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Abstract: This study aims to solve the real-world multistage assignment problem. The proposed
problem is composed of two stages of assignment: (1) different types of trucks are assigned to chicken
farms to transport young chickens to egg farms, and (2) chicken farms are assigned to egg farms.
Assigning different trucks to the egg farms and different egg farms to the chicken farms generates
different costs and consumes different resources. The distance and the idle space in the truck have to
be minimized, while constraints such as the minimum number of chickens needed for all egg farms
and the longest time that chickens can be in the truck remain. This makes the problem a special case
of the multistage assignment (S-MSA) problem. A mathematical model representing the problem
was developed and solved to optimality using Lingo v.11 optimization software. Lingo v.11 can solve
to optimality only small- and medium-sized test instances. To solve large-sized test instances, the
differential evolution (DE) algorithm was designed. An excellent decoding method was developed
to increase the search performance of DE. The proposed algorithm was tested with three randomly
generated datasets (small, medium, and large test instances) and one real case study. Each dataset
is composed of 12 problems, therefore we tested with 37 instances, including the case study. The
results show that for small- and medium-sized test instances, DE has 0.03% and 0.05% higher cost
than Lingo v.11. For large test instances, DE has 3.52% lower cost than Lingo v.11. Lingo v.11 uses an
average computation time of 5.8, 103, and 4320 s for small, medium and large test instances, while DE
uses 0.86, 1.68, and 8.79 s, which is, at most, 491 times less than Lingo v.11. Therefore, the proposed
heuristics are an effective algorithm that can find a good solution while using less computation time.

Keywords: assignment problem; chicken transportation; differential evolution algorithm;
mathematical model

1. Introduction

Thailand has long been known as a farming country due to the influence of Southeast Asian
monsoons, which make the landscape, resources, environment, and climate conducive to agriculture.
Most of the population works in agriculture or is involved in it in some manner. Although there have
been efforts to develop Thailand into an industrialized country, it still largely depends on agriculture.
The evolution and development of Thai agriculture has changed over time, reflecting the worldwide
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flow of changes. Hens are considered to be economic animals, as farmers can generate revenue from
them throughout the year. In Thailand, there is a nationwide demand for eggs, which are popular
among consumers. Breeding hens, therefore, are important to the economic balance and well-being
of the Thai people. However, the problem that most farmers face is that they have high operating
costs and generate little profit, thus they struggle to afford the costs incurred for labor, raw materials,
transportation, etc.

In recent years, the logistics cost in Thailand is 14% of gross domestic product (GDP), which is
valued at more than 1912.9 million baht. Many Thai businesses face the problem of high logistics
cost, especially in agricultural businesses. In this study, we focus on reducing the cost of chicken
transportation, which is one of the most important business groups of the Thai agricultural industry.
Chicken transportation starts from delivering young chickens to egg farms in many different areas,
which affects the resource usage of trucks (road conditions). It is not possible to travel on some Thai
roads with some types of trucks, and even with some types of trucks the fuel consumption is different
from the average speed limit. A suitable assignment approach needs to be decided on so that the total
cost is minimized. Moreover, suitable trucks should be assigned to suitable chicken farms. Suitable
farms and trucks means the truck does not have much idle space during delivery. Too much idle
space means the use of bigger trucks, and bigger trucks always consume more fuel than smaller trucks
because the weight of the truck affects the fuel consumption rate.

In transporting chickens from farmers to buyer farms, a number of factors must be taken into
account—such as the mode of transportation, time to transport, temperature, etc.—as well as making
sure that chickens from different farms are not mixed during transport. Therefore, it essential to
find an appropriate vehicle that meets the needs of chicken farmers to avoid mixing chickens during
transport to customers. This would help to minimize assignment or production costs and would be
beneficial to the chicken farms, resulting in lower production costs and higher quality chickens for
the egg farms. Thus, the overall condition of the chicken industry would be improved. Furthermore,
chicken farms and egg farms can use the money saved to accomplish other farm activities, such as
feeding, vaccinating, or researching—that is, to further develop their farms.

This study investigated a solution to the problem of chicken transport, which is a problem
of multistate assignment. This was a case study regarding appropriate vehicle assignment for the
transportation of chickens directly from chicken farms to egg farms by using the lowest cost of
assignment. The differential evolution was developed to solve the problem because it is effective and
uses short computation time. This paper has four contributions:

(1) The special case of the multistage assignment problem is proposed. The attribute that makes it
a special case is that the experience of the workers and the type of shipping instrument will be
considered in the assignment of trucks to farms. These affect the time to ship chickens in trucks
and will affect the total time that chickens can be in the trucks during transport.

(2) The idle space in the truck is considered as the objective function and it is converted into lost
opportunity due to higher fuel consumption of bigger trucks, therefore using unsuitable trucks
will generate more cost.

(3) The new decoding method of the DE algorithm is presented so that the proposed problem can
be solved.

(4) The mathematical model of the proposed problem is presented.

The paper is organized as follows. Section 2 presents the related research. Section 3 presents the
problem statement and mathematical model. Section 4 shows the proposed heuristics (differential
evolution algorithm). The computational result and a conclusion are presented in Sections 5
and 6, respectively.
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2. Literature Review

Assignment problem (AP): The AP evolved from the transportation problem, which is a form
of proper task assignment to an employee or machine considering cost effectiveness or profit
maximization in some cases. The assignment problem is a type of combinatorial problem. It has
been addressed as a transportation problem, where transportation affects other jobs. The aim is
to minimize the total cost of transportation. Therefore, this problem could be considered a task
assignment problem [1]. The key condition of this problem is that the assignments must be on a
one-on-one basis; that is, once a task has been assigned to an employee, it cannot be assigned to
another employee as well.

