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Abstract: Shape optimization is a very time-consuming and expensive task, especially if experimental
tests need to be performed. To overcome the challenges of geometry optimization, the industry
is increasingly relying on numerical simulations. These kinds of problems typically involve the
interaction of three main applications: a solid modeler, a multi-physics solver, and an optimizer. In
this manuscript, we present a shape optimization work-flow entirely based on open-source tools; it is
fault tolerant and software agnostic, allows for asynchronous simulations, and has a high degree of
automation. To demonstrate the usability and flexibility of the proposed methodology, we tested it in
a practical case related to the naval industry, where we aimed at optimizing the shape of a bulbous
bow in order to minimize the hydrodynamic resistance. As design variables, we considered the
protrusion and immersion of the bulbous bow, and we used surrogate-based optimization. From the
results presented, a non-negligible resistance reduction is obtainable using the proposed work-flow
and optimization strategy.

Keywords: surrogate-based optimization; numerical simulations; shape morphing; bulbous bow;
open-source framework

1. Introduction

Engineering design and product development using shape optimization can be a very daunting
task, especially if the design approach is experimental, where cost and time constraints usually limit
the number of prototypes that are possible to construct and test. Moreover, it is required to have an
in-depth know-how of the problem being studied to choose which configurations to analyze. In this
view, the continuous development of numerical methods and the increase in computing performance
have suggested the use of simulation software able to model complex multi-physics problems and
optimize the design space, thereby reducing the costs related to prototypes, physical experiments, and
field/operational tests.

Proprietary numerical simulation tools allow very detailed analysis, but their use often requires
the acquisition of expensive licenses. An alternative to commercial software is the use of free and
open-source technology (e.g., GNU General Public License, BSD license, MIT license). This type of
software licensing model gives users the freedom to use, read, write, and redistribute the source code,
with no price tag attached. More importantly, open-source software has the same capabilities as their
commercial counterparts, and it is mature enough so that it can be used in the design and certification
process of new products.

With this in mind, we address in this manuscript the implementation of an open-source framework
for shape optimization. In particular, we focus our attention on fluid dynamics problems applied to
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ship design. Nevertheless, the same methodology can be used in any engineering field. In doing so,
essentially four tasks need to be addressed:

• How to efficiently and accurately simulate the physics involved.
• How to modify the geometry or mesh.
• How to search the optimal configuration.
• How to interface the applications involved in the optimization loop.

In the context of naval architecture design, the adoption of shape optimization using numerical
simulations is not new. The advantages of hull optimization and related devices optimization (such as
propellers and hydrofoils) have been demonstrated by several authors. Many design optimization
approaches have been used in the design of traditional propellers [1,2], unconventional propulsion
systems [3,4], appendages [5], and the optimization of the entire hull shape [6,7]. Recently, a lot of
development has been done on the design of unconventional vessels with special mission profiles,
from the standard mono-hull shapes [8,9], to unconventional multi-hulls [10,11], or hulls with special
shapes, such as the Small Waterplane Area Twin Hull or SWAT [12]. However, even if these design
methods have reached a satisfactory maturity level, the hull shape optimization is still confined to the
research level due to its high complexity.

One of the main drawbacks of shape optimization for complex industrial applications is the large
computational times required to get the outcomes. In naval architecture design (where we are mainly
interested in evaluating resistance and seakeeping, among other things), this is usually overcome by the
use of highly efficient low-fidelity or medium-fidelity methods, such as the boundary element methods
(BEM). However, such approaches are not able to predict the wave pattern generated by the ship, do
not include viscous effects, or neglect other nonlinear behaviors (which can be important in order to
obtain a proper performance prediction for certain ships). Even though successful applications with
low-fidelity methods have been previously reported in the literature [10], the adoption of high-fidelity
solvers (such as finite volume method or finite element method solvers) in the design loop can increase
the accuracy and reliability of the design process. In this field, many studies have been conducted, for
example, Serani et al. [13] successfully used a viscous solver for addressing the shape optimization of
a high-speed catamaran with excellent results; however, the computational cost in terms of CPU time
(for the whole optimization loop and each single simulation) and the complexity of the optimization
loop was too big to be implemented by a manufacturer (particularly small ones, which have limited
resources). In light of this, innovative optimization methods to simplify and speed up the entire
optimization process are under investigation, such as multi-level optimization [14], surrogate-based
optimization [15], proper orthogonal decomposition and dynamic mode decomposition [16], machine
learning for interactive design and fluid dynamics simulations [17], data-driven simulations and
optimization [18], and generative design [19].

In the shipbuilding industry, the bulbous bow shape is usually designed to reduce the ship
wave-making resistance. The hull drag resistance can be split into three main contributions: the
wave-making drag, the friction drag, and the wake drag. Depending on the ship speed, the contribution
of each component to the total resistance value can be drastically different. Considering the present
case, the wave-making component is one of the most important; therefore, its reduction by optimizing
the bulbous bow shape can give a not negligible contribution to the whole design (for example,
a reduction of some percentage of the fuel consumption). Following the guidelines proposed by
Kracht [20], the bulbous bow shape can be defined by six non-dimensional parameters. With the
goal of decreasing the computational cost by reducing the design space, and at the same time being
able to represent the bulbous bow shape without losing geometrical information, only two design
parameters are considered in this study. Nevertheless, the proposed approach can be extended to
more complex cases where, for instance, one is interested in having more local control of the bulbous
bow shape by using more design variables. Previous work addressing bulbous bow optimization
using computational fluid dynamics (CFD) can be found in References [21–25]. The aforementioned
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sources show the benefits of CFD optimization, but most of them fail in explaining the importance of
the application interfacing tool, automation of the loop, and real-time analytics.

