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Abstract: In this article, we introduce the concept of graphs associated with commutative UP-algebra,
which we say is a UP-graph whose vertices are the elements of commutative UP-algebra and
whose edges are the association of two vertices, that is two elements from commutative UP-algebra.
We also define a graph of equivalence classes of a commutative UP-algebra and prove some related
results based on the algebraic properties of the graph. We show that two graphs are the same and
complete bipartite if they are formed by equivalence classes of UP-algebra and the graph folding of
commutative UP-algebra. An algorithm for checking whether a given set is a UP-algebra or not has
also been given.
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1. Introduction

In recent years, classical and non-classical algebra, as well as logical algebras have attracted the
keen interest of researchers and have been widely considered as a strong tool for information systems
and many other branches of computer sciences, including fuzzy information with rough and soft
concepts. Many authors have studied graphs in classical structures, more precisely in commutative
cases, e.g., commutative rings [1], commutative semirings [2], commutative semigroups [3],
nearrings [4], Cayley vague graphs [5], etc. Beck [6] associated commutative rings and their zero
divisor graphs G(R). Jun and Lee [7] defined zero divisor graphs in BCK/BCI-algebras and showed
related properties. Some properties of graphs related to BCH-algebras have been discussed by Hu and
Li in [8], whereas Zahiri and Borzooei [9] defined a new graph of BCI-algebras X and showed that the
graphs defined by Jun and Lee [7] and Zahiri and Borzooei [9] are the same. They also proved that the
α-divisor and p-semisimple part of a BCI algebra X is a quasi-ideal of X. The fuzzy logic of most logical
algebras has been the recent choice of numerous researchers, including Hajek [10], who introduced
the mathematics of fuzzy logic. Prabpayak and Leerawat [11] introduced KU-ideals, which can be
considered to be an interesting idea in logical algebras. Yaqoob et al. [12] introduced cubic KU-ideals
of KU-algebras. Roughness in KU-algebras was studied by Moin and Ali [13], whereas rough set
theory has been applied to UP-algebras by Moin et al. [14]. Further, Mostafa et al. [15] defined graphs
of commutative KU-algebras.

Iampan introduced the concept of UP-algebras [16], whereas Senapati et al. [17] represented
UP-algebras in an inter-valued intuitionistic fuzzy environment. Senapati et al. [18] applied the cubic
set structure in UP-algebras and proved the results based on them. Akram and Dudek [19] showed
interval-valued fuzzy graphs. Akram and Davvaz [20] defined the concept of strong intuitionistic fuzzy
graphs. Types of irregular bipolar fuzzy graphs and their applications were studied by Akram in [21].

In this paper, we introduce a (undirected) UP-graph of commutative UP-algebras and denote it
by G(A), whose vertices are the elements of UP-algebra A with the condition that the vertices a, b ∈ A
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form an edge between them if and only if a4 b ∈ A = 0. Further, it is shown that the graph of
equivalence classes of A i.e., denoted by GE(A), and the graph folding of a commutative UP-algebra
A are the same; more precisely, they form a complete bipartite graph.

2. Preliminaries

In this section, we shall consider concepts based on UP-algebras, UP-subalgebras, UP-ideals and
other important terminologies with examples and some related results.

Definition 1. [16] By a UP-algebra, we mean an algebra (A, ∗, 0) of type (2, 0) with a single binary operation
∗ that satisfies the following identities: for any x, y, z ∈ X,

(UP1): (y ∗ z) ∗ [(x ∗ y) ∗ (x ∗ z)] = 0,
(UP2): 0 ∗ x = x,
(UP3): x ∗ 0 = 0,
(UP4): x ∗ y = y ∗ x = 0 implies x = y.

Example 1. [16] Let X be a universal set. Define a binary operation ∗ on the power set of X by putting
A ∗ B = B ∩ A′ = A′ ∩ B = B− A for all A, B ∈ P(X). Then, (P(X); ∗, ∅) is a UP-algebra, which is the
power UP-algebra of Type 1.

