numerical results.

2. The Mathematical Model and Stability

In this section, we consider a mathematical model with the four following main compartments:

• S is the number of susceptible people to infection or who are not yet infected.
• CS is the number of susceptible people who are temporarily controlled so they cannot move to

the removed class due to the limited effect of control.
• I is the number of infected people who are capable of spreading the epidemic to those in the

susceptible and temporary controlled categories.
• R is the number of removed people from the epidemic.

In our modeling approach, we choose to describe dynamics of variables S, CS, I and R at time t,
based on the following differential system

Ṡ(t) = Π(t)− βS(t)I(t)− aθS(t)− µS(t)

ĊS(t) = aθS(t)− bβCS(t)I(t)− µCS(t)

İ(t) = β(S(t) + bCS(t))I(t)− γI(t)− µI(t)

Ṙ(t) = γI(t)− µR(t)

(1)

with initial conditions S(0) > 0, CS(0) ≥ 0, I(0) ≥ 0 and R(0) ≥ 0, and where Π(t) = µN(t),
with N(t) = S(t) + CS(t) + I(t) + R(t) as the total population size, gives the newborn people
at time t; aθ (0 ≤ a ≤ 1) is the recruitment rate of susceptibles to the controlled class with
θ defining the control parameter as a constant between 0 and 1 and “a” modeling the reduced

chances of a susceptible individuals to be controlled; β =
δ

N(t)
with δ the infection transmission

rate, µ the natural death rate, bθ (0 ≤ b ≤ 1) the recruitment rate of controlled people to the
infected class even in the presence of θ and “b” modeling the reduced chances of a temporarily
controlled individual to be infected; and γ is the recovery rate. We note that the population size is
constant because Ṅ(t) = Ṡ(t) + ĊS(t) + İ(t) + Ṙ(t) = 0. Hence, N(t) = N = a constant, and then,
Π(t) = Π = a constant.

For the sake of readability, hereafter, we use S, CS, I and R as notations of the time functions S(t),
CS(t), I(t) and R(t).

Recalling that R0 =
β

µ + γ
is the basic reproduction number of the standard SIR model (see [25]

where it is concluded that the disease free equilibrium E0 is global asymptotically stable if R0 ≤ 1, and
there exists a global asymptotically stable and unique endemic equilibrium E+ if R0 > 1).
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Since the two first equations are independent of the last equation, we only study the stability of
the following differential system

Ṡ = Π− βSI − aθS− µS

ĊS = aθS− bβCS I − µCS

İ = β(S + bCS)I − γI − µI

(2)

A disease free equilibrium in our case can be defined as E0 = (S0, C0
S, 0) where S0 and C0

S are
obtained based on the assumptions Ṡ = 0 and İ = 0 when there is no infection.

Explicitly, we have Ṡ = 0 when I = 0, gives S0 =
Π

µ + aθ
. In addition, we have ĊS = 0 when

I = 0, gives C0
S =

aθΠ
µ(µ + aθ)

.

If limt→+∞ CS(t) = 0 as a consequence of the case when θ = 0, we define the basic reproduction
number for our case by RC

0 which is the average new infections produced by one infected individual
during his life cycle when the population is at E0.

Since I is the only infected compartment, then RC
0 = β(S0 + bC0

S)×
1

µ + γ
. Thus, we have

RC
0 =

βΠ
(µ + aθ)(µ + γ)

+
abβθΠ

µ(µ + aθ)(µ + γ)
=

βΠ(µ + abθ)

µ(µ + aθ)(µ + γ)
(3)

Now, we try to find the components of the endemic equilibrium E+ = (S+, C+
S , I+) where S+

and C+
S are obtained based on the assumptions Ṡ = 0 and ĊS = 0 when there is an infection.

Explicitly, we have Ṡ = 0 when I > 0, which gives S+ =
Π

µ + aθ + βI+
. In addition, we have

ĊS = 0 when I > 0, which gives C+
S =

aθS+

µ + bβI+
.