Hereafter, we propose a vertical work-flow that could potentially simplify and automate the
design and optimization process. All the tools used in this work are open-source, and this translates
to cost savings, as no commercial licenses are used. To generate the domain mesh and to compute
the hydrodynamic resistance of the hull (including the bulbous bow), we used the multi-physics
solver OpenFOAM [26] (version 5.0). To create new geometry candidates, we used the free-form
deformation application MiMMO [27]. To reduce the number of optimization iterations and to get
an initial screening of the design space, we used surrogate-based optimization. The optimization
algorithms and the code coupling interface is provided through the Dakota library [28] (version 6.7).
Finally, all the real-time data analytics, quantitative post-processing, and data analytics were performed
using Python and bash scripting. Previous attempts in coupling OpenFOAM and Dakota to deal with
shape optimization problems are described in References [29–36], but none of them have addressed
how to interface different applications in an optimization loop (besides OpenFOAM and Dakota),
how to deal with concurrent simulations, work-flow automation, fault-tolerant loops, real-time data
analytics, and the importance of knowledge extraction. We aim at coupling all tools needed for shape
optimization studies in a streamlined work-flow, with a high degree of automation and flexibility,
and using efficient optimization techniques that allow engineers to explore, exploit, and optimize the
design space from a limited number of training observations.

2. Description of the Optimization Framework and Optimization Strategy

In a typical shape optimization study, many applications can live together (e.g., solid modeler,
shape morpher, mesh generator, multi-physics solver, optimizer, knowledge extraction tools, coupling
utilities, and so on), making the optimization loop very difficult to set up, monitor, and control.
Moreover, the optimization loop must be fault tolerant, that is, in the event of an unexpected failure of
the system (hardware or software), the user should be able to restart from a previously saved state. The
optimizer should also be flexible, in the sense that it should provide a variety of optimization methods,
design of experiment techniques, and code coupling interfaces to different simulation software and
programming languages. Finally, to reduce the long execution times inherent to computational
fluid dynamics (CFD) optimization studies, the optimization loop should be able to work in parallel
and deploy many simulations at the same time. Furthermore, everything should be done without
overwhelming the user. We aim at addressing the findings and recommendations reported in the
NASA contractor report “CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences”
[37], where the authors state: “A single engineer/scientist must be able to conceive, create, analyze, and
interpret a large ensemble of related simulations in a time-critical period (e.g., 24 hours), without individually
managing each simulation, to a pre-specified level of accuracy”.

In this work, we successfully coupled many applications used in traditional CFD work-flows
to efficiently conduct general CFD optimization studies. We used the library Dakota [28,38] as the
optimizer and application interface tool. The Dakota library provides a flexible and extensible interface
between simulation codes and iterative analysis methods. This library contains many gradient-based
methods and derivative-free methods for design optimization studies, uncertainty quantification, and
parameter estimation capabilities. Dakota also contains many design of experiment methods to conduct
sensitivity studies. With Dakota, the user is not obliged to use the optimization and space exploration
methods implemented on it: one can easily interface Dakota with a third-party optimization library.
The library also offers restart capabilities and solution monitoring. Most important, it is software
neutral, in the sense that it can interface any application that it is able to parse input/output files via a
command line interface.

The optimization loop is illustrated in Figure 1. In this work-flow, the starting point is the initial
geometry which is manipulated with a free-form deformation tool to generate new shapes. The
MiMMO library [27], which uses radial basis functions (RBF) to shape the geometry [39–42], was used
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as geometry manipulation tool. With MiMMO, the user is only asked to define a series of control
points, these control points are then moved in the design space, and together with the RBF function,
they generate a smooth displacement field that represents the new geometry. To have more control
over the deformation, the user can define a deformable region using a control box. Then, the continuity
between the region to be deformed and the area labeled as undeformed is ensured by using continuous
level set functions. In Figure 2, we illustrate the original geometry (left image), where we highlight the
control points and the selection box used to deform the base geometry. In this figure (right image), we
also show two deformed geometries. In the figure depicted, we only used one control point to deform
the geometry, but more control points can be used with no problem. It is worth mentioning that in
this framework, we only take one initial geometry. Then, starting from this geometry, we can generate
many variations of it. In general, the shape morphing task is computationally inexpensive. We would
like to emphasize that, at this point, any geometry manipulation tool can be used; the main reasons
in using MiMMO are that the input files used by this library can be easily parameterized and it also
offers mesh morphing capabilities (which are not discussed in this manuscript).

Shape morpher

(MiMMO)

Mesher

(OpenFOAM)

Solver

(OpenFOAM)

Optimizer

(DAKOTA)

Mesh quality

(OpenFOAM and VTK)

Data collection

(python and bash)

Not satisfactory

Automatic postprocessing

(python and bash)

Single input geometry

Figure 1. Optimization loop. Notice that it only takes one single geometry. During the whole
optimization loop, data are continuously collected.

X

Y

Z

(0 0 0)

Figure 2. Left: undeformed geometry. The green sphere represents the control point used to deform
the geometry; this control point can move in the plane XZ. The surface region within the selection box
is free to deform. Right: two deformed geometries.
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After generating the input geometry, we can move to the meshing phase. To mesh the
computational domain, we used the meshing tools distributed with the open-source OpenFOAM
library [26,43], namely, blockMesh and snappyHexMesh. These tools generate high-quality
hexahedral-dominant meshes and can be easily parameterized. The whole meshing process is fully
automatic and, to some extent, fault tolerant. During the meshing stage, we always monitored the
quality of the far-field mesh, the quality of the inflation layers close to the body, and the transition
between regions with different cell sizes. In the case of mesh quality problems (such as high
non-orthogonality, high skewness, too aggressive expansion ratios between cells, or discontinuous
inflation layers in critical areas), the mesh was automatically recomputed using more robust predefined
parameters, which generates better meshes but at the cost of a higher cell count. The meshing
parameters were determined using the original geometry, and two additional geometries representing
the worst case scenarios (highly deformed bulbs). The possibility of using the meshing tools in parallel
and concurrently allowed us to obtain fast outcomes.