Example 2. [16] Let X be a universal set. Define a binary operation ∗ on the power set of X by putting A ∗ B =
B ∪ A′ = A′ ∪ B ∀ A, B ∈ P(X). Then, (P(X); ∗, X) is a UP-algebra, which is a power UP-algebra of Type 2.

Example 3. Let A = {0, a, b, c} be a set in which ∗ is defined by the following Cayley table:

∗ 0 a b c

0 0 a b c
a 0 0 0 0
b 0 a 0 c
c 0 a b 0

It is easy to see that A = {0, a, b, c} is a UP-algebra.

Example 4. Let A = {0, a, b, c, d} be a set in which ∗ is defined by the following Cayley table:

∗ 0 a b c d

0 0 a b c d
a 0 0 0 0 0
b 0 b 0 0 0
c 0 b b 0 0
d 0 b b d 0

Here, A = {0, a, b, c, d} is a UP-algebra.

Example 5. Let A = {0, a, b, c, d} be a set in which ∗ is defined by the following Cayley table:

∗ 0 a b c d

0 0 a b c d
a 0 0 b c d
b 0 0 0 c d
c 0 0 b 0 d
d 0 0 0 0 0
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Here, A = {0, a, b, c, d} is a UP-algebra.

Example 6. Let A = {0, a, b, c, d} be a set in which ∗ is defined by the following Cayley table:

∗ 0 a b c d

0 0 a b c d
a 0 0 0 0 0
b 0 a 0 c 0
c 0 a 0 0 0
d 0 a b c 0

Here, A = {0, a, b, c, d} is a UP-algebra.

Proposition 1. In a UP-algebras A, the following properties hold for any x, y, z ∈ A :

(1) x ∗ x = 0,
(2) x ∗ y = 0 and y ∗ z = 0⇒ x ∗ z = 0,
(3) x ∗ y = 0⇒ (z ∗ x) ∗ (z ∗ y) = 0,
(4) x ∗ y = 0⇒ (y ∗ z) ∗ (x ∗ z) = 0,
(5) x ∗ (y ∗ x) = 0,
(6) (y ∗ x) ∗ x = 0⇐⇒ x = y ∗ x and
(7) x ∗ (y ∗ y) = 0

We define a binary relation ′ ≤′ in a UP-algebras A as x ≤ y ⇔ x ∗ y = 0. We observe that
this binary relation ≤ forms a POS(A,≤), where zero is the smallest element of A. The following
conditions are true for (A; ∗, 0) for all x, y, z ∈ A with (A,≤).

Proposition 2. Let A = (A, ∗, 0) be UP-algebras, then define a binary relation ≤ on A as follows: for all
x, y, z ∈ A:

(1) x ≤ x,
(2) x ≤ y and y ≤ x ⇒ x = y,
(3) x ≤ y and y ≤ z⇒ x ≤ z,
(4) x ≤ y⇒ z ∗ x ≤ z ∗ y,
(5) x ≤ y⇒ y ∗ z ≤ x ∗ z,
(6) x ≤ y ∗ x, and
(7) x ≤ y ∗ y.

Proposition 3. Let A = (A, ∗, 0) be UP-algebras, then define a binary relation ≤ on A as follows: for all
x, y, z ∈ A:

(UP5): (y ∗ z) ∗ (x ∗ z) ≤ x ∗ y.
(UP6): 0 ≤ x.
(UP7): x ≤ y, y ≤ x ⇒ x = y.
(UP8): y ∗ x ≤ x.

Proposition 4. In a UP-algebra A, the given axioms are satisfied: for all x, y, z ∈ A:

(1) x ∗ (y ∗ z) = y ∗ (x ∗ z).
(2) ((y ∗ x) ∗ x) ≤ y.

Definition 2. Let A = (A, ∗, 0) be a UP-algebra. Then, a subset S of A is called the UP-subalgebras of A if
the constant zero of A is in S and (S, ∗, 0) itself forms a UP-algebra. Clearly, A and {0} are UP-algebras of A.