On the other part, we have İ = 0 when I > 0, which gives

βS+ I+ + bβC+
S I+ − γI+ − µI+ = 0

⇒ β
Π

µ + aθ + βI+
+ β

abθS+

µ + bβI+
= γ + µ

⇒ βΠ(µ + bβI+) + abβθS+(µ + aθ + βI+) = (γ + µ)(µ + aθ + βI+)(µ + bβI+)

⇒ βΠ(µ + bβI+) + abβθΠ = (γ + µ)(µ + aθ + βI+)(µ + bβI+)

⇒ bβ2ΠI+ + βΠ(µ + abθ) = (γ + µ)(µ + aθ + βI+)(µ + bβI+)

⇒ (γ + µ)(µ + aθ)RC
0 µ− (γ + µ)(aθµ + µ2)

= bβ2(γ + µ)I+
2
+ [(γ + µ)(βµ(1 + b) + abβθ)− bβ2Π]I+

Thus, we find that I+ is the root of the function f (I+) = α1 I+
2
+ α2 I+ + (1− RC

0 )α3 where α1, α2

and α3 are constants.
In the following three theorems, we state and prove stability results on free and endemic equilibria.

Theorem 1. E0 always exists and is locally asymptotically stable if RC
0 < 1 (respectively, E0 is unstable if

RC
0 > 1).

Proof. The existence of E0 is trivial.



Math. Comput. Appl. 2018, 23, 64 5 of 18

For the stability of E0, we define the Jacobian Matrix associated to the system in Equation (2) by −βI − aθ − µ 0 −βS
aθ −bβI − µ −bβCS
βI bβI β(S + bCS)− γ− µ

 (4)

At E0, (4) becomes  −aθ − µ 0 −βS0

aθ −µ −bβC0
S

0 0 β(S0 + bC0
S)− γ− µ


whose eigenvalues are

λ1 = −µ < 0,

λ2 = −(µ + aθ) < 0

λ3 = β(S0 + bβC0
S)− γ− µ = (γ + µ)(RC

0 − 1),

which imply the local asymptotic stability of E0 when RC
0 < 1, and its instability when RC

0 > 1.

Theorem 2. The differential system in Equation (2) admits E+ =

(
Π

µ + aθ + βI+
,

aθS+

µ + bβI+
, I+
)

as the

unique positive equilibrium and which is asymptotically stable when it exists, if and only if RC
0 > 1.

Proof. First, we have

α1 = bβ2(γ + µ) > 0,

α2 = [(γ + µ)(βµ(1 + b) + abβθ)− bβ2Π],

α3 = µ(γ + µ)(µ + aθ) > 0

For the sufficiency of the existence and uniqueness of E+, so we have α1 > 0 and since f (0) =
(1− RC

0 )α3 < 0 if RC
0 > 1, then f (I+) has two real roots, one is positive and the other is negative. For

the necessity, let us assume that RC
0 ≤ 1 and prove that f (I+) has no positive roots. In this case, the

first fraction in Equation (3) verifies

βΠ ≤ (µ + γ)(µ + aθ)

⇒ α2 = (bβ(µ + aθ) + µβ)(γ + µ)− bβ2Π

≥ (bβ(µ + aθ) + µβ)(γ + µ)− bβ(µ + aθ)(µ + γ) = µβ(γ + µ) > 0.

Thus, we have α1 > 0 and since f (0) = (1− RC
0 )α3 ≥ 0, f (I+) is increasing and f (I+) > f (0) ≥ 0,

then we reach the non-positivity of the roots.
For the stability of E+, at E+, Equation (4) is defined as −βI+ − aθ − µ 0 −βS+

aθ −bβI+ − µ −bβC+
S

βI+ bβI+ β(S+ + bC+
S )− γ− µ
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=


− Π

S+
0 −βS+

aθ − aθS+

C+
S

−bβC+
S

βI+ bβI+ 0


whose characteristic equation is λ3 + σ1λ2 + σ2λ + σ3 and where

σ1 =
Π
S+

+
aθS+

C+
S

σ2 =
aθΠ
C+

S
+ b2β2C+

S I+ + β2S+ I+

σ3 = abβ2θS+ I+ +
aθβ2S+2

I+

C+
S

+
b2β2ΠC+

S I+

S+
.