All the numerical simulations were conducted using the open-source OpenFOAM library [26,43],
which is a multi-physics solver based on the cell-centered finite volume method. This library has been
extensively validated, counts with a wide community, is highly scalable in parallel architectures, and
the simulation setup can be easily parameterized. As soon as the optimization loop was started, the
simulations did not require continuous user supervision. Several quantities of interest (QoI) were
sampled during each computation, and in the case of anomalies (such as high oscillations in the forces,
unbounded quantities, or mass imbalance), the simulation parameters were automatically changed
to a more robust and stable discretization scheme. The default and modified solver parameters were
determined after conducting an extensive validation of the solver (as explained in Section 4). All the
simulations were run in parallel, and as the optimization method used did not require the computation
of gradients, we were able to run many simulations concurrently. The whole framework was deployed
in an out-of-the-box workstation, with 16 cores and 128 GB of RAM. As all the tools used require only
publicly available compilers and libraries, the same framework can be easily deployed in distributed
memory HPC architectures.

At this point, we need to define the optimization strategy. One major obstacle to the use of
optimization in CFD is the long CPU times of the simulations and, depending on the method used,
the need for computing gradients or the need for running a large number of simulations to obtain
the design space sensitivities. Therefore, due to the long computational times and the lack of analytic
gradients, optimization in CFD is a slow iterative-converging task. With this in mind, we need
to choose an optimization method that is reliable, computationally affordable, and will meet our
deadlines.

Gradient-based methods have good converging rates, but they require the computation of the
gradients (and depending o the method used, they might require the computation of the Hessians),
and in the presence of a large design space these quantities can be very expensive to compute.
Gradient-based methods also require some basic knowledge of the problem, as well as some input
parameters (e.g., starting point in the parameter space, bounds of the design variables, iterative
and gradients tolerances, how to compute the derivatives, and so on), and they do not give much
information regarding the global behavior of the design space. Additionally, they do not guarantee the
convergence to a global optimal value. On the other hand, global derivative-free methods have slow
convergence rates, but they are more likely to converge to the global optimal value than local methods.
Also, since they do not require the computation of the gradients, they behave quite well in the presence
of numerical noise. However, to reach the optimal value, they need to perform a large number of
function evaluations, which can impose serious time limitations, especially if we are running unsteady
CFD simulations.

Another approach to conduct optimization is the so-called surrogate-based optimization (SBO),
which is the method used in this study. The SBO method consists of constructing a mathematical
model (also known as a surrogate, response surface, meta-model, emulator) from a limited number
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of observations (CFD simulations, in our case). After building the surrogate, the optimization can be
performed at this level. Furthermore, during the design space exploration process, SBO provides a
better global understanding of the problem, allowing the use of exploratory data analysis techniques
and machine learning methods to get more insight, discover hidden patterns, and detect anomalies in
the design space. In Figure 3, we illustrate the basic work-flow of the SBO method. The work-flow
is rather simple; we start by conducting a limited number of simulations (design space exploration).
After gathering the information at the design points, we can use those observations to construct the
mathematical model or surrogate. At this point, we can validate the surrogate by comparing the values
obtained from the high-fidelity simulations against the predicted values using the surrogate, or we can
refine the surrogate by adding more training points. After building, validating, and improving the
meta-model, we can use any optimization method to find the optimal value. Working at the surrogate
level is orders of magnitude faster than working at the high-fidelity level [44].

It is important to mention that more sophisticated SBO techniques exist, such as efficient global
optimization (EGO), gradient-enhanced meta-models, and adaptive sampling response surfaces [38,
44–47]. We did not use any of those state-of-the-art SBO approaches, because we were more interested
in showing that complicated code coupling and complex optimization studies using traditional
meta-models methods could be achieved using the Dakota library. However, the library gives the
possibility to use EGO and gradient-enhanced Kriging emulators; if these methods are not enough, the
user can add an external library to the optimization loop.

As already stated, surrogate models are inexpensive approximate models that are intended to
capture the salient features of expensive high-fidelity experiments or observations. To construct the
surrogate or meta-model, many methods are available, just to name a few: polynomial regression,
Kriging interpolation, radial basis functions, neural networks, adaptive splines, and so on. In this work,
we used Kriging interpolation, which is an interpolation method for which the interpolated values
are modeled by a Gaussian process [44,48]. The implementation details of the Kriging interpolation
method used in this work (universal Kriging), can be found in References [38,44,45,48–52]. In the
Kriging interpolation method, the meta-model is forced to pass by all the observations, and in the
presence of noise in the response, the surrogate can be smoothed. Kriging interpolation is well fitted
for engineering design optimization problems which usually are nonlinear, multivariate, multi-modal,
and noisy.
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Figure 3. Surrogate-based optimization work-flow.

To get a better idea of how the SBO method works, let us use a toy function to go through every
step of the work-flow. We will use the Branin function, which is defined as follows:

f (x, y) =
(

y − 5.1
4π2 x2 +

5
π

x − 6
)2

+ 10
(

1 − 1
8π

)
cos(x) + 10

s.t. − 5 ≤ x ≤ 10

s.t. 0 ≤ y ≤ 15

(1)

this equation with the given bounds has three minima, located at

(x, y) = (−π, 12.275), (π, 2.275), (9.42478, 2.475) (2)

where the minimum value in the three locations is equal to

f (x, y) = 0.397887 (3)

The Branin function (which is highly nonlinear and multi-modal) can easily represent the output
of a CFD study. In SBO, the first step consists of exploring the design space in a precise and economical
way. In Figure 4, we present the output of two sampling methods, namely, a full-factorial experiment
and a space-filling experiment using Latin hypercube sampling (LHS) [44]. In each point illustrated in
Figure 4 (bottom images), high-fidelity function evaluations were computed.
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The next step consists of generating the surrogate model using the information gathered from
the sampling plan. In Figure 4, we show the surrogates for both sampling experiments and the
analytical solution. As it can be seen, there is no discernible difference between both models and the
analytical solution, and this is an indication that the models are accurate. However, to construct a
well-fitted surrogate, the full-factorial experiment needs more observation points (especially in high
multi-dimensional cases, where the number of experiments increases to the power of the number of
design variables), and this translates into higher computing times. It is clear that the quality of the
surrogate depends on the number of observations; therefore, if at this point we observe differences
between the meta-model and the analytical solution, we can add new points and compute a better
surrogate. In SBO, the model can be trained as we gather the data, and we can even use multi-fidelity
models and a mixture of physical experiments and computational experiments to construct the
surrogate. Finally, after constructing the meta-model, we can conduct the optimization study at the
surrogate level using any optimization method.