Definition 3. Let A be a UP-algebra. Then, a subset B of A is called a UP-ideal of A if it satisfies:
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(i) The constant zero of A is in B and
(ii) for antx, y, z ∈ A, x ∗ (y ∗ z) ∈ B and y ∈ B⇒ x ∗ z ∈ B.

Clearly, A and {0} are UP-ideals of A.

Example 7. Let A = {0, a, b, c, d} be a set with operation ∗, which is defined in the table given in Example 5.
We find that the subsets {0, a, b} and {0, a, c} are UP-ideals of A.

A = (A; ∗, 0) is a UP-algebra here. Further, {0, a, b} and {0, a, c} are UP-ideals of A.

Definition 4. Define a4 b = (b ∗ a) ∗ a, then A is said to be the commutative UP-algebra if ∀ a, b ∈ A, we
get (b ∗ a) ∗ a = (a ∗ b) ∗ b, i.e., a4 b = b4 a.

Theorem 1. For a UP-algebra A, the following conditions are equivalent:

(1) A is commutative,
(2) (b ∗ a) ∗ a ≤ (a ∗ b) ∗ b,
(3) ((a ∗ b) ∗ b) ∗ ((b ∗ a) ∗ a) = 0.

Proof. It is straightforward.

Lemma 1. If A is a commutative UP-algebra, then a4 (b ∗ c) = (a4 b) ∗ (a4 c).

Proof. If A is a commutative UP-algebra, then we have, (a4 b) ∗ (a4 c) = ((b ∗ a) ∗ a) ∗ ((c ∗ a) ∗ a))
≤ (c ∗ a) ∗ (b ∗ a) ≤ b ∗ c. (by (UP5))

Furthermore, (a4 b) ∗ (a4 c) ≤ (a4 c) ≤ a. (by (UP8))
Hence, (a4 b) ∗ (a4 c) ≤ a4 (b ∗ c).
For its converse part, by using (UP5) and Proposition 4 (1), we have, (a4 b) ∗ (a4 c) ∗ (a4 (b ∗

c)) = ((b ∗ a) ∗ a) ∗ ((c ∗ a) ∗ a)) ∗ ((b ∗ c) ∗ a) ∗ a) ≤ ((c ∗ a) ∗ (b ∗ a)) ∗ (b ∗ c) ≤ (b ∗ c) ∗ (b ∗ c) = 0.
Hence, a4 (b ∗ c) ≤ (a4 b) ∗ (a4 c). Therefore, a4 (b ∗ c) = (a4 b) ∗ (a4 c).

From now on, by A, we mean commutative UP-algebra unless otherwise stated.

Definition 5. Let B be a subset of A. Then, the annihilator of B is defined by,

ann(B) = {x ∈ A : a4 x = 0 ∀ a ∈ B}.

This is known as the UP-annihilator of B. If B = {a}, it is written as ann(a).

Lemma 2. Let B be a subset of A and ann(B) be a UP-annihilator of B, then ann(B) is an ideal of A.

Proof. Since a4 0 = (0 ∗ a) ∗ a = a ∗ a = 0, so 0 ∈ ann(B). Further, let x ∗ (y ∗ z), y ∈ ann(B),
then a4 (x ∗ (y ∗ z)) = 0. Hence, by Lemma 1, a4 (x ∗ (y ∗ z)) = (a4 x) ∗ (a4 (y ∗ z)) = (a4
x) ∗ (a4 y ∗ a4 z) = (a4 x) ∗ (0 ∗ a4 z) = (a4 x) ∗ (a4 z) = a4 (x ∗ z) = 0, which implies that
(x ∗ z) ∈ ann(B). Therefore, ann(B) is an ideal of A.

Lemma 3. If B, C ⊆ A, then we have the following.

(1) If B ⊆ C, then ann(C) ⊆ ann(B);
(2) ann(B ∪ C) = ann(B) ∩ ann(C);
(3) ann(B) ∪ ann(C) ⊆ ann(B ∩ C).

