
Mathematical

and Computational

Applications

Article

Rapid Solution of Optimal Control Problems by a
Functional Spreadsheet Paradigm: A Practical
Method for the Non-Programmer

Chahid Kamel Ghaddar

ExcelWorks LLC, Sharon, MA 02067, USA; cghaddar@excel-works.com; Tel.: +1-781-626-0375

Received: 29 August 2018; Accepted: 26 September 2018; Published: 28 September 2018
����������
�������

Abstract: We devise a practical and systematic spreadsheet solution paradigm for general optimal
control problems. The paradigm is based on an adaptation of a partial-parametrization direct solution
method which preserves the original mathematical optimization statement, but transforms it into a
simplified nonlinear programming problem (NLP) suitable for Excel NLP solver. A rapid solution
strategy is implemented by a tiered arrangement of pure elementary calculus functions in conjunction
with Excel NLP solver. With the aid of the calculus functions, a cost index and constraints are
represented by equivalent formulas that fully encapsulate an underlining parametrized dynamical
system. Excel NLP solver is then employed to minimize (or maximize) the cost index formula,
by varying decision parameters, subject to the constraints formulas. The paradigm is demonstrated
for several fixed and free-time nonlinear optimal control problems involving integral and implicit
dynamic constraints with direct comparison to published results obtained by fundamentally different
methods. Practically, applying the paradigm involves no more than defining a few formulas using
basic Excel spreadsheet skills.

Keywords: optimal control; dynamic optimization; mathematical programming; differential
equations; parameter estimation; Excel spreadsheet; calculus functions

1. Introduction

Many researchers and academics often need to solve optimal control problems that are frequently
postulated in various engineering, social, and life sciences [1–3]. An optimal control problem is
concerned with finding control functions, (or policies), that achieve optimal trajectories for a set of
controlled differential state variables. The optimal trajectories are determined by solving a constrained
dynamical optimization problem, such that a cost index is minimized (or maximized), subject to
constraints on state variables and control functions. Mathematically, an optimal control problem may
be stated generally as follows (bold symbols indicate vector-valued functions):

Find control functions u(t) = (u1(t), u2(t), . . . , um(t)) and corresponding state variables
x(t) = (x1(t), x2(t), . . . , xn(t)), t ∈ [t0, tF] which minimize (or maximize) the cost index

J = H(x(T), T) +
∫ tF

t0

G(x(t),
.
x(t),

..
x(t), u(t),

.
u(t), t) dt, (1)

subject to

M
dx
dt

= F(x(t), u(t), t), (2)

with initial conditions
x(0) = x0, (3)

Math. Comput. Appl. 2018, 23, 54; doi:10.3390/mca23040054 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
http://www.mdpi.com/2297-8747/23/4/54?type=check_update&version=1
http://dx.doi.org/10.3390/mca23040054
http://www.mdpi.com/journal/mca

Math. Comput. Appl. 2018, 23, 54 2 of 28

and end conditions and bounds
Q(x(T), T) = 0, (4)

S
(
x(t), u(t),

.
x(t),

.
u(t)

)
≤ 0. (5)

In the formulation (1)–(5), the generally nonlinear H, and G are scalar functions, whereas F, Q and
S are vector valued functions. Typically, either H or Q are specified but not both in the same problem.
Common forms of Q and S are end conditions on the state variables, x(T) = xT , and bound constraints
on the controls, umin ≤ u(t) ≤ umax respectively. More general forms of S considered in this paper
include algebraic and integral constraints involving derivatives. The matrix M in (2) offers an optional
coupling of states’ temporal derivatives by a mass matrix which may be singular. If M is singular,
the equation system (2) is differential algebraic, or DAE. For uncoupled derivatives, M is the identity
matrix which can be omitted. Furthermore, tF, which denotes the final time, may be fixed or free.

Numerical solution strategies for (1)–(5) can be classified into two approaches: indirect and direct
methods. Indirect methods employ Pontryagin’s minimum principle to transform the problem into an
augmented Hamiltonian system requiring the solution of a boundary value problem which may be
hard to solve [4,5]. On the other hand, direct method approaches transform the original optimal control
problem into a nonlinear programming problem which can be solved by various established NLP
packages. The transformation is carried out via a discretization of the control and the state functions
on a time grid using some form of a collocation method [4,6,7]. Complete discretization of the state
and control functions eliminate the need to iteratively solve the inner initial value problem (IVP) (2) but
at the expense of a large numbers of decision variables for the NLP solver. Other direct approaches
rely only on a partial parametrization for the control functions using piecewise constant or higher
order polynomial approximations [8]. In this approach, the inner IVP must be solved repeatedly by
the outer NLP algorithm while searching for the optimal parameter vector. Except for the most trivial
cases, optimal control problems are inherently nontrivial to solve. They typically require a level of
programming fluency, in addition to a good understanding of the general structure of the solution
strategy, and the various solvers required to implement it [9].

In [10], the author introduced a practical spreadsheet method for solving a class of optimal control
problems using basic spreadsheet skills. The method utilized two elementary calculus functions: an
initial value problem solver and a discrete data integrator from an available Excel calculus Add-in [11]
in conjunction with Excel intrinsic NLP solver to formulate a partial-parametrization direct solution
strategy. With the aid of the calculus functions, a cost index was represented by an equivalent
formula that fully encapsulated a control-parametrized inner IVP (2)–(3). Excel NLP solver was
employed next for minimizing (or maximizing) the cost index formula, by varying a decision parameter
vector, subject to bounds constraints on state and control variables. The method proved effective at
solving several nonlinear optimal control problems reproduced from Elnagar and Kazemi [6] who
employed a full-parametrization direct method using pseudo-spectral approximation and NLPQL
optimization software.

This research paper aims at generalizing the method introduced in [10] for more general
formulations of optimal control than previously considered. More specifically, this paper demonstrates
a systematic solution strategy formulated by the aid of various elementary calculus functions,
for optimal control problems involving one or more of the following conditions: dependence on
higher order derivatives of state or control variables in the cost index and constraints; integral and
algebraic dynamic constraints; as well as implicit inner IVP. In addition, this paper investigates
convergence and error control of the method, and provides direct comparison of optimal trajectories
with published solutions obtained by fundamentally different methods.

It should be noted that the solution strategy formulation pursued in this research, although
founded on a common approach, follows closely the original mathematical problem statement,
and thus implementation of the strategy varies according to the given problem. Therefore, the paper
gives considerable emphasis on the application of the method using four representative problems

Math. Comput. Appl. 2018, 23, 54 3 of 28

selected from various applications. Results presented in Section 3 are remarkable, in terms of
convergence, agreement with published solutions, and notably, the minimal effort required to obtain
them with basic spreadsheet formulas.