Figure 4. Top: analytical solution. Bottom-left: surrogate model using a full-factorial experiment with
64 training points. Bottom-right: surrogate model using a space-filling experiment with 30 training
points (Latin hypercube sampling, LHS).

To demonstrate the advantages of using SBO, we compared its performance against the
performance of a gradient-based method (method of feasible directions [53]), and a derivative-free
method (single-objective genetic algorithm or SOGA [54]). All methods used were able to find the
three minima; the main difference was the number of iterations used and the information provided
by the user to start the optimization algorithm. The gradient-based method used 217 high-fidelity
function evaluations, where we used a multi-start technique in which multiple start locations were
given (this was needed in order to find the multiple minima), and we computed the gradients using
forward differences. The derivative-free method used 1200 high-fidelity iterations and did not require
any input information from the user (we used the recommended default parameters). Finally, the SBO
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method used 30 high-fidelity observations (space-filling experiment). These observations were used to
construct the meta-model, then, at the surrogate level, derivative-free and gradient-based methods
were used to find the minimum. The SBO method has the added value of showing information about
the global design space.

As a final example, let us use the high-dimensional Rosenbrock function to demonstrate the ability
of the SBO method in dealing with multivariate problems. The Rosenbrock function can be written in
general form as

f (x) =
d−1

∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
s.t. − 2 ≤ x ≤ 2

(4)

this equation with the given bounds has one global minimum, defined as follows:

f (x) = 0, at x = (1, ..., 1) (5)

To conduct the SBO study, we proceed in the same way as for the Branin function. At the
high-fidelity level, we used two gradient-based methods, namely, the method of feasible directions [53]
and the quasi-Newton BFGS update method [55]. Both methods converged to the global minimum,
but the BFGS method showed a better convergence rate. At the surrogate level we used three methods:
two gradient-based methods (same methods as in the high-fidelity study) and one derivative-free
method, namely, the DIRECT method (DIvide a hyperRECTangle [56]). The surrogate was constructed
using 500 observations, which roughly correspond to the same number of function evaluations in the
best case of the high-fidelity optimization studies (refer to Table 1). It is noteworthy that as we have a
mathematical representation of the design space, the gradients were computed analytically during the
SBO study.

The outcome of this SBO study is presented in Table 1. As it can be seen in this table, at the
surrogate level, we get values close to the global minimum; but, due to a noisy and under-fitted
surrogate, the optimal value is under-predicted. We can also observe that the values of the design
variables 4–6 are a little bit over-predicted, but in general they follow the trend of the high-fidelity
values. One way to improve the results could be to construct a better surrogate by using a larger
number of observations. However, as the number of observations will be much higher than the number
of function evaluations in the best case of the high-fidelity optimization studies, the use of SBO is
not very attractive, especially if the computation of the QoI is expensive. Another way to improve
the surrogate is by using infilling, which consists of adding new points to the training set and then
reconstructing the surrogate. For example, we can add a new point in the location of the predicted
optimal value and a few new points in areas where high nonlinearities are observed or are close to the
optimal value, recompute the surrogate, and find the new optimal value. It is worth mentioning that
we also used 200 experiments to conduct the SBO study, but due to the coarseness of the space-filling
sampling, the surrogate was under-fitted; therefore, the optimization studies failed to converge or give
similar trends to the ones shown in Table 1.
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Table 1. Outcome of the optimization study of the high-dimensional Rosenbrock function. In the
table, observations refer to the number of experiments used to construct the surrogate. Note that the
same starting point (x = 0) was used for all the design variables in the gradient-based optimization
studies. In the table, DV stands for design variable, HF stands for high-fidelity simulations, SBO
stands for surrogate-based optimization, MFD stands for method of feasible directions, QN stands for
quasi-Newton BFGS method, and DR stands for division of rectangles derivative-free method.

- HF-MFD HF-QN SBO-MFD SBO-QN SBO-DR

DV-1 0.999 0.999 0.958 0.958 0.993

DV-2 0.999 0.999 0.992 0.994 1.007

DV-3 0.998 0.999 1.004 0.999 0.998

DV-4 0.997 0.998 1.115 1.091 1.037

DV-5 0.995 0.996 1.208 1.189 1.058

DV-6 0.989 0.992 1.317 1.251 1.108

QoI 0.00003 0.00002 −48 −48 −44

Function Evaluations 1238 420 - - -

Observations - - 500 500 500

Another advantage of SBO is that we can use exploratory data analysis and machine learning
techniques to interrogate the data obtained during the design space exploration stage. These techniques
can be used for knowledge extraction and anomaly detection. In Figure 5, we show one of the many
plots that can be used to visualize the data [57,58]. This plot is called a scatter matrix, and in one
single illustration, it shows the correlation information, the data distribution (using histograms and
scatterplots), and regression models of the responses of the QoI. The reader should be aware that,
in the context of design space exploration, exploratory data analysis and machine learning methods
should not be used with biased data, e.g., data coming from a gradient-based or derivative-free
optimization study.

By conducting a quick inspection of the scatterplot matrix displayed in Figure 5, we can see
evidence that the data is distributed uniformly in the design space (meaning that the sampling plan
is unbiased), and this is evidenced by the diagonal of the plot. By looking at the scatterplot of the
experiments (lower triangular part of the matrix), we see the distribution of the data in the design
space. If at this point we observe regions in the design space that remain unexplored, we can simply
add new training points to cover those areas. In the case of outliers (anomalies), we can remove them
from the dataset with no major inconvenience. However, we should be aware that outliers are telling
us something, so it is a good idea to investigate the cause and effect of the outliers. In the upper
triangular part of the plot, the correlation information is shown (Spearman correlation, in this case).
This information tells us how correlated or uncorrelated the data are. For example, by looking at the
last row of the plot that shows the response of the QoI, if we see a strong correlation between two
variables, it is clear that this variable cannot be excluded from the study. The opposite is also true, that
is, uncorrelated variables can be excluded from the study; therefore, the complexity of the problem is
reduced. One should be aware that for data exclusion using correlation information, we should use the
response of the QoI and not the design space distribution of the sampling plan. For a well-designed
experiment, the design space distribution is uncorrelated. Additionally, the last row of the scatter
matrix plot also shows the regression model (a quadratic model, in this case). As can be seen, this
simple plot can be used to gather a deep understanding of the problem.