Previously, task assignment problems were resolved by bipartite matching. This matching method
was proposed by Frobenius and Konig [2,3]. Later, Dantzig [4] presented the assignment problem in
the form of a linear programming problem and used the simplex method to solve it. However, there
might be limitations on the size of the problem, the number of variables, and the number of constraint
equations. This means that if the limitations were too great or the computer was not sufficiently
capable, the simplex method would not work. Kuhn [5] subsequently presented a solution to assigning
tasks through the Hungarian method, which is a quick way to solve problems compared to simplex.

Generalized assignment problem (GAP): GAP is more flexible than AP. Unlike AP, where
assignments are made on a one-on-one basis, with GAP, one task can be assigned to multiple employees
or to the same employee. However, it must not exceed the capacity of the employee. Thus, GAP is
more comprehensive and more closely resembles the actual situation than AP. GAP was first proposed
by Ross and Soland [6] and was found to be an NP-hard problem [7]. This is often corrected by the
exact method with small problems. The problem of 200 tasks and 20 employees was considered to be
the biggest problem that could be solved by the exact method [8]. Therefore, the heuristics method has
been used to solve GAP.

The proposed problem is the multistage GAP. The GAP has no restrictions that the case study
has, such as (1) the longest traveling time; (2) the effect of the shipping instrument and the experience
of the workers, which affects the operating cost; (3) the idle space in the truck is considered as the
objective function; (4) at least half of the demand of the egg farm has to be considered; and (5) the
multistage GAP was never found in the literature.

We will move on to review the methodology to solve the special multistage assignment (S-MSA)
problem. Many worldwide methods have been used to solve GAP. Both exact methods—such as
branch and bound, branch and price, etc.—and heuristics methods have been used to solve the
problem. Metaheuristics is one of the most commonly used methods to solve GAP. Metaheuristics is
an approximation method where it is not guaranteed that the solution optioned from the method is
the optimal solution. The advantage is that it uses much less computation time than the exact method,
which makes it possible to solve real-world problems that cannot be solved by exact methods.

The well-known metaheuristics are the krill herd (KH) algorithm [9–11], the cuckoo
algorithm [12,13], the monarch butterfly optimization (MBO) [14,15], the hybridizing harmony
search [16], the Lévy-flight krill herd algorithm [17], the bat algorithm [18], elephant herding
optimization (EHO) [19], and the earthworm optimization algorithm (EWA) [20].

Enhancing the quality of the heuristics method can be achieved in many ways, such as adjusting
suitable parameters for the proposed method, increasing the search area by introducing ways to move
from local optimal, and applying local search to increase the intensive search of the method [21–25]. The
most recent successful method was proposed by Wang [26]. The method is called the krill herd (KH)
algorithm. Many papers have proposed improving the solution quality of the KH, such as adding new
attributes to the algorithm [22], using a hybrid KH with other methods [23–26], exchanging information
between top krill during the motion calculation process [27], using the best parameters [28], and adding
local searches to improve search ability [29]. Aside from being applicable to many types of problems,
KH is valid for function optimization [30] as well. An excellent review of the KH method has been
proposed by Wang et al. [31].
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Metaheuristics has been applied to many combinatorial optimization and real-world problems,
such as the parallel hurricane optimization algorithm [32], firefly-inspired krill herd (FKH) [33],
the moth search (MS) algorithm [34], monarch butterfly optimization [35–37], across neighborhood
search (ANS) [38], chaotic particle-swarm krill herd (CPKH) [39], chaotic cuckoo search (CCS) [40],
self-adaptive probabilistic neural network [41], and the differential evolution (DE) algorithm [42].

Differential evolution is a frequently used heuristics method. It is a way to apply the principles
of evolution, and the steps are as follows: (1) initial solution, (2) mutation, (3) recombination, and
(4) selection. Differential evolution was first used by Storn and Price [43] and has since been used
since to solve many problems, such as production scheduling [44] and manufacturing problems [45].
Liao et al. [46] proposed two hybrid DEs to obtain truck sequences for cross-docking operations. Later,
Liao et al. [47] proposed six metaheuristic algorithms for sequencing inbound trucks for multi-door
cross-docking operations under a fixed schedule of outbound truck departure. Hou [48] proposed
discrete DE (DDE) by modifying a mutation operator for the vehicle routing problem (VRP) with
simultaneous pickups and deliveries (VRPPD). Recently, Dechampai et al. [49] proposed DE to solve
the capacitated VRP with the flexibility of mixing pickup and delivery services and maximum duration
of a route in the poultry industry. Sethanan and Pitakaso [50] improved DE by adding two more
steps, reincarnation and survival process, to improve its intensification search [51]. It has been proven
that using different pairs of mutation and recombination processes gives different solution qualities,
such as in Pitakaso and Sethanan [50] and Boon et al. [52]. Sethanan and Pitakaso [50,51] suggested
that improving the DE algorithm, such as by adding more steps to the original DE, inserting local
search, and adding more attributes, can improve the solution quality, but the design of the decoding
method must make sure that the most important rules in solution quality are obtained. In this paper,
the excellent design of a decoding method from real numbers obtained from the DE mechanism to find
the solution of the proposed problem is reported. The decoding method not only makes it possible to
obtain the solution, but also local search has been added to the decoding method routine. Therefore,
excellent results can be gained from the proposed method.