Hence, we have

σ1σ2 − σ3

=
Π
S+

(
aθΠ
C+

S
+ β2S+ I+

)

+
aθS+

C+
S

(
aθΠ
C+

S
+ b2β2C+

S I+
)
− abβ2θS+ I+

=
aθΠ2

S+C+
S
+ (Π + aθ + βI+)β2S+ I+

+
aθS+

C+
S

(
aθΠ
C+

S
+ b2β2C+

S I+
)
− abβ2θS+ I+

=
aθΠ2

S+C+
S
+ (Π + βI+)β2S+ I+ +

a2θ2ΠS+

C+2

S

+ aθS+ I+(β− bβ)2 + abβ2θS+ I+

> 0

Finally, based on the Routh–Hurwitz Criterion, we deduce the local asymptotic stability of E+.

Theorem 3. If RC
0 ≤ 1, then E0 is globally asymptotically stable. If RC

0 > 1, then E+ is globally
asymptotically stable.

Proof. We suppose that RC
0 ≤ 1 and we prove that E0 is globally asymptotically stable. Let us define

the Lyapunov function by

L0 = S− S0 − S0 ln
S
S0 + CS − C0

S − C0
S ln

CS

C0
S
+ I.

Its derivative is then defined by

L̇0 = Ṡ + ĊS + İ − S0 Ṡ
S
− C0

S
ĊS
CS

= Π− µS− µCS − µI − γI − S0 Π
S
+ µS0 + βS0 I + aθS0 − C0

S
aθS
CS

+ bβC0
S I + µC0

S.
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Since µ =
aθS0

C0
S

and Π = µS0 + aθS0, then this derivative becomes

L̇0 = −µS + 2µS0 + 3aθS0 − (µ + γ− βS0 − bβC0
S)I

−
aθC0

SS
CS

− S0

S
(µS0 + aθS0)− aθS0CS

C0
S

= −µS0
(

S
S0 +

S0

S
− 2
)

− aθS0

(
CS

C0
S
+

S0

S
+

C0
SS

CSS0 − 3

)
− (µ + γ)(1− RC

0 )I

Now, we have
S
S0 +

S0

S
− 2 ≥ 0 and

CS

C0
S
+

S0

S
+

C0
SS

CSS0 − 3 ≥ 0 due to the fact that arithmetic

mean is larger than or equals to the geometric mean, and the equalities hold if S = S0 and CS = C0
S.

Thus, L̇0 ≤ 0 which implies the global asymptotic stability of E0 based on Lyapunov–LaSalle’s
invariance principle.

Similarly, we study the global asymptotic stability of E+ by considering the following
Lyapunov function

L+ = S− S+ − S+ ln
S

S+
+ CS − C+

S − C+
S ln

CS

C+
S
+ I − I+ − I+ ln

I
I+

.

The derivative is then defined as

˙L+ = Ṡ + ĊS + İ − S+ Ṡ
S
− C+

S
ĊS
CS
− I+

İ
I

= Π− µS− µCS − (µ + γ)I −Π
S+

S
+ µS+ + βS+ I + aθS+ − aθS

C+
S

CS
+ bβC+

S I + µC+
S

− βSI+ − bβCS I+ + (µ + γ)I+

Since µ + γ = βS+ + bβC+
S , µ =

aθS+ − bβC+
S I+

C+
S

and Π = µS+ + βS+ I+ + aθS+ = µS+ +

µC+
S + (µ + γ)I+, this derivative becomes

˙L+ = 2Π− µS−
aθS+ − bβC+

S I+

C+
S

CS − (µS+ + βI+S+ + aθS+)
S+

S
+ aθS+

− aθS
C+

S
CS
− βSI+ − bβCS I+

= 2(µS+ + βS+ I+ + aθS+)− µS− aθS+CS

C+
S

+ aθS+ − µS+2

S
− βS+2

I+

S

− aθS+2

S
−

aθSC+
S

CS
− βSI+

= −(µS+ + βS+ I+)
(

S
S+

+
S+

S
− 2
)

− aθS+

(
CS

C+
S
+

S+

S
+

C+
S S

CSS+
− 3

)
≤ 0
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which is the final result, sought to prove for deducing that E+ is globally asymptotically stable.