Proof. (1) Suppose that x ∈ ann(C), so (x ∗ c) ∗ c = 0, ∀ c ∈ C, but B ⊆ C; hence (x ∗ b) ∗
b = 0, ∀ b ∈ B. That is, x ∈ ann(B) implies ann(C) ⊆ ann(B).
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(2) Since B ⊆ B ∪ C and C ⊆ B ∪ C, so by Part (1), ann(B ∪ C) ⊆ ann(B), ann(C), and hence,
ann(B ∪ C) ⊆ ann(B) ∩ ann(C).

Conversely, if x ∈ ann(B) ∩ ann(C), then (x ∗ b) ∗ b = 0, ∀ b ∈ B and (x ∗ c) ∗ c = 0, ∀ b ∈ C.
For any a ∈ B ∪ C ⇒ a ∈ B or a ∈ C, and hence, (x ∗ a) ∗ a = 0 ∀ a ∈ B ∪ C, we have x ∈ ann(B ∪ C)
implies ann(B) ∩ ann(C) ⊆ ann(B ∪ C).

Therefore, ann(B ∪ C) = ann(B) ∩ ann(C).
(3) We have B ⊃ B∩C, C ⊃ B∩C, so from (1), ann(B) ⊂ ann(B∩C) and ann(C) ⊂ ann(B∩C)⇒

ann(B) ∪ ann(C) ⊆ ann(B ∩ C).

Lemma 4. If B is a non-empty subset of A, then ann(B) =
⋂

b∈B
ann(b).

Proof. We have that B =
⋃

b∈B
{b}, so by Lemma 3 (2):

ann(B) = ann{
⋃

b∈B

{b}} =
⋂

b∈B

ann(b).

Definition 6. Define a relation ∼ on A as x ∼ y⇐⇒ ann(x) = ann(y) ∀ x, y ∈ A.

From the above definition, we obtained the following straightforward result.

Lemma 5. The relation forms an equivalence relation on UP-algebra A.

3. Graphs of Commutative UP-Algebras

We shall introduce the graph and subgraph of UP-algebras A, as well as the graph and subgraph of
equivalence classes of A. The set (G, V, E) represents the graph of A, whereas the set V(G) represents
the set of vertices of G and E(G) the set of edges. Graph G is said to be connected if there is a path
between any two vertices, otherwise G is said to be disconnected. Further, G is said to be a complete
graph if every two distinct vertices form exactly one edge. Graph G is said to be bipartite if its vertex
set V(G) can be partitioned into disjoint subsets V1 and V2 such that every edge of G joins a vertex
of V1 with a vertex of V2. A graph G is said to be a complete bipartite graph if every vertex in one
bipartition subset is connected to every vertex in the other bipartition subset. The distance, d(a, b)
represents the length of the shortest path from the vertices a to b. If there is no such path between a
and b that forms the shortest path, then it is defined by d(a, b) = ∞. The diameter of graph G is written
as diam(G) = max{d(a, b) : a, b ∈ V(G)}.

We say that the diameter of G is zero if there is only one vertex in G. A connected graph with
more than one vertex has a diameter of one if and only if each pair of distinct vertices forms an edge;
such a graph is called a complete graph. The neighborhood of a vertex a ∈ G is the set of the vertices
in G adjacent to a. In other words, N(a) = {b ∈ V(G) : a− b ∈ E(G)}. Later, we will see that, if a ∈ A,
then N(a) = ann(a), ∀ a 6= 0.

For terminologies related to graphs and various examples, one can refer to [22,23]. A graph H
is called a subgraph of G if V(H) ⊆ V(G) and E(H) ⊆ E(G). Any two graphs G1 and G2 are said to
be isomorphic if there is a bijective mapping f : V(G1) → V(G2) in such a way that a− b ∈ E(G1),
then f (a)− f (b) ∈ E(G2); otherwise, graphs are called non-isomorphic. A fan graph Fn is a path Pn−1 ∪
v0 where v0 is an extra vertex connected to all vertices of the path Pn−1, where Pn−1 = {v1, v2, . . . vn−1}.