3. Problem Statement and Mathematical Modeling

This section explains the problem statement and the mathematical model to represent the problem
so that the reader has more understanding of the proposed problem.

3.1. Problem Statement

Figures 1 and 2 represent the unsolved problem and the solved problem, respectively. Chicken
farms have different amounts of young chickens. The chicken farms transport the chickens to egg farms,
which grow the chickens and collect the eggs to sell to end customers. The egg farms have different
capacities and demands for young chickens from chicken farms. The transportation of chickens needs
to use trucks. The chicken farms have workers and loading/unloading instruments such as forklifts,
carts, etc. This can make for different delivery times for the chicken farm in different types of trucks.
When the truck arrives at the egg farm, the egg farm also has instruments for unloading chickens
from the truck, which causes different shipping times. The objective function is not only to minimize
the total distance of assignment under many constraints, which will be explained later, but also to
minimize the idle space of the truck when transporting chickens. The idle space is assumed to be a lost
opportunity to use the suitable truck for the suitable route. Moreover, it is possible that some trucks
are not used. Therefore, the problem comprises the following components:

(1) Assign the right truck to the right egg farm so that free space is minimized. Different farms have
different levels of experience with different trucks, which can affect the loading of chickens onto
the truck, which can affect the total time that the chickens are in transport.

(2) Assign the right egg farm to the right chicken farm to minimize so travel distance. The workers
at the chicken farm and the egg farm need to be coordinated so that shipping chickens out on the
trucks uses as little time as possible, therefore the quality of the chickens remains unchanged.
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Figure 2. Solved problem.

The problem is a special case of the multistage assignment problem (S-MAP). The objective
function is to minimize total distance and minimize free space in the truck. This objective needs to be
optimized while keeping the following limitations or constraints:

(1) Transportation of chickens from chicken farms to egg farms is done only by direct transport. There
is no chicken picking from other farms and no eggs are sent to other farms. This is because egg
farms need to control the quality and breed of the chickens and prevent communicable diseases.

(2) A chicken farm can send chickens to an egg farm more than once.
(3) A chicken farm can sell all of its chickens.
(4) Egg farms may receive chickens from more than one farm, but they may not exceed the capacity

of such farms.
(5) Egg farms will receive chickens for at least 50% of the demand. However, some egg farms may

not be able to do this. Transportation time should not exceed 8 h, which includes the time spent
loading the chickens onto the vehicle, transfer, and removal.

(6) The vehicles used for transport are sufficient for the needs.
(7) Chicken farms may use more than one type of vehicle and each type can be used for more than

one round.

There are 40 chicken farms in the case study, and the capacity of a chicken farm is from 5000 to
20,000 chickens per planning period. There are four types of truck available, which have a capacity of
2000 to 12,000 chickens per round of travel. There are 60 egg farms in the system, for which chicken
farms need to deliver at least 50% of the demand.
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3.2. Mathematical Modelling

The S_MAP can be modeled as follows:

Indices

i = 1, 2, 3, 4 (4 truck types)
j = 1, 2, 3, . . . , J (J number of chicken farms; 40 farms)
k = 1, 2, 3, 4 (4 rounds of transportation)
l = 1, 2, 3, . . . , L (L number of egg farms; 60 farms)

Decision Variables

xijkl Decision variable

xijkl = 1
Truck (i) is assigned to transport chickens from chicken farm (j) on the round of transporting (k)
to egg farm (l)

xijkl = 0
Truck (i) is assigned to transport chickens from chicken farm (j) on the round of transporting (k)
to egg farm (l)

qijkl Number of chickens transported by truck (i) from chicken farm (j) on round (k) to egg farm (l)

Parameters

cijl Cost of truck type assignment (i) to transport chickens from farm (j) to egg farm (l)
ti Capacity of truck (i) to transport chickens (unit: chicken)

ocijl
Cost of lost opportunity due to truck not completely loaded (i) from chicken farm (j) to egg farm
(l) (unit: baht per chicken)

dl Demand for chickens by egg farm (l)
sj Capacity of chicken breeding of farm (j)
tupij Time spent loading chickens onto truck (i) at chicken farm (j)
zupij Performance of employees at chicken farm (j) to carry chickens into truck (i)
tdnil Time spent removing chickens from truck (i) at egg farm (l)
zdnil Performance of employees at egg farm (l) to remove chickens from truck (i)

ttrijkl
Time spent traveling from the truck station to chicken farm (j) then to egg farm (l), and then
from egg farm (l) back to the truck station

tdjl
Time spent for truck (i) to go from the station to chicken farm (j) to convey chickens on round (k)
to egg farm (l)

timejkl

Time spent for an assignment of each round, not to exceed 8 h, consisting of the time to load

chickens at chicken farm (i)
(

tupijkl

)
, time to transport from farm (i) to egg farm (l)

(
ttrijkl

)
,

and time to remove chickens from the truck at egg farm (l)
(

tdnijkl

)
, or the overall time to use

the truck
ttrucki Usage time of truck type

Remark 1. The time for ttrijkl and tdijkl does not include the usage time to load and remove chickens from
the truck.