In view of traditional spreadsheet applications, the devised solution strategy represents a leap
in the utilization of the spreadsheet for solving general optimal control problems. The strategy
departs markedly from prior spreadsheet approaches [12,13] by shifting the effort from a low-level
detailed algorithmic implementation to a high-level problem modeling. Prior approaches utilized
the spreadsheet explicitly as the computational grid for the discretization and solution of the inner
IVP. This effectively constrained the scope to rather simple problems that can be easily discretized
with an explicit differencing scheme suitable for the spreadsheet. In contrast, we employ a set of
pure calculus functions for computing integrals, derivatives and solving differential equations as the
building blocks for a direct solution method. The calculus functions, described in Appendix A, utilize
adaptive algorithms which are independent of the spreadsheet grid and thus suitable for a general
class for nonlinear stiff problems. The calculus functions are utilized in formulas just like intrinsic
math functions based on a simple input/output model. In essence, the calculus functions represent
a natural extension of the built-in spreadsheet math functions with the allowance that some of their
input arguments are functions themselves and not just static values.

The reminder of this paper is organized as follows: In the next section, we present an outline of
the general steps required to implement the direct spreadsheet solution strategy, and discuss sources of
errors that impact convergence and accuracy of the solution as well as possible remedies. In Section 3,
we apply the method for solving four different optimal control problems selected to demonstrate
the various conditions outlined earlier. Direct comparisons of optimal trajectories obtained by the
method versus published solutions obtained by fundamentally different approaches are also provided.
In addition, effects of parametrization order and error control are investigated in some problems.
Section 4 presents concluding remarks as well as directions for future research. Detailed descriptions
of the various calculus functions utilized in this work are included in Appendix A.

2. Mechanics of Spreadsheet Direct Method

The solution strategy is based on an adaptation of the control-parametrization direct approach [4,8]
by an analogous spreadsheet functional formulation. The building blocks of the functional formulation
are a set of calculus spreadsheet functions [11,14] which integrate with the spreadsheet, like intrinsic
pure math functions, but also accept formulas as a new type of argument for solving problems in
integral, algebraic, and differential calculus. For example, an integration function accepts a formula
and limits as inputs, and it outputs an accurate integral value much like an intrinsic math function
accepts a number and computes its square root. Specifically, we make use of the following functions
from a calculus Add-in [11]:

• Initial value problem solver, IVSOLVE, using RADAU5 an implicit 5th-order Runge-Kutta
algorithm with adaptive time step [15].

• Discrete data Integrator, QUADXY, using cubic splines [16].
• Discrete data differentiator, DERIVXY, using cubic splines [16].
• Formula integrator, QUADF, using Gauss quadrature with adaptive error control [17].

The functions are utilized in combination with Excel NLP solver, which is based on the Generalized
Reduced Gradient algorithm based on Lasdon and Waren [18]. A detailed description of the calculus
functions usage, and respective algorithms are given in Appendix A. The critical characteristic of
the calculus functions which permits their seamless utilization with the NLP solver in a functional
paradigm, is the mathematical purity property. The calculus functions do not modify their inputs,
and produce no side effects in the spreadsheet. They only compute and display a solution result in
their allocated spreadsheet memory cells. The authority to modify the inputs to the calculus functions,
via changes to the decision parameter vector, is confined to the outer NLP solver command.

Math. Comput. Appl. 2018, 23, 54 4 of 28

Below, we describe the main elements of the solution strategy introduced originally in [10] but
generalized in this work for solving general optimal control problem (1)–(5) with the aim of supporting
the various conditions outlined earlier.

2.1. Solution Strategy

The strategy comprises three ordered steps which are implemented by the aid of calculus functions:
In the first step, we obtain an initial solution to the inner IVP (2)–(3), based on suitable

parametrization for the control functions with initial guesses for the unknown parameters and a
final time for free-time problems. The unknown parameters and the final time constitute the decision
variables for the final optimization step by the outer NLP solver. Any prior information about the
controls should be incorporated in the specified parametrization. Absent any information, a low-order
polynomial is often an adequate choice. The initial IVP solution is obtained by the calculus function
IVSOLVE which displays the state variables, x(t), in an allocated array of the spreadsheet at uniform
output time points. It should be noted that output time grid is determined by the number of rows
in the allocated output array but is, otherwise, unrelated to the accuracy of the computed solution.
To display a finer output time grid, a larger output array should be allocated. However, the resolution
of the output time grid affects the accuracy of the computed integrals for the cost index and any
integral constraints which is discussed in Section 2.2. Optional parameters to IVSOLVE could also be
used to control or specify the output time points.

In the second step, we construct an analogous formula for the cost index (1) dependent on
the initial solution outputted by IVSOLVE. The cost index may depend on x(t), the control values,
u(t), as well as first and higher order derivatives of the state variables and controls. Values for u(t),
.
u(t) and higher derivatives are readily generated using the specified parametrized formula for a
control u(t). The spreadsheet is particularly suited for such computations using its AutoFill feature.
On the other hand, values for the state variables derivatives

.
x(t), and

..
x(t) are not readily available

and must be approximated by differentiating x(t) values obtained by IVSOLVE. We accomplish
this task by the aid of a discrete data differentiator calculus function DERIVXY which computes
derivatives using cubic splines to model the best function described by x(t). With all the necessary
values obtained, we proceed to defining an analogous formula for the cost index, which is typically
defined as a continuous time integral of an algebraic integrand. The devised method is to sample the
integrand expression using the obtained values for the states, controls and their derivatives, followed
by employing a discrete data integrator calculus function QUADXY to integrate a cubic-spline fit
function through the sampled integrand. Depending on a particular problem formulation, it may be
necessary to define additional formulas to represent constraints equations (5) that may be present.
Such formulas can often be constructed in a similar way to the cost index formula using appropriate
calculus functions. In particular, we shall demonstrate in Section 3 using an additional formula
integrator function QUADF to define an integral constraint formula.

Figure 1 illustrates the aforementioned steps applied to an optimal control problem with one
control and two state variables. An initial IVP solution, which is dependent on a decision parameters
vector, is obtained with IVSOLVE in an array (Figure 1a). Values for the control, u(t), and any
needed state derivatives such as

..
x1(t), are generated in additional columns (Figure 1b,c) at the time

values of the IVP solution. Next, the cost index integrand expression is sampled at the IVP solution
times (Figure 1d), and the sample is then integrated to define the cost index formula (Figure 1e).
The generated values interdependence hierarchy ensures that any change to the decision parameters
vector, such as by an outer NLP solver, will trigger reevaluation of the cost index formula in the proper
order shown in the figure. The cost index formula thus fully encapsulates the inner IVP problem.