3. Free Horizon Isoperimetric Optimal Control Approach

Now, we consider the mathematical model in Equation (1) with θ as a control function of time t.
Motivated by the desire to find the optimal time needed to reduce the number of infected people

as much as possible while minimizing the value of the control θ(t) over a free (non-fixed) horizon t f ,
our objective is to seek a couple (θ∗(t), t∗f ) such that

J(θ∗(t), t∗f ) = min
(θ(t),t f )∈U×R+

J(θ(t), t f ) (5)

where J is the functional defined by

J(θ(t), t f ) = t2
f +

∫ t f

0

(
a′ I(t) +

b′

2
θ2(t)

)
dt (6)

and where the control space U is defined by the set

U = {θ(t)|0 ≤ θ(t) ≤ 1, θ(t) measurable, t ∈ [0, t f ], t f f ree}

where a′ and b′ represent constant severity weights associated to functions I and θ, respectively.
Alkama et al. treated three cases of the form of the free horizon t∗f in the final gain function of their
objective function when applying a free final time optimal control approach to a cancer model [9].
Here, we suppose that t∗f takes the quadratic form as formulated in Equation (6) to obtain a direct
formula which characterizes t∗f . In fact, if t∗f is taken linear or the final gain function is zero, t∗f would
just be approximated numerically due to the nature of necessary conditions in these two cases (see [9]
for explanation).

Since managers of the anti-epidemic resources cannot well-predict whether their control strategy
will reach the entire susceptible population over a fixed horizon T, we treat here an example where
the number of targeted people in the susceptible class is equal for example to only a constant
C = 3026 for T = 50 months. Hence, we try to find (θ∗(t), t∗f ) under the definition of the following
isoperimetric restriction

∫ T

0
aθ(t)S(t)dt = C (7)

In [13], the authors defined an isoperimetric constraint on the control variable only to model the
total tolerable dosage amount of a therapy along the treatment period. In their conferences talks [26,27],
Kornienko et al. and De Pinho et al. introduced state constraints in an optimal control problem that
is subject to an S-Exposed-I-R differential system to model the situation of limited supply of vaccine
based on work in [14] and where the isoperimetric constraint is defined on the product of the control
and state variables.

In our case, to take into account the constraint in Equation (7) for the resolution of the optimal
control problem in Equation (5), we consider a new variable Z defined as

Z(t) =
∫ t

0
aθ(v)S(v)dv (8)
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Then, we have Ż(t) = aθ(t)S(t). Using notations of the state variables in the previous section
and keeping θ as a notation of θ(t) and Z in place of Z(t), we study the differential system defined
as follows 

Ṡ = Π− βSI − aθS− µS

ĊS = aθS− bβCS I − µCS

İ = β(S + bCS)I − γI − µI

Ṙ = γI − µR

Ż = aθS

(9)

instead of the model in Equation (1). We also note that, when the minimization problem in Equation (5)
is under the constraint in Equation (7), the application of Pontryagin’s Maximum Principle would not
be appropriate for this case, but the new variable Z has the advantage to convert Equations (5)–(7) to
a classical optimal control problem under one restriction which is the system in Equation (9) only [28].
If we follow most optimal control approaches in the literature, the objective function in Equation (6) will
be defined over a fixed time interval. However, t∗f is free here, and, to find the optimal duration needed
to control an epidemic, it would be advantageous to managers of medical or health resources to control
an epidemic before reaching the fixed time T for lesser costs. For this purpose, we need to assume that
0 ≤ t∗f ≤ T to guarantee the sufficient condition for an optimal θ∗ in the case of a free horizon. This is
because θ∗ exists for the minimization problem in Equation (5) when Equation (6) is defined over T based
on the verified properties of the sufficient conditions as stated in details in Theorem 4.1, pp. 68–69 of [29]
and that can easily be verified for many examples as ours, and this implies in our case that the existence
of an optimal control θ∗ and associated optimal trajectories S∗, C∗S, I∗, R∗ and Z∗ comes directly from the
convexity of the integrand term in Equation (6) with respect to the control θ and the Lipschitz properties
of the state system with respect to state variables S, CS, I, R and Z. Then, it exists for any time in the
interval [0, T] including t∗f . As regard the necessary conditions, we state and prove the following theorem.