Objective Function

min
I

∑
i

J

∑
j

K

∑
k

L

∑
l

(
cijl × xijkl

)
︸ ︷︷ ︸

Part1

+
I

∑
i

J

∑
j

K

∑
k

L

∑
l
[
((

xijkl × ti

)
− qijkl

)
︸ ︷︷ ︸

Part2

× ocijl ] (1)

xijkl ∈ {0, 1} f or ∀ijkl (2)

qijkl ∈ {0, 1} f or ∀ijkl (3)
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L

∑
l

xijkl ≤ 1 f or ∀ijk (4)

I

∑
i

J

∑
j

K

∑
k

qijkl ≤ dl f or ∀l (5)

I

∑
i

J

∑
j

K

∑
k

qijkl ≥ 0.5× dl f or ∀l (6)

I

∑
i

K

∑
k

L

∑
l

qijkl = sj f or ∀j (7)

qijkl ≤ M× xijkl f or ∀ijkl (8)

qijkl ≤ ti f or ∀ijkl (9)

tupij = zupij × qijkl f or ∀ijkl (10)

tdnil = zdnil × qijkl f or ∀ijkl (11)

ttrijkl = tdjl × xijkl f or ∀ijkl (12)

timeijkl = tupijkl + tdnijkl + ttrijkl f or ∀ijkl (13)

timeijkl ≤ 8 f or ∀ijkl (14)

J

∑
j

K

∑
k

L

∑
l

timeijkl ≤ ttruck(i) f or ∀i (15)

xijkl ≥ xij(k+1)l f or ∀ijkl (16)

This mathematical model was created to solve multistage assignment problems. The objective
function aims to investigate how to assign the task in order to gain the lowest cost of the assignment,
for which distance is the key factor (part1 of Equation (1)). The cost of opportunity loss is due to the
truck not being completely loaded. This means that there is free space on the truck for each round of
transporting (part2 of Equation (1)).

The relevant limitations begin from the decision variables
(

xijkl

)
, which are the counting numbers

and equal to 0 or 1 only (Equation (2)). The number of chickens prepared for transport
(

qijkl

)
must be

equal in the positive integer only (Equation (3)). Egg farm (i) can receive chickens from farm (j) by
using truck (i) for transportation round (k) only one time (Equation (4)). Epidemics may be prevented
because chickens are transported from different places, and an egg farm (l) may not receive as many
chickens as it needs (Equation (5)). Each egg farm (i) will receive at least 50% of the chickens it needs
(Equation (6)). Each chicken farm (j) will be able to deliver all chickens to the egg farm until there
are no more chickens at the farm (Equation (7)). If there is no assignment

(
xijkl = 0

)
, the number to

transport is equivalent to 0
(

qijkl = 0
)

as well (Equation (8)).
The quantity to be transported (q) in each round shall not exceed the capacity of the truck

(Equation (9)). The time spent loading chickens onto the truck is represented by Equation (10). The
quantity of chickens to be transported (q), the performance of the workers in loading chickens (zup),
and the time taken to remove chickens from the truck are represented by Equation (11). The quantity
of chickens to be transported (q), the performance of the workers in removing chickens from the truck
(zdn), and the time spent on transportation

(
ttrijkl

)
from the station to the chicken farm, and then from

the chicken farm to the egg farm, and finally getting back to the station, which does not include time for
loading and removing chickens, depends on distance and driving speed (Equation (12)). Equation (13)
is the overall time for an assignment. The time spent loading chickens (tup), time spent traveling
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(ttrans), and time spent removing chickens from the truck (tdn) must not exceed 8 h (Equation (14)). The
usage time of each type of truck may not exceed the working hours that have been set (Equation (15)).
Equation (16) fixes a round of assignments starting at the first round.

4. Proposed Algorithm

The proposed method that is used to solve the S-MSA is the differential evolution (DE) algorithm.
DE comprises four steps: (1) initialize the target vectors, (2) perform the mutation process, (3) perform
the recombination process, and (4) perform the selection process. The proposed method can be
explained as follows.

4.1. Initial Vector (Initial Population)

This step requires defining the number of the population and the random number of the
population. The population must be at least four, because the DE process uses three vectors to
determine the direction of the searching. If the population is small, it will not spread to find the answer.
When the initial population is determined, it will be entered into the encoding process as the next DE
method. The end product of this step is the first target vector.

The initialization needs to generate the vector representing the problem solution. We call it
encoding. The encoding is the coding for three factors, such as the type of truck, chicken farm, and egg
farm. In this case study, there are five vectors and each vector has four positions. This process starts
by specifying a random number for each position in each vector, for which the random numbers are
equivalent between 0 and 1, as shown in Tables 1–3 respectively.

Table 1. Initial target vectors of truck types.

Position
Vectors of Truck Types

1 2 3 4 5

1 0.853 0.956 0.886 0.521 0.545
2 0.335 0.397 0.639 0.863 0.471
3 0.757 0.391 0.519 0.098 0.443
4 0.967 0.293 0.063 0.595 0.824

Table 2. Initial target vectors of chicken farms.

Position
Vectors of Chicken Farms

1 2 3 4 5

1 0.234 0.713 0.396 0.417 0.806
2 0.257 0.082 0.696 0.829 0.091
3 0.512 0.979 0.186 0.475 0.502
4 0.164 0.780 0.873 0.522 0.671

Table 3. Initial target vectors of egg farms.