In the last step, we configure Excel NLP solver to minimize (or maximize) the cost index formula
by varying the decision parameters vector subject to bounds, end conditions and other present
constraints. Bound constraints on x(t), as well as end point constraints on x(T), are imposed directly
on the corresponding values in the IVP solution array. More general constraints are imposed on

Math. Comput. Appl. 2018, 23, 54 5 of 28

additional formulas constructed in step 2 as needed. The three steps are demonstrated on several
examples in the next section.

Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 5 of 28

 A B C D E F G H I

1 t X1 X2 u(t) X1’’(t) Integrand(t) Cost Index

2 0 # # # # # #

3 0.05 # # # # #

4 0.1 # # # # #

100 4.9 # # # # #

101 4.95 # # # # #

102 5 # # # # #

Figure 1. Illustration of the ordered steps to define an analog formula for the cost index (1) which

encapsulates the inner IVP (2)–(3).

2.2. Convergence and Error Control

Two sources of errors are introduced by the spreadsheet method with respect to the original

problem. The first error is introduced by restricting the space of admissible control functions to a

finite‐dimensional space, for example, variable‐order polynomials up to a fixed degree. For some

problems, it may not be possible to find a solution if the optimal control, in fact, lies outside the

admissible space. The second source of error is introduced by the calculus numerical algorithms. This

error can be further split into two sources. The error associated with solution of the inner IVP, and

the error associated with integration (or differentiation) of discrete data sets generated from the IVP

solution. The first error is bounded by the tolerances specified for IVSOLVE algorithm. The second

error impacts the accuracy of the computed integral for the cost index. Under the assumption that

the discrete data describe a smooth curve, the computed integral by QUADXY using cubic splines is

generally quite accurate. However, it may be further improved by any of the following acts.

 Increasing the size of the data set by increasing the number of rows of the allocated IVP solution

array to output a finer time grid.

 Supplying optional slopes at the end points of the curve to the calculus function when available.

The slopes may be derived analytically from the integrand expression and can improve the

accuracy of the spline fit near the curve edges.

 Using a nonuniform output time points clustered near rapidly‐varying regions of the state

trajectories. This can be controlled via optional arguments to IVSOLVE including supplying

exact values for the output time points.

In practice, we have found that the parametrization order and the starting guess for unknown

parameters to be the most important factors influencing convergence. We have generally used

polynomials up to 5th order which have performed reasonably well. On the other hand, increasing

the output array for IVP solution beyond a reasonable size, on the order of 100 uniform subdivision

for the time interval, has not generally resulted in a consistent or significant improvement of the

result. In the examples next section, we shall demonstrate the effects of both increasing the

parametrization order and reducing the output time interval.

3. Illustrative Optimal Control Problems

(a)

IVP solution array obtained with IVSOLVE

(b)

Control values

generated from

parameterized

formula

(c)

𝑥 𝑡 generated
using DERIVXY

(d)

Cost integrand

sampled using

columns A to F

(e)

Cost index formula

defined by integrating

(e) using QUADXY

Figure 1. Illustration of the ordered steps to define an analog formula for the cost index (1) which
encapsulates the inner IVP (2)–(3).

2.2. Convergence and Error Control

Two sources of errors are introduced by the spreadsheet method with respect to the original
problem. The first error is introduced by restricting the space of admissible control functions to a
finite-dimensional space, for example, variable-order polynomials up to a fixed degree. For some
problems, it may not be possible to find a solution if the optimal control, in fact, lies outside the
admissible space. The second source of error is introduced by the calculus numerical algorithms.
This error can be further split into two sources. The error associated with solution of the inner IVP,
and the error associated with integration (or differentiation) of discrete data sets generated from the
IVP solution. The first error is bounded by the tolerances specified for IVSOLVE algorithm. The second
error impacts the accuracy of the computed integral for the cost index. Under the assumption that
the discrete data describe a smooth curve, the computed integral by QUADXY using cubic splines is
generally quite accurate. However, it may be further improved by any of the following acts.

• Increasing the size of the data set by increasing the number of rows of the allocated IVP solution
array to output a finer time grid.

• Supplying optional slopes at the end points of the curve to the calculus function when available.
The slopes may be derived analytically from the integrand expression and can improve the
accuracy of the spline fit near the curve edges.

• Using nonuniform output time points clustered near rapidly-varying regions of the state
trajectories. This can be controlled via optional arguments to IVSOLVE including supplying
exact values for the output time points.

In practice, we have found that the parametrization order and the starting guess for unknown
parameters to be the most important factors influencing convergence. We have generally used
polynomials up to 5th order which have performed reasonably well. On the other hand, increasing
the output array for IVP solution beyond a reasonable size, on the order of 100 uniform subdivisions
for the time interval, has not generally resulted in a consistent or significant improvement of the
result. In the examples in the next section, we shall demonstrate the effects of both increasing the
parametrization order and reducing the output time interval.

Math. Comput. Appl. 2018, 23, 54 6 of 28

3. Illustrative Optimal Control Problems

In the following subsections we apply the method to four different optimal control problems
representing various engineering applications and compare the optimal trajectories with published
solutions. The computations were carried out on a standard laptop computer with an Intel i7 four-core
processor at 2.70 GHz running Microsoft Windows 10 and Excel 2016 with ExceLab calculus add-in [11],
which enables the calculus function in Excel. A supplementary Excel workbook containing the solved
examples is available for downloading from the publisher.

3.1. Minimum Energy Shape: Hanging Chain

The first example is concerned with finding the shape u(t) of a chain of length L suspended
between two points, such that its total energy is minimized. We state the problem as described in [19]
with L = 4, below:

Find u(t) which minimizes the total energy cost index

J =
∫ 1

0
u(t)

√
1 +

.
u(t)2dt, (6)

subject to the chain length constraint

∫ 1

0

√
1 +

.
u(t)2dt = 4, (7)

and the end conditions
u(0) = 1, (8)

u(1) = 3. (9)

Note that in this problem formulation, the inner IVP is implicitly defined by the integral
constraint (7). Dolan et al. [19] reformulated the problem, via variable substitution, as a standard
optimal control problem subject to a system of explicit differential equations and solved it by a
direct approach. Discretization was done using a uniform time step and the trapezoidal rule for the
integration. Results for the AMPL implementation were reported using several solvers including
KNITRO and LOQO. The best cost index was found at 5.06852 starting from a quadratic approximation
and using a grid of 800 nodes. Our spreadsheet solution below is formulated based on the original
problem statement (6)–(9).