Definition 7. We associate a graph G(A) corresponding to a commutative UP-algebra A, which is an
undirected graph whose vertices are the elements of A and two distinct elements a, b ∈ A are adjacent if
and only if a4 b = 0. A graph with this condition is said to be a UP-graph.

Theorem 2. The graph G(A) is a connected graph with diam(G(A)) ≤ 3.
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Proof. Let a, b ∈ A be any two distinct vertices of the graph G(A). Then, we have the following
two cases.

Case I: a4 b = 0⇒ d(a, b) = 1.
Case II: a4 b 6= 0. Then, there exists c, d ∈ A − {a, b} with c4 a = d4 b = 0. If c = d,

then a − c − b will form a path of length two; and hence, d(a, b) = 2. If c 6= d and c4 d = 0,
then a− c− d− b is a path of length three, and hence, d(a, b) ≤ 3. In case c4 d 6= 0, then a4 (c4 d) = 0,
b4 (c4 d) = 0; thus a− c4 d− b = 0 will be a path of length two, so d(a, b) = 2. In all these cases,
diam(G(A)) ≤ 3. From the above situations, there exists a path between any two distinct elements in
A, and so, G(A) is connected.

Example 8. Let A = {0, 1, 2, 3} be a set in which ∗ is defined by the following Cayley table:

∗ 0 1 2 3

0 0 1 2 3
1 0 0 1 3
2 0 0 0 3
3 0 1 2 0

By Algorithm 1, given later, it is easy to observe that (A, ∗, 0) is a commutative UP-algebra.
By considering vertices V(A) = {0, 1, 2, 3}, the graph of A is given below in Figure 1:
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Algorithm 1: Algorithm for UP-algebras.
Input (A: set, ∗: binary operations)
Output (“A is UP-algebra or not”)
begin

if A = ∅ then
go to (1.);

end
if 0 6∈ A then

go to (1.);
end
Stop := false;
i := 1;
while i ≤ |A| and not (Stop) do

if ai ∗ ai 6= 0 then
Stop := true;

end
j := 1;
while j ≤ |A| and not (Stop) do

if ((bj ∗ ai) ∗ ai) 6= 0 then
Stop : = true;

end
K := 1
while k ≤ |A| and not (Stop) do

if (ai ∗ bj) ∗ [(ck ∗ ai) ∗ (ck ∗ bj)] 6= 0 then
Stop : = true;

end
end

end
end
if Stop then

(1.) Output (“A is not a UP-algebra”)
else

Output (“A is a UP-algebra”)
end

end
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4. Graph of Equivalence Classes of a Commutative UP-Algebra A

We can easily construct the graph GE(A) of equivalence classes of A by using equivalence relation,
as for any a, b ∈ A, a ∼ b⇐⇒ ann(a) = ann(b). Therefore, if v1 ∼ v2 and v14 b = 0⇒ b ∈ ann(v1) =

ann(v2), hence v24 b = 0. We define equivalence classes of a as [a] = { f ∈ A : ann( f ) = ann(a)}.

Lemma 6. Let {[a] : a ∈ A} be a set of equivalence classes of A, where [a] = { f ∈ A : ann( f ) = ann(a)}.
Then, [a]4 [b] = [a4 b].

Proof. We have that ann(a) ⊆ ann(a4 b), ann(b) ⊆ ann(a4 b), so [a4 b] ⊆ [a], [b]. Next, we claim
that [a]4 [b] ⊆ [a4 b]. Let [t] ⊆ [a], [b]. Then, ann(a) ⊆ ann(t), ann(b) ⊆ ann(t). Hence, we claim
that ann(a4 b) ⊆ ann(t). If f ∈ ann(a4 b), then f 4 a ∈ ann(b) ⊆ ann(t) ⇒ f 4 a4 t = 0; i.e.,
f 4 t ∈ ann(a) ⊆ ann(t). Hence, f 4 t = 0; That is, f ∈ ann(t). Then, ann(a4 b) ⊆ ann(t). Therefore,
[t] ⊆ [a4 b] and [a], [b] ⊆ [a4 b]. Hence [a]4 [b] = [a4 b].