To close the optimization framework discussion, we would like to stress the fact that the
optimization loop implemented is fault tolerant, so in the event of hardware or software failure,
the optimization task can be restarted from the last saved state. Moreover, during the optimization
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loop, all the data monitored are made available immediately to the user, even when running multiple
simulations at the same time (real-time data analytics). Therefore, anomalies and trends can be detected
in real time, and corrections/decisions can be made.
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Figure 5. Scatterplot matrix of the high-dimensional Rosenbrock function space exploration study
(d = 6). The Spearman correlation is shown in the upper triangular part of the matrix. In the diagonal
of the matrix, the histograms showing the data distribution are displayed. In the lower triangular part
of the matrix, the data distribution is shown using scatterplots. In the last row of the matrix plot, the
response of the quantity of interest (QoI) in function of the design variables is illustrated, together with
a quadratic regression model.

3. Description of the CFD Model

All the numerical simulations described in this manuscript were conducted using the open-source
OpenFOAM library [26,43] (version 5.0). This toolbox is based on the cell-centered finite volume
method, and consists of a series of numerical discretization schemes, linear systems solvers,
velocity–pressure coupling methods, and physical models that can be used to solve multi-physics
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problems. To find the approximated numerical solution of the governing equations, and to deal with
the physics of segregated multi-phase flows, we used the solver interFoam, which is distributed with
OpenFOAM. This solver uses the volume of fluid (VoF) phase-fraction method to resolve the interface
between phases and has extensive turbulence modeling capabilities. In this work, we used the k − ω

SST turbulence model, as described in Reference [59].

3.1. Reference Geometry and Modeling Assumptions

The baseline geometry used in this study was provided by the ship manufacturer Fincantieri
and is illustrated in Figure 6. The model is scaled 1/20 in reference to the full-scale prototype, and
experimental data from towing tank tests were also provided. Due to the intellectual property of
Fincantieri on the prototype and the experimental data, this information cannot be disclosed. Therefore,
all the reference values are presented using non-dimensional numbers.

Figure 6. The baseline geometry.

During the experimental campaign, the following Froude number values were used: 0.294, 0.312,
0.331, 0.349, 0.367, and 0.386. The Froude number is defined as follows:

Fr =
V√
gL

(6)

where V is the velocity, g is the gravity, and L is a reference length. Hereafter, we used the length
between perpendiculars or LPP (in naval design, LPP is defined as the distance measured along the
load waterline between the after and fore perpendiculars) as the reference length.

The setup of the towing tank tests allowed for the model to dynamically adjust its trim angle (or
pitch angle). Conversely, the simulations reported in this manuscript were performed with a fixed
trim condition. Even if this simplification can affect the accuracy of the force prediction, it can be
considered minor in the context of this optimization study. This is chiefly due to the fact that the bulb
shape modifications can be assumed to be uninfluential to the final dynamic trim. Furthermore, low
trim angle values are recorded in the experimental data. These values are less than two degrees for
the most critical case, that is, high Froude number (or off-design conditions). In addition, the use of a
rigid-body motion solver would have considerably increased the computational requirements and
CPU time.

Hereafter, we summarize the main assumptions used during this study:

1. All simulations were performed at model scale (1/20).
2. No propeller nor appendages were modeled (bare hull).
3. Only half of the hull was simulated (we used symmetry).
4. A fixed trim condition of zero degrees was imposed.
5. All the simulations were conducted in calm water conditions and no incoming waves.
6. The thermophysical properties of the working fluids are constant (refer to Table 2).
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7. The simulations were conducted at the same Froude number as in the towing tank experiments.

Table 2. Phases transport properties used in this study.

Phase Density ρ [
kg
m3 ] Kinematic Viscosity ν [m2

s ]

Water 998.3 1.02 × 10−6

Air 1.2 1.48 × 10−5

As we are conducting a bulbous bow optimization study, we must define the design variables.
In this study, we used the parameters proposed by Kracht [20]. Kracht defined six parameters to
characterize a bulbous bow, namely, length, depth, and breadth (all linear); the cross-section; and lateral
and volumetric parameters (which are nonlinear). Hereafter, the bulb geometry was parameterized
using the length parameter CLPR (or protrusion) and depth parameter CZB (or immersion). These
parameters are defined as follows (as illustrated in Figure 7):

CLPR =
LPR
LPP

, CZB =
ZB
TFT

, (7)

These two parameters were enough to deform the geometry, and as we only used two design
variables, the design space was greatly simplified. The choice of these two parameters (in reference
to Figure 7), was driven by the interest of only moving point B in the plane x-z, as recommended by
Fincantieri. This together with the suggested bounds (0.031 ≤ CLPR ≤ 0.131 and 0.283 ≤ CZB ≤ 1.038)
will ensure that the bulbous bow volume variations remain within the acceptable values, without the
need for introducing additional design variables and nonlinear constraints.

Base

F.P.

HB

LPR

≠PR =  
LPR

ABT (x)dx

TFT

_PR = 

Z
LP R

ABT(x)dx

≥

x

z

ZB

ABL B

BB

2

ABT

2

Figure 7. Sketch showing the characteristic lengths used to define the geometry parameters. Adapted
from Reference [20].
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3.2. Computational Domain and Boundary Conditions

The computational domain is aligned with the reference system and is made up of a rectangular
box in which half of the hull geometry was placed (as depicted in Figure 8). In the domain, the x-max
face represents the inlet (where air and water enter the domain at a given velocity), the x-min face is the
outlet (where air and water go out of the domain and the water level is maintained at the same level
of the inlet level), the y-max face is the symmetry plane, the y-min face is a lateral slip wall, the z-min
face is the bottom of the domain modeled as a slip wall, and the z-max face is the top of the domain,
which is defined as an opening where only the air phase is allowed to enter or exit the domain. The
inlet and outlet patches are located 2.5 × LPP and 6 × LPP away from the bow and stern. The top and
bottom faces are placed at 1 × LPP and 3 × LPP away from the sea level. The lateral face is placed at
5 × LPP away from the symmetry plane to avoid lateral reflection of the Kelvin waves. In general, the
boundaries were placed far enough of the hull surface so there are no significant gradients normal
to the boundaries or wave reflection. When setting the domain, we followed the practical guidelines
given in Reference [60].