3.1.1. Solution by Direct Spreadsheet Method

Referring to Figure 2, we setup problem (6)–(9) in Excel using named variables with labels listed
in column A. The shape function u(t) was parametrized using a 3rd order polynomial with unknown
coefficients c_0, c_1, c_2 and c_3 as shown by formula B7. In B15 and B16, formulas for the initial and
final values, u(0) and u(1) were defined by evaluating B7 at time equal zero and one (these formulas are
used later to impose the constraints (8)–(9)). An additional formula was defined in B8, (named udot),
for the shape function derivative,

.
u(t) by differentiating B7 with respect to time. Next, we defined the

cost index integral (6), by using the integration calculus function QUADF as shown in B11. The first

parameter to QUADF is the integrand u(t)
√

1 +
.
u(t)2 which is defined by the equivalent formula

in B10. The 2nd parameter is the variable of integration t, and the 3rd and 4th parameters are the
integration limits. Likewise, with the aid of QUADF, we defined the constraint integral (7) as shown in
B14 (named I_c). This completed the model needed to run Excel NLP solver.

3.1.2. Results and Analysis

Excel NLP solver is invoked from the Data tab on Excel Ribbon and displays a dialog to enter
the problem objective, variables and constraints. Figure 3 shows the inputs for problem 3.1 in which

Math. Comput. Appl. 2018, 23, 54 7 of 28

the objective J (B11), was selected to be minimized, by varying the parameters c_0, c_1, c_2 and c_3,
subject to the three constraints: I_c = 4, corresponding to (7); u_0 = 1, corresponding to (8); and u_1 = 3,
corresponding to (9).

Math. Comput. Appl. 2018, 23, x 7 of 27

 A B
1 t
2 Parametrized chain shape function
3 c_0 0
4 c_1 0
5 c_2 0
6 c_3 0
7 u =c_0+c_1*t+c_2*t^2+c_3*t^3
8 udot =c_1+2*c_2*t+3*c_3*t^2
9 Cost Index

10 =u*(SQRT(1+udot^2))
11 J =QUADF(B10,t,0,1)
12 Constraints definitions
13 =SQRT(1+udot^2)
14 I_c =QUADF(B13,t,0,1)
15 u_0 =c_0
16 u_1 =c_0+c_1+c_2+c_3

Figure 2. Spreadsheet parametrized model for problem 3.1.

Figure 3. Input to Excel solver for problem 3.1 based on the spreadsheet model in Figure 2.

Figure 2. Spreadsheet parametrized model for problem 3.1.

Math. Comput. Appl. 2018, 23, x 7 of 27

 A B
1 t
2 Parametrized chain shape function
3 c_0 0
4 c_1 0
5 c_2 0
6 c_3 0
7 u =c_0+c_1*t+c_2*t^2+c_3*t^3
8 udot =c_1+2*c_2*t+3*c_3*t^2
9 Cost Index

10 =u*(SQRT(1+udot^2))
11 J =QUADF(B10,t,0,1)
12 Constraints definitions
13 =SQRT(1+udot^2)
14 I_c =QUADF(B13,t,0,1)
15 u_0 =c_0
16 u_1 =c_0+c_1+c_2+c_3

Figure 2. Spreadsheet parametrized model for problem 3.1.

Figure 3. Input to Excel solver for problem 3.1 based on the spreadsheet model in Figure 2. Figure 3. Input to Excel solver for problem 3.1 based on the spreadsheet model in Figure 2.

Math. Comput. Appl. 2018, 23, 54 8 of 28

The solver converged, starting from a zero guess for the parameters in less than a second to the
result shown in Figure 4 with a final cost index of 5.0751. The optimal shape function u(t) is plotted in
Figure 5 together with digitally-read values from the plot published in [19].

Math. Comput. Appl. 2018, 23, x 8 of 27

The solver converged, starting from a zero guess for the parameters in less than a second to the
result shown in Figure 4 with a final cost index of 5.0751. The optimal shape function u(t) is plotted
in Figure 5 together with digitally-read values from the plot published in [19].

Figure 4. Answer report generated by Excel solver using 3rd order parametrization for problem 3.1.

Figure 5. Optimal u(t) computed using 3rd order parametrization for problem 3.1. Reported values
by Dolan et al. are also shown.

Figure 4. Answer report generated by Excel solver using 3rd order parametrization for problem 3.1.

Math. Comput. Appl. 2018, 23, x 8 of 27

The solver converged, starting from a zero guess for the parameters in less than a second to the
result shown in Figure 4 with a final cost index of 5.0751. The optimal shape function u(t) is plotted
in Figure 5 together with digitally-read values from the plot published in [19].

Figure 4. Answer report generated by Excel solver using 3rd order parametrization for problem 3.1.

Figure 5. Optimal u(t) computed using 3rd order parametrization for problem 3.1. Reported values
by Dolan et al. are also shown.
Figure 5. Optimal u(t) computed using 3rd order parametrization for problem 3.1. Reported values by
Dolan et al. are also shown.

Math. Comput. Appl. 2018, 23, 54 9 of 28

The difference between the value reported by Dolan et al. [19] and our computed value using a
cubic approximation for u(t) is approximately 0.13%. We have tried a quadratic approximation and
obtained a slightly higher cost index of 5.078412. It is likely that the small difference originated from
integration error in [19] using a trapezoidal rule, whereas the integration in our solution by QUADF
calculus function is based on an adaptive Gauss-quadrature scheme [17] which is accurate to machine
precision for a smooth polynomial integrand.

To demonstrate the effect of control parametrization order on the result, next we tried a 5th-order
polynomial approximation to the shape function u(t), but also appended the problem with one
additional constraint:

u(t) ≥ 0. (10)

Incorporating (10) into the spreadsheet model was accomplished as follows. In a new column, a vector
of time values from 0 to 1 in increment of 0.1 was generated using Excel AutoFill feature, along with a
corresponding vector for the parametrized shape formula as shown in Figure 6. To impose (10), it is
sufficient to demand that the minimum value of the shape vector, as computed in F13 of Figure 6,
be greater than or equal to zero. Running the NLP solver with the added constraint yielded a cost
index of 4.654 as shown in Figure 7 and plotted in Figure 8. The higher-order approximation to the
shape function has resulted in a considerably lower cost index, by more than 8.3%, compared to that
reported by Dolan et al. [19].

Math. Comput. Appl. 2018, 23, x 9 of 27

The difference between the value reported by Dolan et al. [19] and our computed value using a
cubic approximation for u(t) is approximately 0.13%. We have tried a quadratic approximation and
obtained a slightly higher cost index of 5.078412. It is likely that the small difference originated from
integration error in [19] using a trapezoidal rule, whereas the integration in our solution by QUADF
calculus function is based on an adaptive Gauss-quadrature scheme [17] which is accurate to machine
precision for a smooth polynomial integrand.