Position
Vectors of Egg Farms

1 2 3 4 5

1 0.544 0.766 0.067 0.171 0.634
2 0.004 0.045 0.313 0.300 0.042
3 0.564 0.436 0.051 0.498 0.485
4 0.499 0.250 0.263 0.178 0.396

From the random number of the position in each initial vector, the initial vectors of truck type,
chicken farm, and egg farm are sorted by random numbers. The lowest of the random numbers is set
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to be in the first position. The higher random numbers will be set in the last row of each column, as
shown in Tables 4–6.

Table 4. Positions of initial vectors of truck types.

Position
Vectors of Truck Types

1 2 3 4 5

1 3 4 4 2 3
2 1 3 3 4 2
3 2 2 2 1 1
4 4 1 1 3 4

Table 5. Positions of initial vectors of chicken farms.

Position
Vectors of Chicken Farms

1 2 3 4 5

1 2 2 2 1 4
2 3 1 3 4 1
3 4 4 1 2 2
4 1 3 4 3 3

Table 6. Positions of initial vectors of egg farms.

Position
Vectors of Egg Farms

1 2 3 4 5

1 3 4 2 1 4
2 1 1 4 3 1
3 4 3 1 4 3
4 2 2 3 2 2

For this study, first, vectors of truck type, chicken farm, and egg farm were assigned. The lowest
random number, or position no. 1, was selected as the first order, as shown in Table 7.

Table 7. Sequence of position in vectors of truck type, chicken farm, and egg farm.

Position Truck Type Chicken Farm Egg Farm

1 2 1 1
2 4 4 3
3 1 2 4
4 3 3 2

The vectors shown in Tables 1–4 need to be decoded to get the proposed problem’s solution. This
step is called decoding. Decoding is the sequential ordering in the assignment table, as shown in
Table 8, to encode. For the operation of decoding, all constraints must be accomplished at the same
time. For example, each type of truck cannot be overloaded and must not exceed the specified working
hours. The working hours start from the time spent loading chickens at chicken farms. Travel time
includes the time to travel from the station to the chicken farm and from the chicken farm to the egg
farm, including the time to get back to the station and the time to remove chickens from the truck at the
egg farm. The chicken farm can deliver all of the chickens without the rest of the chickens at the farm.
The first assignment must be completed before another assignment can be given to the chicken farm.
The egg farm will receive at least 50% of the demand in the beginning, after which more chickens will
be added. The chicken farm in the first sequence usually receives the amount of chickens it demands.
However, the farm in the latter sequence may not get the number of chickens it wants. All factors
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involved must be considered simultaneously. An important factor in task assignment is the quantity
assigned each time, which will be affected by the type of truck and the number of rounds, which
includes transportation costs. The amount of chickens to be transported (AssignQ) is determined by
the number of chickens from one farm, including the demand from the egg farm to assign up to 50%
of its demand before providing the rest. The transported chickens are counted from the quantity of
chickens at the farm and the demands of the egg farm. If any quantity is less, it will be transported
using such a quantity. The assignment is shown in Equation (17)

AssignQ =

{
QA

d i f Qd ≤ Qs

Qs otherwise
(17)

AssignQ means quantity to be transported, QA
d means the initial chicken demands of the egg

farm equivalent to 50% of the entire demand, and Qs means productivity of the chicken farm.

Table 8. Results of the decoding method.

Time
Truck

Round
Chicken Farm Egg Farm

Type Empty Farm Assignment Remaining Farm Assignment Remaining

1 2 3000 1 2 5000 0 1 5000 0
2 3 0 1 3 4000 6000 2 4000 0
3 3 1500 1 3 2500 3500 4 2500 0
4 3 500 1 3 3500 0 3 3500 1500
5 4 500 1 1 1500 8500 3 1500 0
6 2 3000 1 1 5000 3500 1 5000 0
7 3 500 1 1 3500 0 2 3500 500
8 4 1500 1 4 500 4500 2 500 0
9 3 1500 1 4 2500 2000 4 2500 0

10 4 0 1 4 2000 0 3 2000 3000

Another factor is the quantity to carry, which has a great influence on the type of truck selected.
Choosing the proper vehicle will save transportation costs. If a truck is chosen that has less capacity
than the amount it is required to carry, it will require several trips to complete the transport. This
results in fuel consumption and increases transportation cost. If a truck is chosen that is larger than
the amount to transport, there is free space, which raises the cost. Therefore, selecting the truck type
should be based on a capacity that is larger than—but similar to—the quantity to be delivered, to avoid
several rounds of transportation, which could cost more than a single trip with a large truck, as shown
in Equation (18)

min TruckQk ≥ AssignQ (18)

TruckQk means the capacity of truck type k; k = 1, 2, 3, and 4.
The assignment of chicken farms will be carried out in the order shown in Table 10, starting from

the initial order farm since the first farm has been completely assigned. Then, another farm can be
assigned when the all farms have been assigned and no chickens remain. The assignment for the egg
farms is different, as they require at least 50% of their demands. After that, additional chickens will be
provided. The chicken farm in the first sequence usually receives the amount of chickens it demands.
However, the farm in the latter sequence may not get the chickens it wants. Once the assigned quantity
has been determined, the type of vehicle will be assigned. Also, the second round of transport will
take place when the same vehicle is assigned from the same chicken farm to the same egg farm until
the requirement is met. With the initial decoding for an assignment to provide 50% of chickens to egg
farms as the limitation, the first assignment is shown in Table 8, in which chicken farm no. 2 has been
assigned as the first and has an order of 5000 chickens, while the first egg farm needs 10,000 chickens.
Therefore, this egg farm will receive at least 50% of its demand (5000 chickens) from chicken farm no. 2.
To avoid several rounds of transportation, trucks that have more capacity than the assigned quantity
are used.
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However, choosing a more capable truck will result in costs of lost opportunity. In order to avoid
this cost, trucks should be selected with a capacity closest to the quantity to be commissioned. In the
case of 5000 chickens, this will be assigned to a truck that has capacity for 8000 chickens, which also
results in 3000 empty spaces and lost opportunity cost.