Theorem 4. If there exist optimal control u∗ and optimal horizon t∗f which minimize Equation (6) along with the
optimal solutions S∗, C∗S, I∗ and R∗ associated to the differential system in Equation (9), then there exist adjoint
variables λk, k = 1, 2, 3, 4, 5 as notations of λk(t) and which satisfy the following adjoint differential system

λ̇1 = λ1(βI∗ + µ + aθ∗)− aλ2θ∗ − βλ3 I∗ − aθλ5

λ̇2 = λ2(bβI∗ + µ)− bλ3βI∗

λ̇3 = −a′ + λ1βS∗ + bλ2βC∗S − λ3(β(S∗ + bC∗S)− µ− γ)− λ4γ

λ̇4 = λ4µ

λ̇5 = 0

(10)

with the transversality conditions λk(t∗f ) = 0, k = 1, 2, 3, 4 and λ5(t∗f ) = constant which should be determined.
Furthermore, the sought optimal control is characterized by

θ∗ = min
(

max
(

0,
aS∗(λ1 − λ2 − λ5)

b′

)
, 1
)

(11)

while the sought optimal horizon is characterized by

t∗f = −
H(t∗f , S(t∗f ), CS(t∗f ), I(t∗f ), R(t∗f ), Z(t∗f ), λ1(t∗f ), λ2(t∗f ), λ3(t∗f ), λ4(t∗f ), λ5(t∗f ), θ(t∗f ))

2
(12)

where H(t∗f , S(t∗f ), CS(t∗f ), I(t∗f ), R(t∗f ), Z(t∗f ), λ1(t∗f ), λ2(t∗f ), λ3(t∗f ), λ4(t∗f ), λ5(t∗f ), θ(t∗f )) defines the
Hamiltonian function as the sum of the integrand term of Equation (6) and the term λ1Ṡ + λ2ĊS + λ3 İ +
λ4Ṙ + λ5Ż at t∗f .
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Moreover, t∗f is positive only when H(t∗f , S(t∗f ), CS(t∗f ), I(t∗f ), R(t∗f ), Z(t∗f ), λ1(t∗f ), λ2(t∗f ), λ3(t∗f ),
λ4(t∗f ), λ5(t∗f ), θ(t∗f )) is negative.

Proof. Let H be a notation of the Hamiltonian function H(t, S(t), CS(t), I(t), R(t), Z(t), λ1(t), λ2(t), λ3(t),
λ4(t), λ5(t), θ(t)) in all time t. Then, we have

H = a′ I +
b′

2
θ2 + λ1Ṡ + λ2ĊS + λ3 İ + λ4Ṙ + λ5Ż

= a′ I +
b′

2
θ2 + λ1(Π− βSI − aθS− µS) + λ2(aθS− bβCS I − µCS)

+λ3(β(S + bCS)I − γI − µI) + λ4(γI − µR) + aθSλ5

Using Pontryagin’s maximum principle [30], we have

λ̇1 = −∂H
∂S

= λ1(βI∗ + µ + aθ∗)− aλ2θ∗ − βλ3 I∗ − aθλ5

λ̇2 = − ∂H
∂CS

= λ2(bβI∗ + µ)− bλ3βI∗

λ̇3 = −∂H
∂I

= −a′ + λ1βS∗ + bλ2βC∗S − λ3(β(S∗ + bC∗S)− µ− γ)− λ4γ

λ̇4 = −∂H
∂R

= λ4µ

λ̇5 = −∂H
∂R

= 0

while the transversality conditions defined as minus the derivative of the final gain function with
respect to the state variables S, CS, I and R. Since the final gain function in Equation (6) does not
contain any term of these variables, then λk(t∗f ) = 0, k = 1, 2, 3, 4 and λ5(t∗f ) is unknown but we

are sure it is a constant since λ̇5(t) = 0 ∀t ∈ [0, t∗f ]. The solution of this problem is treated in the
next section.