Definition 8. Graph GE(A) formed by equivalence classes of A is called simple whose vertices are the elements
of equivalence class {[a]; a ∈ A}, and two distinct classes [a], [b] are adjacent in: GE A⇐⇒ [a]4 [b] = {0}.

Example 9. Let A = {0, 1, 2, 3, 4, 5} be a set in which ∗ is defined by the following Cayley table:

∗ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 0 0 2 3 2 3
2 0 1 0 2 1 4
3 0 1 0 0 1 1
4 0 0 0 2 0 2
5 0 0 0 0 0 0

We find by Algorithm 1 that A = (A; ∗, 0) is a commutative UP-algebra. Further, the
graph of A whose set of vertices and edges are defined by V(A) = {0, 1, 2, 3, 4, 5}, E(A) =

{{0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {1, 2}, {1, 3}} and VE(A) = {[0], [1], [2], [4]} since ann(0) = A,
ann(1) = {0, 2, 3} ann(2) = ann(3) = {0, 1}, ann(4) = ann(5) = {0}, then E(GE(A)) =

{{[0], [1]}, {[0], [2]}, {[0], [4]}, {[1], [2]}}. The given Figure 2 shows the graph of G(A) and GE(A).
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Lemma 7. The following are true for GE(A) in a UP-algebra A :

(1) GE(A) is a subgraph of G(A);
(2) If N([0]) = A− {0}, ∀a ∈ A, then G(A) is a star graph.

Proof. It is straightforward.

Theorem 3. Let GE(A) be the graph of equivalence classes of A. Then, for any distinct vertices [a], [b] ∈ GE(A),
if [a] and [b] are connected by an edge, then ann(a) and ann(b) become distinct UP-annihilator ideals of A.

Proof. We consider ann(a) = ann(b), so a ∼ b. Hence, [a] = [b], which is a contradiction. That is, ann(a)
and ann(b) are distinct UP-annihilator ideals of A.

The converse of above Theorem 3 is not true. In the above Example 9, it is easy to find that vertices
[20,21] are distinct UP-annihilators, but there is no edge between them.

Theorem 4. If G(A) is complete or fan graph, then G(A) ∼= GE(A).

Proof. Consider V(G(A)) = {v1, v2, v3, . . . vn}. Here, if G(A) is the complete graph, then every pair
of vertices of G(A) is adjacent. As a result, we get that:

N(v1) = {v2, v3, . . . vi} for i = 2, 3, 4, . . . n. N(v2) = {v1, v3, . . . vi}, for i = 1, 3, 4, . . . n.

and N(vn) = {v1, v2, . . . vn−1}, for i = 1, 3, 4, . . . n. Therefore, we get that ann(vi) 6= ann(vj) for all
i, j ∈ {1, 2, 3, . . . , n} =⇒, every vertex of G(A) is an equivalence class of G(A), and so, the vertices of
GE(A) are distinct and equal to the same number of vertices of G(A); thus, there exists an isomorphic
map f : G(A) −→ GE(A) such that f (vi) = [vi] for each i ∈ {1, 2, 3, . . . , n} and the mapping of edges
f : E(G(A)) −→ E(GE(A)), which maps the edges f : E(G(A)) −→ E(GE(A)), which map the edge
vi − vj in E(G(A)) to the edge [vi]− [vj] in E(GE(A)), which is a well-defined bijection, so G(A) is
complete. Therefore, G(A) is isomorphic to GE(A).