4.2. Perform Mutation Process

Mutation is a method of modifying the values in the vector position, which is a step to extend the
scope for finding the answers. It starts from three random vectors from the initial population in the
same group (truck type, chicken farm, and egg farm), combining the first vector with the difference
from the other two to form a new vector. This principle is unique to differential evolution and can be
expressed as

vi,j,G+1 = xr1,j,G + F
(
xr2,j,G − xr3,j,G

)
(19)

xr1,j,G = target vector (r1) of chicken farm group (j) acquired from random G population, for which
there are three vectors, and the next vectors are xr2,j,G and xr3,j,G.

vi,j,G+1 = mutant vector, or the vector from the steps of modifying the values of the vector in population
position (i) of vector group (j) for the new population (G + 1).
F = mutant factor; F is equal to 0.8 (Qin et al., 2009), acquired from the experiment to find the
optimal value.
i = 1, 2, 3, . . . , N (N means the number of population).
j = 1, 2, 3 means the vector from type of truck, chicken farm, and egg farm, respectively.

The target vectors of truck type, chicken farm, and egg farm, as shown in Tables 1–3 respectively,
are taken into the modification of the vector position to obtain the mutant vector of the truck type
(Table 9), of the chicken farm (Table 10), and of the egg farm (Table 11). Evaluating the mutant vector,
F = 0.8 [53], this is a good starting point to randomly select three vectors from Xi,G and then substitute
them into Equation (19), which produces 0.853 + 0.8 (0.757–0.335), which is equal to 1.191. Then, it
leads to the recombination of the vectors.

Table 9. Mutant vectors of truck type.

Position
Mutant Vectors of Truck Type

1 2 3 4 5

1 1.191 0.961 0.982 0.735 0.850
2 0.412 0.849 −0.019 0.525 0.553
3 0.848 0.308 0.321 0.157 0.384
4 0.629 0.745 0.159 1.207 0.906

Table 10. Mutant vectors of chicken farm.

Position
Mutant Vectors of Chicken Farm

1 2 3 4 5

1 0.512 0.872 −0.154 0.663 0.477
2 0.035 0.028 0.146 0.875 −0.017
3 0.438 0.474 −0.054 0.229 1.074
4 0.386 1.498 0.705 0.192 0.428

Table 11. Mutant vectors of egg farm.

Position
Mutant Vectors of Egg Farm

1 2 3 4 5

1 0.940 0.915 0.277 0.073 0.988
2 −0.012 −0.104 0.326 0.038 −0.029
3 0.168 −0.141 0.091 0.596 0.202
4 0.947 0.563 0.053 0.336 0.870
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4.3. Perform the Recombination Process

The recombination process uses the mutant vector (vi,j,G) and the target vector (xi,j,G) to select
once again to be a trial vector (ui,j,G) by choosing only one vector. The process must not choose the
same vector. The method can be expressed as

ui,j,G =

{
vi,j,G when CR ≤ rand
xi,j,G when CR > rand

(20)

The recombination method aims to use the target vector from the first step to find the difference
of vectors in the mutant vector of position but still allow the target vector to return to the process by
setting the crossover rate (CR) to 0.2. If the random number for each vector is greater than or equal to
a CR of 0.2, the mutant vector will be selected. If the random number is less than the CR, the target
vector will be selected, as shown in Table 12.

Table 12. Random number values for each vector.

Type of Vector Random Number of Vectors

1 2 3 4 5

Truck type 0.614 0.130 0.963 0.601 0.074
Chicken farm 0.141 0.229 0.764 0.147 0.622

Egg farm 0.697 0.603 0.158 0.744 0.796

Applying the random number obtained from Table 12 to the mutant vector demonstrates that
most of the vectors taken into consideration in the vector selection procedure were the ones that
already passed the mutant vector process. The selected vector of the truck type is shown in Table 13,
that of the chicken farm is shown in Table 14, and that of the egg farm is shown in Table 15. Then, the
vector selection procedure continues.

Table 13. Vectors after mutation of vector positions of truck type.

Position
Vectors of Truck Type

1 2 3 4 5

1 1.191 0.956 0.982 0.735 0.545
2 0.412 0.397 −0.019 0.525 0.471
3 0.848 0.391 0.321 0.157 0.443
4 0.629 0.293 0.159 1.207 0.824

Note: Target vectors are in bold.

Table 14. Vectors after mutation of vector positions of chicken farm.

Position
Vectors of Chicken Farm

1 2 3 4 5

1 0.234 0.872 −0.154 0.417 0.477
2 0.257 0.028 0.146 0.829 −0.017
3 0.512 0.474 −0.054 0.475 1.074
4 0.164 1.498 0.705 0.522 0.428

Note: Target vectors are in bold.
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Table 15. Vectors after mutation of vector positions of egg farm.

Position
Vectors of Egg Farm

1 2 3 4 5

1 0.94 0.915 0.067 0.073 0.988
2 −0.012 −0.104 0.313 0.038 −0.029
3 0.168 −0.141 0.051 0.596 0.202
4 0.947 0.563 0.263 0.336 0.87

Note: Target vectors are in bold.