The optimality condition at θ = θ∗ implies that
∂H
∂θ

= 0. Then, after setting S = S∗, we have

b′θ − aSλ1 + aSλ2 + aSλ5 = 0⇒ θ =
aS(λ1 − λ2 − λ5)

b′

Taking into account the bounds of the control, we obtain,

θ∗ = min
(

max
(

0,
aS∗(λ1 − λ2 − λ5)

b′

)
, 1
)

Now, let us prove the necessary conditions on t∗f . As J(θ, t f ) reaches its minimum at θ∗ and t∗f ,
we have

lim
h 7→0

J
(

θ∗, t∗f + h
)
− J

(
θ∗, t∗f

)
h

= 0
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with the consideration of the final gain function φ that we deduce it is defined in Equation (6) by
φ(t f , S(t f ), CS(t f ), I(t f ), R(t f ), Z(t f )) = t2

f , while setting θ = θ∗ and t f = t∗f , we obtain

lim
h 7→0

1
h

φ(t f + h, S(t f + h), CS(t f + h), I(t f + h), R(t f + h), Z(t f + h)) +

t f +h∫
0

(
aI(t) +

b
2

θ2(t)
)

dt

−φ(t f , S(t f ), CS(t f ), I(t f ), R(t f ), Z(t f ))−
t f∫

0

kI

(
aI(t) +

b
2

θ2(t)
)

dt

 = 0

⇒ lim
h 7→0

[
φ(t f + h, S(t f + h), CS(t f + h), I(t f + h), R(t f + h), Z(t f + h))− φ(t f , S(t f ), CS(t f ), I(t f ), R(t f ), Z(t f ))

h

+
1
h

t f +h∫
t f

(
aI(t) +

b
2

θ2(t)
)

dt

 = 0

⇒ ∂φ

∂t
(t f ) +

∂φ

∂S
(t f )Ṡ(t f ) +

∂φ

∂CS
(t f )ĊS(t f ) +

∂φ

∂I
(t f ) İ(t f ) +

∂φ

∂R
(t f )Ṙ(t f ) +

∂φ

∂Z
(t f )Ż(t f ) + aI(t) +

b
2

θ2(t) = 0

⇒ 2t f + H(t f , S(t f ), CS(t f ), I(t f ), R(t f ), Z(t f ), λ1(t f ), λ2(t f ), λ3(t f ), λ4(t f ), λ5(t f ), θ(t f )) = 0

⇒ t f +
H(t f , S(t f ), CS(t f ), I(t f ), R(t f ), Z(t f ), λ1(t f ), λ2(t f ), λ3(t f ), λ4(t f ), λ5(t f ), θ(t f ))

2
= 0

Finally, we have

t f = −
H(t f , S(t f ), CS(t f ), I(t f ), R(t f ), Z(t f ), λ1(t f ), λ2(t f ), λ3(t f ), λ4(t f ), λ5(t f ), θ(t f ))

2

Otherwise, the positivity of t∗f under the condition of negativity of

H(t∗f , S(t∗f ), CS(t∗f ), I(t∗f ), R(t∗f ), Z(t∗f ), λ1(t∗f ), λ2(t∗f ), λ3(t∗f ), λ4(t∗f ), λ5(t∗f ), θ(t∗f ))

is trivial, but this is not a condition we should have necessarily for θ∗ since the Hamiltonian could
change signs any time along the interval of study.