To demonstrate the effect of control parametrization order on the result, next we tried a 5th-order
polynomial approximation to the shape function u(t), but also appended the problem with one additional
constraint: 𝑢(𝑡) ≥ 0. (10)

Incorporating (10) into the spreadsheet model was accomplished as follows. In a new column, a vector of
time values from 0 to 1 in increment of 0.1 was generated using Excel AutoFill feature, along with a
corresponding vector for the parametrized shape formula as shown in Figure 6. To impose (10), it is
sufficient to demand that the minimum value of the shape vector, as computed in F13 of Figure 6, be
greater than or equal to zero. Running the NLP solver with the added constraint yielded a cost index of
4.654 as shown in Figure 7 and plotted in Figure 8. The higher-order approximation to the shape function
has resulted in a considerably lower cost index, by more than 8.3%, compared to that reported by
Dolan et al. [19].

 E F
1 t u(t)
2 0 1
3 0.1 1.11111
4 0.2 1.24992
5 0.3 1.42753
6 0.4 1.65984
7 0.5 1.96875
8 0.6 2.38336
9 0.7 2.94117

10 0.8 3.68928
11 0.9 4.68559
12 1 6
13 min(u) 1

Figure 6. Parametrized u(t) function is sampled with AutoFill to provide a handle on its minimum
value for the purpose of imposing constraint (10).

=c_0+c_1*E2+c_2*E2^2+c_3*E2^3+c_4*E2^4+c_5*E2^5

=MINA(F2:F12)

Figure 6. Parametrized u(t) function is sampled with AutoFill to provide a handle on its minimum
value for the purpose of imposing constraint (10).

Math. Comput. Appl. 2018, 23, 54 10 of 28

Math. Comput. Appl. 2018, 23, x 10 of 27

Figure 7. Answer report generated by Excel solver using a 5th order parametrization for problem 3.1
with the added constrained (10).

Figure 8. Optimal u(t) computed by using 5th order parametrization for problem 3.1. The higher-cost
solution with 3rd order parametrization and reported values by Dolan et al. are also shown.

Figure 7. Answer report generated by Excel solver using a 5th order parametrization for problem 3.1
with the added constrained (10).

Math. Comput. Appl. 2018, 23, x 10 of 27

Figure 7. Answer report generated by Excel solver using a 5th order parametrization for problem 3.1
with the added constrained (10).

Figure 8. Optimal u(t) computed by using 5th order parametrization for problem 3.1. The higher-cost
solution with 3rd order parametrization and reported values by Dolan et al. are also shown.

Figure 8. Optimal u(t) computed by using 5th order parametrization for problem 3.1. The higher-cost
solution with 3rd order parametrization and reported values by Dolan et al. are also shown.

3.2. Quadratic Control Problem with Integral Constraint

The following problem which involves an integral dynamic constraint was studied by
Lim et al. [20], who showed the that the optimal control can be calculated by solving an optimal

Math. Comput. Appl. 2018, 23, 54 11 of 28

parameter selection problem together with an unconstrained LQ problem. The optimal control
problem is stated as follows:

Find u1(t), u2(t), t ∈ [0, 1] which minimize the cost index

J = 0.5 x1(1)
2 + 0.5

∫ 1

0

(
x1

2 + u1
2 + u2

2
)

dt, (11)

subject to
.
x1 = 3x1 + x2 + u1, (12)

.
x2 = −x1 + 2x2 + u2, (13)

with initial conditions
x1(0) = 4, x2(0) = −4, (14)

and integral bounds constraint (There appears to be a typographical error in [20] where (15) is stated
as less than 8. The actual value appears to be 80 since 8 would clearly violate the constraint at the
reported optimal solution in [20].)

0.5 x2(1)
2 + 0.5

∫ 1

0

(
x1

2 + u1
2 + u2

2
)

dt ≤ 80. (15)

Lim et al. [20] calculated, with aid of control software MISER 3.1, an optimal cost index J of 62.66103.

3.2.1. Solution by Direct Spreadsheet Method

Referring to Figure 9 and working with named variables shown in column A, both u1(t) and u2(t)
were parametrized using 3rd-order polynomials as shown in B10 and B11, and the IVP equations (12)
and (13) were defined by equivalent formulas in B13 and B14. The state variables x1 and x2 are assigned
the initial conditions as shown in B3 and B4. Next, an initial solution to the underlining IVP (12)–(14)
was obtained by evaluating the formula

=IVSOLVE(B13:B14, B2:B4, {0,1}) (16)

in an allocated array E1:G102. IVSOLVE was passed the IVP equations B13:B14, the IVP variables B2:B4,
and the time interval [0, 1] and computed a formatted result shown partially in Figure 10. Here we
have allocated 102 rows for the result array to display the solution at uniform time steps of 0.01.

To define an equivalent formula for the cost index (11), we proceeded by sampling the controls
formulas, and the cost index integrand as shown in columns I, J and K of Figure 10 by starting from the
initial formulas shown in the figure and using AutoFill to generate the values. (Note the hierarchical
interdependence of the generated columns on the IVP solution). Next, we defined the cost index
formula in which the discrete data integrator calculus function QUADXY was employed to integrate
the sampled integrand as shown in B16 of Figure 9. Similarly, we defined an analog formula for the
integral constraint (15) as shown in B18 of Figure 9, and thus prepared all the input needed to run
Excel NLP solver next.

Math. Comput. Appl. 2018, 23, 54 12 of 28

Math. Comput. Appl. 2018, 23, x 12 of 27

 A B C D
1 ODE variables with initial conditions
2 t
3 x_1 4
4 x_2 -4
5 Parametrized controls with starting guess
6 c_0 0 d_0 0
7 c_1 0 d_1 0
8 c_2 0 d_2 0
9 c_3 0 d_3 0

10 u_1 =c_0+c_1*t+c_2*t^2+c_3*t^3
11 u_2 =d_0+d_1*t+d_2*t^2+d_3*t^3
12 ODE rhs equations
13 x1dot =3*x_1+x_2+u_1
14 x2dot =-x_1+2*x_2+u_2
15 Cost Index
16 J =0.5*F102^2+0.5*QUADXY(E2:E102,K2:K102)
17 Constraint
18 con =0.5*G102^2+0.5*QUADXY(E2:E102,K2:K102)

Figure 9. Spreadsheet parametrized model for problem 3.2. The colored ranges are inputs for IVSOLVE
formula (16).

Figure 10. Partial display of IVP (12)–(14) solution obtained by IVSOLVE formula (16), and dependent
generated columns for the parametrized controls formulas, and the integrand expression for the cost
index (11).

3.2.2. Results and Analysis

Excel solver was configured to minimize the cost index B16, by varying the controls coefficients
B6:B9 and D6:D9, subject to the integral constraint B18 being smaller than or equal to 80. Excel solver
converged in approximately eight seconds to the solution shown in Figure 11 and plotted in Figure
12. The obtained cost index at 59.1471 was lower than reported by Lim et al. [20] at 62.66103 using an
indirect approach with MISER 3.1. Figure 13 provides direct comparisons for 𝑥 (t), 𝑢 (𝑡) and 𝑢 (𝑡)
trajectories obtained by the current method and digitized plot values from [20]. The plots show good
agreement despite fundamentally different solution strategies.