4.4. Perform the Selection Process

The selection process is the vector selection step in DE that compares the cost of assignment
(fitness function) with the cost of the target and trial vectors from the mutation process.

xi,j,G+1 =

{
ui,j,G+1 i f f

(
ui,j,G+1

)
≤ f

(
xi,j,G

)
xi,j,G otherwise

If the cost of the assignment from the trial vector is less than or equal to the cost of the assignment
from the target vector, then the trial vector will be selected and collected for the next population.
On the other hand, if the cost of the assignment given by the trial vector is greater than the target vector,
then the target vector will be collected from this population to be the vector for further population.
Repeat steps 2–6 until the best answer is acquired.

From the explanation in Sections 4.1–4.4, the proposed heuristics procedure is shown in
Algorithm 1.

Algorithm 1. Pseudocode of the proposed heuristics.

Set NP, CR, F, NP (size of vector)
Generate initial solution
Begin
For G = 1 to Gmax, where G = iterations and Gmax = maximum iterations
For N = 1 to NP
Generate random target vector Xr1,j,G and RV and update BV
Produce mutant vector N (mutation process) (Equation (19))

vi,j,G+1 = xr1,j,G + F
(

xr2,j,G − xr3,j,G

)
Produce trial vector N (recombination process)

• Using Equation (20):

ui,j,G =

{
vi,j,G when CR ≤ rand
xi,j,G when CR > rand

Produce new target vector (selection\process)

Xi,j,G+1 =

{
Ui,j,G if f

(
Ui,j,G

)
≤ f
(

Xi,j,G

)
Xi,j,G otherwise

End



Math. Comput. Appl. 2018, 23, 55 14 of 19

5. Computational Framework and Result

The proposed heuristics were executed and compared with the solution generated by Lingo v.11.
We reprogrammed the proposed heuristics in C++ and simulated it on a computer with Intel (R) Core
i7-3520M CPU @ 2.90 GHz Ram 8.00 GB. We tested our algorithms with three groups of test instances,
small, medium, and large. The simulation was executed five times until the best solution was selected,
as shown in the table. Details of the test instances are shown in Table 16.

Table 16. Details of the test instances.

Group Test
Instance

Number of Test
Instances

Number of
Chicken Farms

Number of
Egg Farms

Number of
Trucks

Compare
Method St

Small 12 5 5 5–10 Exact it
Medium 12 10 10 10–20 Exact it

Large 12 20 20 20–30 Lower bound it
Case study 1 40 60 54 Lower bound it

ST, stopping criteria; it, number of iterations; compare method, method that the proposed heuristic will be
compared with.

From Table 16, we test our 37 tested instances, composed of 12 small, medium, and large instances
and 1 case study. For small and medium test instances, the proposed method was compared with the
exact method. The exact method used here is Lingo v.11. For the large instances and the case study, the
proposed method was compared with the lower bound generated by Lingo v.11 within 72 h.

The first experiment was executed with the small and medium test instances. The stopping
criterion for Lingo v.11 was when it found the optimal solution. The best solution and computation
time were collected. The stopping criterion for DE was when it found the optimal solution (the same as
Lingo v.11) or when it reached 500 iterations. The results are shown in Tables 17 and 18 for small and
medium randomly generated datasets, respectively. The simulation was executed in 12 test instances,
each of which had a size of 5 × 5 (number of egg farms× number of chicken farms). The best solutions
out of five runs are shown in Tables 17 and 18.

Table 17. Results of small samples (5 × 5) showing cost and time of assignment.

Dataset
Lingo v.11 Differential Evolution

%Diff.
Cost (Baht) (a) Time (s) Cost (Baht) (b) Time (s)

1 9723 6.9 9723 0.5 0.00
2 8753 2 8753 0.2 0.00
3 5330 10.7 5330 0.2 0.00
4 7056 4.8 7059 0.2 0.04
5 7317 4.7 7317 0.2 0.00
6 6098 8.9 6107 0.7 0.15
7 7004 9.6 7004 0.3 0.00
8 7649 9.4 7649 0.8 0.00
9 7761 4.8 7761 1.7 0.00

10 7894 12.8 7894 1.8 0.00
11 7566 13.7 7575 2.9 0.12
12 7683 20.8 7683 0.8 0.00

Average 7486.17 9.09 7487.92 0.86 0.03

Note: %diff. = b−a
a × 100%.
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Table 18. Experimental results of the medium sample (10 × 10) showing cost of assignment and
processing time.

Dataset
Lingo v.11 Differential Evolution

%Diff.
Cost (Baht) (a) Time (s) Cost (Baht) (b) Time (s)

1 11,989 175 11,989 0.6 0.00
2 11,397 79 11,401 0.6 0.04
3 11,572 84 11,572 0.5 0.00
4 12,898 91 12,898 2.8 0.00
5 12,184 92 12,184 1.4 0.00
6 11,315 98 11,315 0.9 0.00
7 14,508 105 14,508 1.8 0.00
8 12,613 93 12,613 2.9 0.00
9 10,902 92 10,921 1.6 0.17

10 11,870 108 11,890 1.8 0.17
11 15,817 114 15,849 1.5 0.20
12 12,114 79 12,114 3.7 0.00

Average 12431.58 100.83 12437.83 1.68 0.05

Notes: % diff. = b−a
a × 100%.