4. Numerical Simulations

Based on the formulation of Equation (8), we have Z(0) = 0 and Z(t f ) = C. Since the optimal
control problem consists to resolve the two-point boundary value problem defined by the two systems
in Equations (2) and (10), the differential system in Equation (2) will be numerically resolved forward in
time because of its initial conditions and the value of Z(0) does not change, while the differential system
in Equation (10) will be numerically resolved backward in time because of its final or transversality
conditions but with the condition that Z(t f ) varies depending on the value of k. Based on the numerical
approach in [13], we propose also here to define a real function g such that k→ g(k) = Z̃ f − Z f and
where Z̃ f is the value of Z at t f for various values of k and Z f is the value fixed by C. This leads
to the combination of the Forward–Backward–Sweep Method (FBSM) which resolves the two-point
boundary value problem in Equations (2)–(10), with the secant-method to find the value of the root ′k′

of the function g [31]. The necessary condition on t∗f defined by the characterization in Equation (12),
which leads to seek a fixed point of a real function F such that F(t∗f ) = t∗f . We choose to solve this
numerical problem differently to the method used in [8,9] using the fixed point method. In brief, the
four steps of numerical calculus associated to the resolution of our free optimal control problem (5)
under isoperimetric constraint (7), are described in Algorithm 1.
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Algorithm 1: Resolution steps of the two-point boundary value optimal control problem (9) and (10).
Step 0:

Guess an initial estimation to θ and t f inal .
Step 1:

Use the initial condition S(0), CS(0), I(0), R(0) and Z(0) and the stocked values by θ and
t f .

Find the optimal states S∗, C∗S, I∗, R∗ and Z∗ which iterate forward in the two-point
boundary value problem (2)–(10).

Step 2:
Use the stocked values by θ and the transversality conditions λk(t f ) for k = 1, 2, 3, 4 while

searching the constant λ5(t f ) using the secant-method.
Find the adjoint variables λk for k = 1, 2, 3, 4, 5 which iterate backward in the two-point

boundary value problem (2)–(10).
Step 3:

Update the control utilizing new S, CS, I, R, Z and λk for k = 1, 2, 3, 4, 5 in the
characterization of θ∗ as presented in (11) while searching the optimal time t∗f characterized
by (12) using the fixed point method.

Step 4:
Test the convergence. If the values of the sought variables in this iteration and the final

iteration are sufficiently small, check out the recent values as solutions. If the values are not
small, go back to Step 1.

Figure 1 depicts the SCS IRZ dynamics in the absence and presence of the control and we can see
that the number of susceptible people has increased linearly from its initial condition to a number
higher than 92.5 individuals when we choose θ = 0, while the optimal state S∗ increases during the
first months of the optimal control strategy and it decreases when we work with the characterization
of Equation (11). Simultaneously, the number of removed people increases to only a value close to
eight people while it reaches a value higher than this number with a maximal peak equaling to 17
when θ 6= 0. As regards to the number of infected people, it decreases from its initial condition to a
value close to an important value of 30 individuals because of the natural death and recovery only,
while it decreases towards a value very close to zero after the introduction of the control θ. We can
see the relationship between the number of controlled people and the optimal values taken by θ so
when this is increasing, the optimal state C∗S is also increasing. In fact, we can deduce that, with only
small values of θ, we reach our goal by minimizing I function, and maximizing R function while the
total number of the susceptible who received the control along T and which is represented by the
function Z has not exceeded the imposed constant C. The dashed lines introduced in this figure show
the highest fixed point value of the sought final time, and we can understand that, at this point, we
have already reached our goal which concerns the minimization of the number of infected people and
maximization of the number of removed people. The next figure gives more information about the
obtained value of t∗f .
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Figure 1. SCS IRZ dynamics in the absence and presence of the control in the two cases θ = 0 and
θ 6= 0. Parameters values: Π = 6.45, a = 0.06, b = 0.001, β = 0.0003, and µ = 0.05, γ = 0.1. Initial
conditions: S(0) = 89, CS(0) = 0, I(0) = 40, and R(0) = 0. Severity weights constants: a′ = 1 and
b′ = 50.