X

Y

Z

WATER LINE (0 0 0)

X Y

Z

X
Y

Z

x-max

y-max

z-max

y-min

z-min

x-min

WATER SURFACE

HULL

Figure 8. Top: coordinate system. Bottom: computational domain and boundary faces.

The hull was modeled as a no-slip wall, where we imposed wall function boundary conditions for
the turbulence variables. The forces on the hull were computed by integrating the viscous and pressure
forces over the hull surface. Finally, all the simulations were started using uniform initial conditions
for both phases. In the domain, the water phase is located below the origin of the coordinates system,
whereas the air phase is located above the coordinate system origin. All the turbulence variables were
initialized following the guidelines given by Wilcox [59].

3.3. Numerical Schemes

Hereafter, we describe the numerical setup used with OpenFOAM. During this study, a robust,
stable, and high-resolution numerical scheme was used. The cell-centered values of the variables are
interpolated at the face locations using a second-order centered differences scheme for the diffusive
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terms. The convective terms are discretized by means of a second-order linear-upwind scheme, and
to prevent spurious oscillations, a multi-dimensional slope limiter was used. To resolve the interface
between the two phases, the second-order accurate bounded total variation diminishing (TVD) scheme
of van Leer was used. For computing the gradients at the cell centers, the least squares cell-based
reconstruction method was employed. The pressure–velocity coupling was achieved by means of the
pressure-based PISO method. For turbulence modeling, the κ − ω SST turbulence model with wall
functions was used [59].

As stated earlier, one of the biggest restrictions when conducting optimization studies in CFD is
the long simulation times, especially if unsteady simulations are involved. To overcome this hurdle,
we aimed at accelerating the solution of the governing equations by looking for steady-state solutions.
In this study, we used the local time-stepping (LTS) method. In this method, the governing equations
are integrated in time using the largest possible time step for each cell. As a result, the convergence to
the steady state is considerably accelerated; however, the transient solution is no longer time accurate.
The stability and accuracy of the method are driven by the local CFL number of each cell, which was
fixed to 0.1 during the initial iterations and then gradually increased until reaching a value of 0.9. To
avoid further instabilities due to large conservation errors caused by sudden changes in the time-step
of each cell, the local time-step was smoothed and damped across the domain.

4. Calibration and Validation of the Solver

The purpose of this section is twofold. First, we validate the solver against the experimental data
available, and secondly, we calibrate the parameters of the solver and the mesher. In other words, we
look for the best parameters to be used during the optimization study, and in the case of meshing or
convergence problems, these parameters are automatically adjusted without user intervention.

In Table 3, we list the cell count and average y+ of the coarse and fine mesh used in this study.
We used at least five inflation layers to resolve the boundary layer, and we targeted for a y+ value
between 40 and 200. The results obtained from transient simulations and steady simulations using the
LTS method are displayed in Figure 9. The results illustrated correspond to the base geometry and a
Froude number equal to 0.331. Due to the intellectual property of the experimental data, from this
point on, all the results are normalized using as a reference the experimental value corresponding to
this operating condition.

Table 3. Mesh cell count and average y+.

Mesh Number of cells Average y+

Coarse ≈ 800000 ≈ 80
Fine ≈ 2800000 ≈ 7

In Figure 9, we can observe that the outcome of the steady simulations using both meshes are in
good agreement with the experimental values. Both solutions reached a steady state approximately
after 4000 iterations. Nevertheless, we let the simulations run for longer times to ascertain that
we reached good iterative convergence. Regarding the unsteady simulations, we can see that the
simulation using the fine mesh reached periodic iterative convergence after approximately 40,000
iterations. On the other hand, the unsteady simulation using the coarse mesh reached a periodic
iterative convergence after about 20,000 iterations. However, the results are slightly over-predicted
due to numerical diffusion and turbulence model uncertainties. For the unsteady simulations, the
time-step was chosen in such a way that the maximum CFL number is equal to 2, whereas, for the
steady simulations (where we used the LTS method), the CFL number was gradually increased until
reaching the value of 0.9.
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Figure 9. Comparison of the normalized resistance as a function of the iteration number for the
coarse and fine meshes. In the legend, LTS (local time-stepping) corresponds to the steady solution,
and GTS (global time-stepping, i.e., a time-step identical for all control volumes) corresponds to the
transient solutions.

In Table 4, we show the percentage error (computed with respect to the experimental data) and
the CPU time measured at 8000 iterations for each simulation plotted in Figure 9. From these results,
it becomes clear why it is important to find steady solutions when conducting optimization studies
in CFD. If we had conducted this optimization study using an unsteady solver, the computing time
of each simulation would have been about 2 times the computing time of the corresponding steady
simulation (for the same number of iterations); therefore, the total computing time of the optimization
loop would have been at least 2 times higher.

Table 4. Percentage error (with respect to the experimental data) and CPU time of the benchmark cases.
All the simulations were run in parallel with four processors. In all cases, the reported CPU time was
measured at 8000 iterations.