Table 17 shows a small group of problem instances. In one out of five instances, the proposed
heuristic could not find the optimal solution. The average gap (%diff.) of DE from the solution
generated by Lingo v.11 was 0.03% and it used 10.57 times (9.09/0.86) less computation time.
The simulation was executed for 12 test instances, each with a size of 10 × 10 (number of egg
farms × number of chicken farms). The best solutions out of five runs are shown in Table 18.

Table 18 shows a medium-sized test, for which the sample size is 10 × 10. Lingo v.11 took 100.83 s
on average to find a 0.05% better solution than DE, but DE used only 1.68 s computation time on
average to find that solution.

The next experiment was executed with a large size of test instances. The stopping criterion of
Lingo v.11 was 72 h or 4320 min. The best solution found within that time was collected to compare
with the result generated by DE. The stopping criterion of DE was set at 1000 iterations. The solution
is shown in Table 19. This group includes the case study (40 × 60).

Table 19. Experimental results for large samples (20 × 20) and the case study showing the cost of
assignment and processing time.

Dataset
Lingo v.11 DE

%Diff.
Cost (Baht) (a) Time (min) Cost (Baht) (b) Time (min)

1 33,249 4320 32,716 5.1 1.63
2 29,943 4320 29,094 5.1 2.92
3 37,672 4320 36,128 3.6 4.27
4 38,891 4320 37,781 4.8 2.94
5 39,781 4320 37,895 5.9 4.98
6 31,480 4320 30,084 11.2 4.64
7 58,984 4320 57,738 14.5 2.16
8 89,872 4320 87,573 15.8 2.63
9 90,164 4320 89,079 19.1 1.22

10 35,878 4320 34,871 11.5 2.89
11 29,095 4320 28,049 3.7 3.73
12 29,892 4320 29,152 3.7 2.54

Case study 125,593 4320 114,932 10.3 9.28

Average 51,576.46 4320 49,622.46 8.79 3.52

Note: %diff. = a−b
b × 100%.
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Table 19 shows a large-scale problem test, for which the sample size was 20 × 20. The result
generated by Lingo v.11 within 72 h had an average cost of 51,576.46 baht, while the result generated
by DE was 49,622.46 baht, or 4.52% less, using 491 times less computation time. The comparison of
Lingo v.11 and DE shown in Tables 17–19 was statistically tested using Wilcoxon signed-rank test with
95% confidence interval. The statistical test results are shown in Table 20.

Table 20. Statistical test results.

Problem Size
Significance Level Critical Value

Result
p-Value W p-Value W

Small 0.89812 17.5 0.05 8 Lingo V.11 = DE
Medium 0.65994 10 0.05 6 Lingo V.11 = DE

Large 0.00148 0 0.05 17 Lingo V.11 ≥ DE

From Table 20, we can see that in the small and medium groups, the performance of DE and Lingo
v11 was not significant different, and for the large size, DE had significantly lower cost than Lingo v.11.

6. Conclusions and Suggestions

The purpose of resolving the multistage assignment problem is to minimize the cost of assignment.
The case study in this research consisted of the main cost of transportation, which relies on the distance
to transport as well as the cost of opportunity loss related to truck incapacity.

The resolution started from the development of a mathematical model that consisted of the cost
of chicken transportation and opportunity loss. The model had to comply with the conditions as well.
Then, the mathematical model was applied to find the best answer using Lingo v.11. Unfortunately,
when the problem size is large, Lingo v.11 is not able to solve the problem into optimality, therefore
the metaheuristics have to be further developed to get the solution for the case study and the large
problem size.

Later, DE was developed to solve the multistage assignment problem, and the results of the
efficiency of DE vs. Lingo v.11 were compared. In the case that Lingo v.11 can find the optimal solution,
we compared the proposed heuristic (DE) with the optimal solution. The time Lingo v.11 used to find
the optimal solution was recorded for all test instances. In this case, DE will use number of iterations
(set to 500 from the preliminary test). The computation results show that in small- and medium-sized
test instances, DE uses much less computation time than Lingo v.11 while obtaining less than a 1%
cost difference (0.03% and 0.05%, respectively) from the optimal solution. In the large-sized problem
instances, DE found a 3.52% better solution while using 491 times less computation time than Lingo
v.11. Thus, we can see that the performance of DE is better when the problem size is larger. DE obtains
better solutions than Lingo v.11 when it uses much more computation time. DE is suitable to solve big
problems that an exact method like Lingo v.11 cannot solve.

From the computation results shown in Tables 18–20, we can see that when the problem size is
small, Lingo v.11 can always find the optimal solution and DE sometimes has worse solution quality
than Lingo v.11. This is the weak point of the proposed heuristics: in small- and medium-sized test
instances, it cannot find the optimal solution even when we increase the iterations to 1000 or 1500.
This means that, in small-sized test instances, DE converts fast and sticks on the local optimal. When
there is a large size of test instances, DE can find a better solution than Lingo v.11, because when the
problem size is large, it is hard for the exact method to solve to optimality, and when the computation
time is set at 72 h, Lingo v.11 is not yet finished with the search while DE, the metaheuristic, can finish
the search activity.

Future research should study more complicated assignment problems as well as the current
problems or other metaheuristic methods to enhance solutions through hybrid methodologies.
Algorithm designers need to add a search mechanism that allows the proposed solution to escape from
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the local optimal to the general mechanism of DE so that the ability to escape from the local optimal
will be increased.
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