In Figure 2, we present dynamics of the functions S, I and R, and we can see the fixed points t∗f in
the first plot above. The solution of the equation F(t∗f ) = t∗f starts from an initial guess which equals
zero, and increases to values that are very close or sometimes equal to 26 months (we note that, even if
they appeared taking the value 26, this is not the case at all iterations but just because all values are
very close to 26 with a small precision of about 10−4). As noted in this figure, for instance, the highest
value of t∗f = 26.4081 found at iteration 292 among 1000. In the same figure, in the plot below, we
observe that, at t∗f indicated by the dashed purple line, the number of infected people has already
taken the direction towards zero values, while the number of removed people has already reached
its positive peak and started to decrease because of the decrease of the optimal control function θ∗,
as shown in the previous figure. This means that there is no need in this case to extend the optimal
control approach for other months since, at t∗f , Equation (5) has been almost realized.
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Figure 2. SIR dynamics with the precision of the optimal horizon t∗f with the same parameters, initial
conditions and severity weights constants as in Figure 1.

In Figure 3, the fixed points t∗f for different values of the control severity weight b′ suggest that,
as the value of b′ increases, t∗f increases. In fact, the bigger is b′, the lesser is the optimal control θ∗,
which is important, as we can deduce from the formulation in Equation (11), and this is reasonable
since, when θ∗ is small, we need more time to control the epidemic. The obtained results in this figure
can be summarized as follows:

• When b′ = 60: I(t∗f ) = 6.734 with θ(t∗f ) = 0.8658 (iteration 278), which implies that 83.165% of
infected people have left the I compartment.

• When b′ = 70: I(t∗f ) = 6.0627 with θ(t∗f ) = 0.8624 (iteration 295), which implies that 84.84325% of
infected people have left the I compartment.

• When b′ = 80: I(t∗f ) = 4.7619 with θ(t∗f ) = 0.8573 (iteration 332), which implies that 88.09525% of
infected people have left the I compartment.
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Figure 3. t∗f for different values of b′ with the same parameters, initial conditions and severity weights
constants as in Figure 1.

In Figure 4, we show the impact of the initial condition of I function, namely I0, on fixed points
t∗f , and we can deduce from the obtained optimal horizons that, as I0 increases, t∗f increases, and this
is reasonable since, when the number of infected people is important, the anti-epidemic measures
need longer time for controlling the situation. The obtained results in this figure can be summarized
as follows:

• When I(0) = 50: I(t∗f ) = 8.4416 with θ(t∗f ) = 0.8758 (iteration 278), which implies that 83.1168%
of infected people have left the I compartment.

• When I(0) = 60: I(t∗f ) = 5.7018 with θ(t∗f ) = 0.8662 (iteration 338), which implies that 90.497% of
infected people have left the I compartment.

• When I(0) = 70: I(t∗f ) = 8.1909 with θ(t∗f ) = 0.8802 (iteration 310), which implies that 88.2987%
of infected people have left the I compartment.
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Figure 4. t∗f for different values of the initial condition I(0) with the same parameters, severity weights
constants and , initial conditions for S(0), CS(0), and R(0) as in Figure 1.

5. Conclusions

In this paper, we have determined the optimal duration needed for controlling an epidemic based
on a free horizon optimal control approach with an isoperimetric constraint and which has been applied
to a four-compartmental epidemic model where it is supposed that the controlled population does
not reach the removed class due to the temporary effect of the control. The isoperimetric restriction
which has been proposed to define the number of susceptible people who receive the control along the
anti-epidemic measures period, allowed us to find the optimal horizon of the optimal control strategy
when there are limited resources devised to fight against a disease. In the numerical simulations, we
used the fixed point method since the necessary condition on the free horizon led to a fixed point
equation. Our results prove their usefulness, since, at the obtained optimal horizons for different
values of parameters and initial conditions on infection, the infected population size has been reduced
and this presents an advantage of the followed control approach to managers of the health resources
even when these are limited.
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