Figure 9. Spreadsheet parametrized model for problem 3.2. The colored ranges are inputs for IVSOLVE
formula (16).

Math. Comput. Appl. 2018, 23, x 12 of 27

 A B C D
1 ODE variables with initial conditions
2 t
3 x_1 4
4 x_2 -4
5 Parametrized controls with starting guess
6 c_0 0 d_0 0
7 c_1 0 d_1 0
8 c_2 0 d_2 0
9 c_3 0 d_3 0

10 u_1 =c_0+c_1*t+c_2*t^2+c_3*t^3
11 u_2 =d_0+d_1*t+d_2*t^2+d_3*t^3
12 ODE rhs equations
13 x1dot =3*x_1+x_2+u_1
14 x2dot =-x_1+2*x_2+u_2
15 Cost Index
16 J =0.5*F102^2+0.5*QUADXY(E2:E102,K2:K102)
17 Constraint
18 con =0.5*G102^2+0.5*QUADXY(E2:E102,K2:K102)

Figure 9. Spreadsheet parametrized model for problem 3.2. The colored ranges are inputs for IVSOLVE
formula (16).

Figure 10. Partial display of IVP (12)–(14) solution obtained by IVSOLVE formula (16), and dependent
generated columns for the parametrized controls formulas, and the integrand expression for the cost
index (11).

3.2.2. Results and Analysis

Excel solver was configured to minimize the cost index B16, by varying the controls coefficients
B6:B9 and D6:D9, subject to the integral constraint B18 being smaller than or equal to 80. Excel solver
converged in approximately eight seconds to the solution shown in Figure 11 and plotted in Figure
12. The obtained cost index at 59.1471 was lower than reported by Lim et al. [20] at 62.66103 using an
indirect approach with MISER 3.1. Figure 13 provides direct comparisons for 𝑥 (t), 𝑢 (𝑡) and 𝑢 (𝑡)
trajectories obtained by the current method and digitized plot values from [20]. The plots show good
agreement despite fundamentally different solution strategies.

Figure 10. Partial display of IVP (12)–(14) solution obtained by IVSOLVE formula (16), and dependent
generated columns for the parametrized controls formulas, and the integrand expression for the cost
index (11).

3.2.2. Results and Analysis

Excel solver was configured to minimize the cost index B16, by varying the controls coefficients
B6:B9 and D6:D9, subject to the integral constraint B18 being smaller than or equal to 80. Excel solver
converged in approximately eight seconds to the solution shown in Figure 11 and plotted in Figure 12.
The obtained cost index at 59.1471 was lower than reported by Lim et al. [20] at 62.66103 using an

Math. Comput. Appl. 2018, 23, 54 13 of 28

indirect approach with MISER 3.1. Figure 13 provides direct comparisons for x1(t), u1(t) and u2(t)
trajectories obtained by the current method and digitized plot values from [20]. The plots show good
agreement despite fundamentally different solution strategies.

Math. Comput. Appl. 2018, 23, x 13 of 27

To investigate the effect of numerical integration error on the result, we increased the output
array for IVSOLVE from 102 to 502 rows which reduced output time increment from 0.01 to 0.002.
However, this has resulted in only minor improvement of the cost index to 59.1429, with otherwise
insignificant change to the original solution which indicated the initial output time step of .01 was
sufficient for accurate integration.

Figure 11. Answer report generated by Excel solver for problem 3.2.

Figure 12. Optimal trajectories computed by the spreadsheet method for problem 3.2.

Figure 11. Answer report generated by Excel solver for problem 3.2.

Math. Comput. Appl. 2018, 23, x 13 of 27

To investigate the effect of numerical integration error on the result, we increased the output
array for IVSOLVE from 102 to 502 rows which reduced output time increment from 0.01 to 0.002.
However, this has resulted in only minor improvement of the cost index to 59.1429, with otherwise
insignificant change to the original solution which indicated the initial output time step of .01 was
sufficient for accurate integration.

Figure 11. Answer report generated by Excel solver for problem 3.2.

Figure 12. Optimal trajectories computed by the spreadsheet method for problem 3.2. Figure 12. Optimal trajectories computed by the spreadsheet method for problem 3.2.

Math. Comput. Appl. 2018, 23, 54 14 of 28

Math. Comput. Appl. 2018, 23, x 14 of 27

Figure 13. Direct comparison of spreadsheet solution with reported solution obtained by Lim et al. [20]
for problem 3.2.

3.3. Robot Motion Planning: Obstacle Avoidance

The third problem is concerned with planning a 2D motion for a robot from point A (0, 0) to point
B (1, 1), to avoid two circular obstacles of radius 𝑅 = 0.1, centered at (0.4, 0.5) and (0.8, 1.5), while using
the least amount of energy. The two controls for the robot motion are the constant speed, v, and the
variable angle (direction), 𝜃(𝑡) of the motion. The corresponding optimal control problem has the
following form [21]:

Find 𝑣, 𝜃(𝑡), 𝑡 ∈ [0,1] which minimize the energy cost index 𝐽 = 𝑥(𝑡) + 𝑦(𝑡) 𝑑𝑡, (17)

subject to 𝑥(𝑡) = 𝑣 ∗ cos (𝜃), (18) 𝑦(𝑡) = 𝑣 ∗ sin (𝜃), (19)

with initial conditions 𝑥(0) = 0, 𝑦(0) = 0, (20)

end conditions 𝑥(1) = 1.2, 𝑦(1) = 1.6, (21)

and trajectory constraints which model the circles to be avoided (𝑥(𝑡) − 0.4) + (𝑦(𝑡) − 0.5) ≥ 0.1, (22) (𝑥(𝑡) − 0.8) + (𝑦(𝑡) − 1.5) ≥ 0.1. (23)

Note that the cost index in this example depends on the second derivatives of the state variables.

Figure 13. Direct comparison of spreadsheet solution with reported solution obtained by Lim et al. [20]
for problem 3.2.

To investigate the effect of numerical integration error on the result, we increased the output array
for IVSOLVE from 102 to 502 rows which reduced output time increment from 0.01 to 0.002. However,
this has resulted in only minor improvement of the cost index to 59.1429, with otherwise insignificant
change to the original solution which indicated the initial output time step of .01 was sufficient for
accurate integration.