Benchmark Case Percentage Error CPU Time (seconds)

Steady - Coarse mesh 1.8% ≈ 12000
Steady - Fine mesh 1.1% ≈ 20000

Unsteady - Coarse mesh 6.8% ≈ 27000
Unsteady - Fine mesh 4.3% ≈ 35000

In Figure 10, we present the normalized resistance as a function of the Froude number. The results
reported were obtained using the coarse mesh and the LTS method. In the figure, a good agreement
with the experimental results is observed up to a value of Fr = 0.349, then, the percentage error starts
to increase, and this is mainly due to the fixed trim condition assumption used in this study. Moreover,
the prototype is not meant to operate at such high Froude numbers, which corresponds to off-design
conditions. In the light of this optimization study, where we know there are many uncertainties
involved, errors of this order of magnitude are acceptable given the assumptions that were taken. Also,
these discrepancies can be neglected because it is reasonable to consider that this error is constant for
each bulb shape to be simulated and is, therefore, irrelevant for the optimization loop.
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Figure 10. Comparison of the normalized resistance as a function of the Froude number. The numbers
next to the markers indicate the percentage error between the numerical results and the experimental
data.

Based on these results, we decided to use the coarse mesh as the base mesh, and in the case of
mesh quality problems, the domain mesh was automatically recomputed using improved meshing
parameters. As for the iterative method concerns, all the simulations were executed using the LTS
method, and if proper iterative convergence was reached, the simulations were automatically stopped
at 8000 iterations or until statistically stable results were obtained. These choices allowed us to obtain
fast outcomes with good accuracy.

5. Results and Discussion

Hereafter, we discuss the results obtained from the surrogate-based optimization study. All the
simulations presented in this section were conducted at a Froude number of 0.294. We would like to
stress that to get the optimization loop started, we only need one input geometry. Then, this geometry is
deformed by the shape morpher to generate new candidates. Also, the whole optimization framework
was deployed using asynchronous simulations: that is, we executed many parallel simulations at the
same time. Everything was controlled using the application coupling interface provided by Dakota.
The average time of each simulation was between 4 and 5 hours.

As discussed previously, the first step when conducting SBO studies is to generate a sampling plan
of the design space. The sampling plan should cover the design space in a uniform and well-distributed
way, without leaving large areas unexplored; also, it should be cheap to compute. It is clear that the
more information we gather during the initial sampling, the better the surrogate will be, but at the cost
of longer computing times. In this study, we used a full-factorial experiment, where we conducted
25 experiments uniformly spaced in the design space. In Figure 11, we illustrate the sampling plan,
where the uniform spaced points represent the locations where the high-fidelity computations were
computed. The sampling plan illustrated in Figure 11 was chosen because it is inexpensive to compute
(as we reduced the number of design variables to two), and it explores design points without missing
too much information between observations.
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Figure 11. Sampling plan used in this study. The square represents the original geometry, whereas
the circles represent the different geometry variations. Every point in the sampling plan represents a
location where a high-fidelity computation was computed. All the simulations were conducted at a
Froude number of 0.294.

The next step in our work-flow is to construct the surrogate (or meta-model) after conducting
the high-fidelity simulations at the sampling locations. In this study, we used Kriging interpolation
[38,44,45,48–52], which has been demonstrated to be a very reliable and accurate interpolation method
when conducting SBO studies. The only drawback of this method (if it can be considered a drawback) is
that it forces the meta-model to pass by all the points of the sampling plan; therefore, in the presence of
numerical noise, we can have surrogates with many valleys and peaks that can make the optimization
task difficult when using gradient-based methods. Nevertheless, as we are working at the surrogate
level, we can use derivative-free methods which behave better in the presence of numerical noise.

In Figure 12, we illustrate two surrogates obtained during this study. In the figure, the surrogate
in the left image was constructed using Kriging interpolation, and the one in the right image was
build using a second-order polynomial function. The color scale represents the resistance variation in
reference to the original geometry (where negative values indicate resistance reduction and positive
values indicate resistance increment). As it can be seen, the Kriging model managed to capture the
nonlinearities of the design space; we can even distinguish a valley region where the optimal solution
(or solutions) might be located. On the other hand, the polynomial model is very smooth; however, it
is not very accurate (it does not capture the nonlinearities). Nevertheless, it gives us a rough idea of
how the design space behaves.
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Figure 12. Left: surrogate model constructed using Kriging interpolation. Right: surrogate model
constructed using quadratic polynomial interpolation. In the image, the uniform spaced points
represent the locations where the high-fidelity computations were computed. The square represents
the starting geometry and the circles represent the new geometries. In both images, the color scale
represents the resistance variation in reference to the original geometry (where negative values indicate
resistance reduction, and positive values indicate resistance increment).

At this stage, we already have a surrogate of the design space, or in other words, a mathematical
representation of the design space. Our next tasks consist of validating the surrogate and conducting
the optimization study at the surrogate level. The validation merely consists of computing the predicted
value at the surrogate level in a location that has not been included in the sampling plan. Then, this
value can be compared with the value obtained using high-fidelity simulations in the same location,
and the percentage error can be computed. The optimization consists of doing the actual optimization
at the surrogate level. Remember, as we are working using a mathematical representation of the design
space, we can use any optimization method, disregarding how expensive it can be.

In this study, we found a global minimum and a local minimum; this situation is illustrated
in Figure 13. These results suggest that there is a bifurcation in the valley region, where the global
minimum is obtained when increasing the value of the design variable CZB, and the local minimum
is obtained when decreasing the value of the design variable CZB. Notice also that as we increase
the value of the design variable CZB, smaller increments of the design variable CLPR are required in
order to obtain larger resistance reduction. In Figure 13 (right image), we show the iterative path
followed by the optimization algorithm when starting from two different initial positions, where each
optimization task used about 40 iterations (function evaluations and gradient evaluations). As we
used a gradient-based method to optimize the surrogate (method of feasible directions [53]), it is clear
that we need to start the optimization algorithm from different initial locations if we want to find
the global and local minima. If we were to perform this study by directly resorting to high-fidelity
simulations, the number of simulations would be much higher than the number of simulations used
during the sampling plan.

As previously mentioned, the SBO method gives the possibility of conducting an initial screening
(or visualization) of the design space. This initial screening can be extremely helpful, especially when
dealing with high multi-dimensional optimization problems. By screening the surrogate, designers
can explore and exploit the surrogate in a more efficient way. Different optimal candidates can be
immediately identified through the subjective opinion of the designer or on the basis of external
constraints (such as manufacturing process, increased weight due to the added surface, the volume of
the new bulb, structural loads, clearances, and so on), without the need of resorting to high-fidelity
simulations (with the exception of the validation of the surrogate).