Next, to show that if G(A) is a fan graph, then G(A) is isomorphic to GE(A), if we consider that
G(A) is a fan graph, then G(A) consists of a path Pn−1 = {v1, v2, . . . vn−1} and a vertex v0 such that v0

is connected to all vertices of the path Pn−1. Clearly,

N(v0) = {v1, v2, . . . vn−1}, N(v1) = {v0, v2}, N(v2) = {v0, v1, v3} . . . N(vn) = {v0, vn−1}.
Therefore, ann(vi) 6= ann(vj) for all i, j ∈ {0, 1, 2, 3, . . . , n− 1}. Therefore, the vertices of GE(A)

are distinct, and there is the same number of vertices of G(A). Thus, finally, there exists an isomorphic
map f : G(A) −→ GE(A) satisfying f (vi) = [vi] for each i ∈ {1, 2, 3, . . . n}, and the mapping of edge
f : E(G(A)) −→ E(GE(A)), which maps the edge vi − vj in G(A) to the edge [vi]− [vj] in GE(A),
which is a well-defined bijection, hence showing that G(A) ∼= GE(A).

Theorem 5. If G(A) is complete bipartite graph, then GE(A) is an edge.

Proof. We suppose that G(A) is complete bipartite, whose vertex set is V(G(A)) =

{v1, v2, . . . vk, vk+1 . . . vr}. As G(A) is complete bipartite, so we can split the vertices of G(A) into
two parts, say V1 = {v1, v2, v3, . . . , vk} and V2 = {vk+1, . . . vr}. Therefore, we have E(G(A)) =

{v1 − vk+1, v1 − vk+2, . . . , v1 − vr, v2 − vk+1, . . . , v2 − vr, . . . , vk − vk+1, . . . , vk − vr}.
Therefore, N(v1) = N(v2) = . . . = N(vk) = {vk+1, vk+2, . . . , vr} and N(vk+1) = N(vk+2) =

. . . = N(vr) = {v1, v2, . . . , vk}, which implies that there are two distinct equivalence classes [v1] and
[vk+1] in GE(A), which are adjacent. Hence, GE(A) is an edge.

Lemma 8. Let G1 and G2 be two graphs of commutative UP-algebra and G1
∼= G2. For a ∈ V(G1), b ∈ V(G2)

if f (a) = b, then f (N(a)) = N(b).
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Proof. It is straightforward.

Theorem 6. If G(A) ∼= G(B) for corresponding to commutative UP-algebras A and B, then GE(A) ∼= GE(B).

Proof. Suppose that V(G(A)) = {v1, v2, v3, . . . vn} and V(G(B)) = {u1, u2, u3, . . . un} such that there
exists an isomorphism f : G(A) −→ G(B) satisfying f (vi) = ui for each i = {1, 2, 3, . . . n}. Therefore,
by Lemma 8, f (N(ui)) = N(ui) for each i, so f (ann(vi)) = ann(ui), and its edge mapping f :
E(GE(A)) −→ E(GE(B)), which maps the edge [vi]− [vj] in GE(A) to the edge [ui]− [uj] in GE(B), is
a well-defined bijective map. Thus, GE(A) ∼= GE(B).

The converse is not true, as is clear from the following example, where GE(A) ∼= GE(B)
corresponding to two commutative UP-algebras A and B, but G(A) 6∼= G(B).

Example 10. (a) Let A = {0, a, b, c, d} be a set in which ∗ is defined by the following Cayley table:

∗ 0 a b c d

0 0 a b c d
a 0 0 a c d
b 0 0 0 c d
c 0 a b 0 d
d 0 a b c 0

By Algorithm 1, it is clear that (A; ∗, 0) is a commutative UP-algebra. The corresponding graphs associated
with A are given below in Figure 3a,b.

0 d

a

cb

(a)

[0]

[d]

[c]

[a]

(b)

Figure 3. (a) Graph of G(A); (b) graph of GE(A).

(b). Let B = {0, a, b, c}, then by Algorithm 1, it is clear that (B; ∗, 0) is a commutative UP-algebra under
the given Cayley table:

∗ 0 a b c

0 0 a b c
a 0 0 b c
b 0 a 0 c
c 0 a b 0

The graphs G(B) and GE(B) are shown below in Figure 4a,b:
Clearly, the graphs GE(A) ∼= GE(B), whereas G(A) 6∼= G(B).
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0

b

a

c

(a)

[0]

[b]

[a]

[c]

(b)

Figure 4. (a) Graph of G(B); (b) graph of GE(B).