3.3. Robot Motion Planning: Obstacle Avoidance

The third problem is concerned with planning a 2D motion for a robot from point A (0, 0) to
point B (1, 1), to avoid two circular obstacles of radius R2 = 0.1, centered at (0.4, 0.5) and (0.8, 1.5),
while using the least amount of energy. The two controls for the robot motion are the constant speed,
v, and the variable angle (direction), θ(t) of the motion. The corresponding optimal control problem
has the following form [21]:

Find v, θ(t), t ∈ [0, 1] which minimize the energy cost index

J =
∫ 1

0

..
x(t)2 +

..
y(t)2 dt, (17)

subject to
.
x(t) = v ∗ cos(θ), (18)
.
y(t) = v ∗ sin(θ), (19)

with initial conditions
x(0) = 0, y(0) = 0, (20)

end conditions
x(1) = 1.2, y(1) = 1.6, (21)

and trajectory constraints which model the circles to be avoided

(x(t)− 0.4)2 + (y(t)− 0.5)2 ≥ 0.1, (22)

Math. Comput. Appl. 2018, 23, 54 15 of 28

(x(t)− 0.8)2 + (y(t)− 1.5)2 ≥ 0.1. (23)

Note that the cost index in this example depends on the second derivatives of the state variables.

3.3.1. Solution by Direct Spreadsheet Method

Referring to Figure 14, the speed was parametrized using the named variable v for B6 with
initial value of 1, and the angle (named theta in B13) was parametrized with a fifth order polynomial.
Using the named variable t, x and y, the IVP formulas (18) and (19) were defined in B15 and B16.
An initial IVP solution was obtained by evaluating IVSOLVE formula (24) in array D1:F102 shown
partially in Figure 15.

=IVSOLVE(B15:B16, B2:B4, {0,1}) (24)

The next task was to define an analog formula for the cost index (17). The integrand for the cost
index depends on

..
x(t), and

..
y(t) which we needed to generate. Although

..
x(t), and

..
y(t) can be derived

analytically for this particular problem by differentiating (18) and (19), we elected to compute them
numerically using the discrete data differentiator calculus function DERIVXY as shown in columns H
and I of Figure 15. For example, to compute

..
x(t), we started from the formula

=DERIVXY(D2:D102, E2:E102, D2, 2) (25)

in H2 passing in, respectively, the time and x vectors from the IVP solution array, the point of
differentiation, and the order of the x derivative to compute. Next, the AutoFill was used to generate
values for all the points in the time vector. Note that the first two arguments in (25) were locked using
Excel $ operator to prevent these values from being incremented during the AutoFill, allowing only D2
to be incremented. Values for the integrand expression

..
x(t)2 +

..
y(t)2 were then readily generated in a

new column L and integrated with respect to the time vector by using the calculus function QUADXY
as shown in B18 of Figure 14.

Math. Comput. Appl. 2018, 23, x 15 of 27

3.3.1. Solution by Direct Spreadsheet Method

Referring to Figure 14, the speed was parametrized using the named variable v for B6 with initial
value of 1, and the angle (named theta in B13) was parametrized with a fifth order polynomial. Using
the named variable t, x and y, the IVP formulas (18) and (19) were defined in B15 and B16. An initial
IVP solution was obtained by evaluating IVSOLVE formula (24) in array D1:F102 shown partially in
Figure 15.

=IVSOLVE(B15:B16, B2:B4, {0,1}) (24)

The next task was to define an analog formula for the cost index (17). The integrand for the cost
index depends on 𝑥(𝑡), and 𝑦(𝑡) which we needed to generate. Although 𝑥(𝑡), and 𝑦(𝑡) can be
derived analytically for this particular problem by differentiating (18) and (19), we elected to compute
them numerically using the discrete data differentiator calculus function DERIVXY as shown in
columns H and I of Figure 15. For example, to compute 𝑥(𝑡), we started from the formula

=DERIVXY(D2:D102, E2:E102, D2, 2) (25)

in H2 passing in, respectively, the time and x vectors from the IVP solution array, the point of
differentiation, and the order of the x derivative to compute. Next, the AutoFill was used to generate
values for all the points in the time vector. Note that the first two arguments in (25) were locked using
Excel $ operator to prevent these values from being incremented during the AutoFill, allowing only
D2 to be incremented. Values for the integrand expression 𝑥(𝑡) + 𝑦(𝑡) were then readily generated
in a new column L and integrated with respect to the time vector by using the calculus function
QUADXY as shown in B18 of Figure 14.

 A B
1 ODE system variables with initial conditions
2 t
3 x 0
4 y 0
5 Parametrized controls with starting guess
6 v 1
7 c_0 1
8 c_1 0
9 c_2 0

10 c_3 0
11 c_4 0
12 c_5 0
13 theta =c_0+c_1*t+c_2*t^2+c_3*t^3+c_4*t^4+c_5*t^5
14 ODE system equations
15 dxdt =v*COS(theta)
16 dydt =v*SIN(theta)
17 Cost Index
18 J =QUADXY(D2:D102,J2:J102)
19 Path constraint helpers
20 min(c1) =MINA(L2:L102)
21 min(c2) =MINA(M2:M102)

Figure 14. Spreadsheet parametrized model for problem 3.3. The colored ranges are inputs for IVSOLVE
formula (24).

Figure 14. Spreadsheet parametrized model for problem 3.3. The colored ranges are inputs for
IVSOLVE formula (24).

Math. Comput. Appl. 2018, 23, 54 16 of 28Math. Comput. Appl. 2018, 23, x FOR PEER REVIEW 16 of 28

 D E F G H I J K L M

1 t x y d2xdt2 d2ydt2 J integrand c1 c2

2 0 0 0 3.33E‐14 2.66E‐13 7.21E‐26 0.41 2.89

3 0.01 0.005403 0.008415 ‐9.3E‐15 0 8.56E‐29 0.397363 2.856211

4 0.02 0.010806 0.016829 ‐5.2E‐14 ‐2.7E‐13 7.37E‐26 0.384926 2.822622

101 0.99 0.534899 0.833056 ‐9.9E‐13 ‐2.4E‐12 6.87E‐24 0.129124 0.515092

102 1 0.540302 0.841471 ‐7.7E‐12 ‐9.1E‐12 1.42E‐22 0.136287 0.501103

Figure 15. Partial display of the IVP (18)–(20) solution obtained by IVSOLVE formula (24), and

dependent generated values needed to define the cost index and constraints formulas of problem 3.3.

The remaining task to complete the input for Excel NLP solver, was to define formulas for the

circle avoidance constraints. Using x and y values from the IVP solution, values for the constraints

equations (22) and (23) were generated as shown in columns L and M of Figure 15. To impose the

bounds, it was is sufficient to require that the minimum values of columns L and M, as computed in

B20 and B21 of Figure 14 be greater than or equal to the specified bound.