To demonstrate the validity of the surrogate, in Table 5, we show the numerical values of the
resistance reduction and the percentage error between the surrogate value and the high-fidelity



Math. Comput. Appl. 2018, 23, 60 20 of 25

simulations outcome. The values presented in this table were measured in five different points; namely,
the global minimum, the local minimum, and three points in the proximity of the global and local
minima. From the table, we observe that all values listed effectively reduce the resistance. We also
observe that the percentage error between the surrogate level and the high-fidelity level is about 2%
for the global and local minima cases. On the other hand, for the values measured in the vicinity of the
global and local minima, the percentage error is much larger, and this is presumably because in this
region the nonlinearities are more significant.

Table 5. Resistance reduction and percentage error (with respect to the high-fidelity simulations) of
five cases not included in the original sampling plan.

CLPR CZB Resistance Reduction Percentage Error Note

0.119 0.660 ≈ 5% ≈ 7% -
0.131 0.566 ≈ 5% ≈ 7% -
0.131 0.755 ≈ 5% ≈ 6% -
0.109947 0.762845 ≈ 7% ≈ 2% Global minima
0.14 0.515651 ≈ 6% ≈ 2% Local minima

Figure 13. Left: the × symbol represents the global minimum, and the + symbol represents the local
minimum. The square represents the starting geometry and the circles represent the new geometries.
Right: the two squares represent two different starting points of the optimization algorithm. The yellow
circles represent the path followed by the gradient-based algorithm when starting from the topmost
position, whereas the green circles represent the path followed by the gradient-based algorithm when
starting from the bottom-most position. In both images, the color scale represents the resistance
variation in reference to the original geometry (where negative values indicate resistance reduction,
and positive values indicate resistance increment).

We can also improve the surrogate by adding new points to it (this is known as infilling). For
example, we can add the points listed in Table 5 (CLPR and CZB) and recompute a new surrogate (and
optimal values). This situation is illustrated in Figure 14, where the triangle symbols represent the
new training points. In the surrogate pictured in the figure, we are able to capture with more details
the behavior of the design space close to the region where the global minimum is located. Also, we
still can see the bifurcation, where there is a clear optimal solution when we increase the value of CZB;
however, when decreasing the value CZB, the location of the new minimum is not very clear. It may be
necessary to add a new training point in this region in order to get a better surrogate. Nevertheless,
the resistance reduction values in this region are smaller; therefore, we can focus our attention on the
cases where we increase the value of CZB.
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For completeness, in Figure 15, we show the shape of the optimal bulbs at the design conditions
corresponding to the global minimum and the local minimum. From all the results presented in this
section, it is clear that surrogate-based optimization is an effective design tool for engineering design.
However, the user should be cautious when constructing the surrogate, because the whole method
depends on the quality of the meta-model. It is always recommended to validate the surrogate, do
infilling using the optimal solutions, and add a couple of extra points in areas where high nonlinearities
are observed or are close to the optimal values.

Figure 14. Improved surrogate using infilling. The square represents the starting geometry and the
circles represent the new geometries. The triangles represent the infill points used. The color scale
represents the resistance variation in reference to the original geometry (where negative values indicate
resistance reduction, and positive values indicate resistance increment).

Figure 15. Bulbous bow shapes. Left: original shape. Middle: shape obtained at global minimum.
Right: shape obtained at local minimum.

6. Conclusions and Future Perspectives

In this manuscript, we present an open-source optimization framework to perform industrial
optimization studies. The optimization loop implemented allows for asynchronous simulations (i.e.,
many simulations can be run at the same time), and each simulation can be run in parallel; this allows
to considerably reduce the output time of the optimization iterations. The optimization loop is fault
tolerant and software agnostic, and it can be interfaced with any application able to interact using
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input/output files via a command line interface. The code coupling capabilities were provided by the
library Dakota [28], and all the tools used in this work are open-source and free.

As for the optimization strategy concerns, we used surrogate-based optimization; this technique
is very well suited to engineering design, as it allows designers and engineers to efficiently optimize
and explore the design space from a limited number of training observations, without resorting to too
many expensive high-fidelity simulations. To demonstrate the usability and flexibility of the proposed
framework, we tested it in a practical case related to the naval industry, where we aimed at optimizing
the shape of a bulbous bow to minimize the hydrodynamic resistance. We must highlight that the
framework discussed in this work is general enough so that it may be used in any engineering design
application.

During the optimization at the surrogate level, we found a global minimum. The shape of the
optimal solution at the global minimum corresponds to a longer bulb and slightly shifted upwards.
The resistance reduction at the global minimum design conditions is on the order of 7% at the
surrogate level. The difference in resistance reduction between the global minimum at the surrogate
level and the corresponding high-fidelity value is on the order of 2% (which is deemed more than
acceptable). However, as optimization can be very abstract (e.g., balance between aesthetics and
usability, operational requirements related to clearances, constraints related to weather conditions,
ease of manufacturing new shapes, and so on), we further explored the meta-model and we found
a local minimum corresponding to a configuration where we decreased the value of the design
variable CZB in reference to the original geometry. At this design condition, the resistance reduction
is on the order of 6%, with a difference between the local minimum at the surrogate level, and the
corresponding high-fidelity value on the order of 2%. At this point, the optimal solution depends
on the designer criteria and external constraints. These results demonstrate that design candidates
showing considerable resistance reduction can be found using surrogate-based optimization, with
very affordable computational times for the overall optimization task.

Finally, the results presented are limited to fixed trim, two design variables of the bulbous bow,
and a single Froude number for the optimization study. We envisage the extension of the current work
to rigid body simulations, and the exploration of the design space at different Froude numbers to
determine if there is a dependence between protrusion and immersion of the bulbous bow and Froude
number. We also look upon using a more complex parameterization of the bulbous bow geometry and
conducting multi-objective optimization.
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