5. Graph Folding

In this section, we shall discuss the graph folding of a graph of a commutative UP-algebra.

Definition 9. [24] Let G1 and G2 be two graphs and F : G1 −→ G2 be a continuous function. Then, F is
called a graph map, if:

(1) For each vertex v ∈ V(G1), F(v) is a vertex in V(G2);
(2) For each edge e ∈ E(G1), dim(F(e)) ≤ dim(e).

A graph map F : G1 −→ G2 is called a graph folding if and only if F maps vertices to vertices and
edges to edges. In other words, for v ∈ V(G1), we have F(v) ∈ V(G2) and for e ∈ E(G1), F(e) ∈ E(G2).
The graph folding is called non-trivial if and only if |V(F(G1))| ≤ |V(G1)| and |E(F(G1)| ≤ |E(G1)|.
Graph folding between two graphs G1 and G2 is denoted by η(G1, G2), and for a simple graph G1, it is
denoted by η(G1).

Example 11. Let A = {0, 1, 2, 3} with ∗ as an operation defined by the Cayley table:

∗ 0 1 2 3

0 0 1 2 3
1 0 0 1 2
2 0 0 0 1
3 0 0 0 0

We note here that (A; ∗, 0) is a commutative UP-algebra by Algorithm 1. For a graph of A, we
have the set of vertices as V(A) = {0, 1, 2, 3} and the set of edges as,

E(A) = {e1 = {0, 1}, e2 = {0, 2}, e3 = {0, 3}}.

The graph G(A) is a complete bipartite and star graph. It is shown below in Figure 5.

0

1

2

3

e1

e2

e3

Figure 5. Graph of G(A).
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Define a graph map F : G(A) −→ G(A) by F(0) = 0, F(1) = F(2) = F(3) = 1 and
F(e1) = F(e2) = F(e3) = e1. Here, F is a graph folding satisfying F(G(A)) = G(A). The graph G(A)

is shown below in Figure 6.

0 1
e1

Figure 6. Graph of G(A).

Here, a complete bipartite or a star graph G(A) can be folded onto an edge. We have a theorem
based on the above statement.

Theorem 7. Any complete bipartite graph G(A) of A can be folded onto an edge.

Proof. Let G(A) be a complete bipartite graph of a commutative UP-algebra A with the
vertex set as V(G) = {v1, v2, v3, . . . vk, vk+1, . . . vr}. Since G(A) is a bipartite graph, we can
split vertex set V(G) into two sets. V1 = {v1, v2, . . . vk}, and V2 = {vk+1, . . . vr}. Since
each vertex of V1 is adjacent to each vertex of V2 only by one edge, therefore E(G(A)) =

{v1 − vk+1, v1 − vk+2, . . . , v1 − vr, v2 − vk+1, v2 − vk+2 . . . v2 − vr, . . . , vk − vk+1, vk − vk+2, . . . vk − vr}.
We define a graph folding map F : G(A)→ G(A) as,

F(vi) =

{
v1 if i = 1, 2, 3, . . . k

vk+1 if i = k + 1, k + 2, . . . r
.

Clearly, F(G(A)) is the edge v1 − vk+1.

The following corollary follows from Theorems 5 and 7.

Corollary 1. Let A be a commutative UP-algebra. If G(A) is the complete bipartite graph, then the graph
GE(A) and the graph folding of A are the same graphs.

6. Conclusions

In this paper, we have introduced the associated graph of UP-algebra and have studied its
algebraic properties. We have mainly taken two graphs G(A) and GE(A) as the graph of A and its
equivalence class. A number of results have been shown, for example if G(A) is complete and a fan
graph, then G(A) ∼= GE(A). Furthermore, if G(A) is complete bipartite graph, then GE(A) is an edge.
We have shown that if G(A) ∼= G(B) for any two UP-algebra A and B, then GE(A) ∼= GE(B), but its
converse is not true in general.

As a result, we can say that the same concepts can be studied in different types of logical algebras.
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