Results and Analysis

Excel solver was configured to minimize the cost index, J (B18), by varying the speed v (B6), and

theta polynomial coefficients (B7:B12), subject to the constraints:

v>=0,

E102=1.2, corresponding to (21)

F102=1.6, corresponding to (21)

B20>=0.1, corresponding to (22)

B21>=0.1, corresponding to (23).

The solver converged to the expected low‐energy solution shown in Figure 16(R) in approximately

18 seconds with the result shown in Figure 17. The initial trajectory for the robot based on our starting

guess for the controls is shown in Figure 16(L). The cost index was found at approximately 8.01.

=IVSOLVE(B15:B16,B2:B4,{0,1})

=DERIVXY(D2:D102, E2:E102, D2, 2)

=DERIVXY(D2:D102, F2:F102, D2, 2)

=H2^2+I2^2

=(E2‐0.4)^2+(F2‐0.5)^2

=(E2‐0.8)^2+(F2‐1.5)^2

Figure 15. Partial display of the IVP (18)–(20) solution obtained by IVSOLVE formula (24), and
dependent generated values needed to define the cost index and constraints formulas of problem 3.3.

The remaining task to complete the input for Excel NLP solver was to define formulas for the
circle avoidance constraints. Using x and y values from the IVP solution, values for the constraints
equations (22) and (23) were generated as shown in columns L and M of Figure 15. To impose the
bounds, it was sufficient to require that the minimum values of columns L and M, as computed in B20
and B21 of Figure 14, be greater than or equal to the specified bound.

3.3.2. Results and Analysis

Excel solver was configured to minimize the cost index, J (B18), by varying the speed v (B6),
and theta polynomial coefficients (B7:B12), subject to the constraints:

v >= 0,

E102 = 1.2, corresponding to (21)

F102 = 1.6, corresponding to (21)

B20 >= 0.1, corresponding to (22)

B21 >= 0.1, corresponding to (23).

The solver converged to the expected low-energy solution shown in Figure 16b in approximately
18 s, with the result shown in Figure 17. The initial trajectory for the robot based on our starting guess
for the controls is shown in Figure 16a. The cost index was found at approximately 8.02.

Math. Comput. Appl. 2018, 23, 54 17 of 28

Math. Comput. Appl. 2018, 23, x 17 of 27

(a) (b)

Figure 16. Initial (a) and optimal (b) trajectories for problem 3.3.

Figure 17. Answer report generated by Excel Solver for problem 3.3.

To make the problem more interesting, we added a 3rd circle obstacle by appending the additional
path constraint to the problem: (𝑥(𝑡) − 1.0) + (𝑦(𝑡) − 0.8) ≥ 0.1. (26)

Figure 16. Initial (a) and optimal (b) trajectories for problem 3.3.

Math. Comput. Appl. 2018, 23, x 17 of 27

(a) (b)

Figure 16. Initial (a) and optimal (b) trajectories for problem 3.3.

Figure 17. Answer report generated by Excel Solver for problem 3.3.

To make the problem more interesting, we added a 3rd circle obstacle by appending the additional
path constraint to the problem: (𝑥(𝑡) − 1.0) + (𝑦(𝑡) − 0.8) ≥ 0.1. (26)

Figure 17. Answer report generated by Excel Solver for problem 3.3.

To make the problem more interesting, we added a 3rd circle obstacle by appending the additional
path constraint to the problem:

(x(t)− 1.0)2 + (y(t)− 0.8)2 ≥ 0.1. (26)

Math. Comput. Appl. 2018, 23, 54 18 of 28

The new configuration and initial trajectory are shown in Figure 18a. The incorporation of the 3rd
constraint into the model setup is straight forward and the solver converged to the higher energy
trajectory shown in Figure 18b at a cost index of approximately 22.69; the results are shown in Figure 19.

Math. Comput. Appl. 2018, 23, x 18 of 27

The new configuration and initial trajectory are shown in Figure 18a. The incorporation of the 3rd
constraint into the model setup is straight forward and the solver converged to the higher energy
trajectory shown in Figure 18b at a cost index of approximately 22.69; the results are shown in Figure 19.

(a) (b)

Figure 18. Initial (a) and optimal (b) trajectories for problem 3.3 with additional constraint (26).

Figure 19. Answer report generated by Excel Solver for problem 3.3 with additional constraint (26).

Figure 18. Initial (a) and optimal (b) trajectories for problem 3.3 with additional constraint (26).

Math. Comput. Appl. 2018, 23, x 18 of 27

The new configuration and initial trajectory are shown in Figure 18a. The incorporation of the 3rd
constraint into the model setup is straight forward and the solver converged to the higher energy
trajectory shown in Figure 18b at a cost index of approximately 22.69; the results are shown in Figure 19.

(a) (b)

Figure 18. Initial (a) and optimal (b) trajectories for problem 3.3 with additional constraint (26).

Figure 19. Answer report generated by Excel Solver for problem 3.3 with additional constraint (26).

Figure 19. Answer report generated by Excel Solver for problem 3.3 with additional constraint (26).

Math. Comput. Appl. 2018, 23, 54 19 of 28

3.4. Nonlinear Bioprocess Optimization: Batch Production

The 4th problem considers the optimal control of a fed-batch reactor for the production of
ethanol [8]. The goal is to maximize the yield of ethanol using the feed rate as the control. This problem
has highly nonlinear dynamic constraints and a free terminal time tF, which is also an unknown design
variable. The mathematical statement of the free end time problem is given below:

Find the flowrate u(t), t ∈ [0, tF], and the terminal time tF to maximize the cost index

J = x3(tF) x4(tF), (27)

subject to
.
x1 = g1x1 − u

x1

x4
, (28)

.
x2 = −10g1x1 + u

150− x2

x4
, (29)

.
x3 = g2x1 − u

x3

x4
, (30)

.
x4 = u, (31)

where

g1 =

(
0.408

1 + x3/16

)(
x2

0.22 + x2

)
, (32)

g2 =

(
1

1 + x3/71.5

)(
x2

0.44 + x2

)
, (33)

with Initial conditions
x1(0) = 1, x2(0) = 150, x3(0) = 0, x4(0) = 10, (34)

and bounds constraints
0 ≤ u ≤ 12, (35)

0 ≤ x4(tF) ≤ 200. (36)

This problem was solved by Banga et al. [8] using a two-phase (stochastic-deterministic) hybrid
(TPH) approach to overcome convergence difficulties reported by previous published attempts.
Their best reported results found the maximum cost index J at 20839, and the terminal time tF
at 61.17 h.

3.4.1. Solution by Direct Spreadsheet Method

Following the procedure in the previous examples, the control u(t) was parameterized using a
2nd order polynomial as shown in B11 of Figure 20, and the IVP equations were defined in terms of
the named variables as shown in B18:B21. Note that the terminal time has been assigned the variable
B14 (named tF) with initial value of 50. The IVP solution was obtained with IVSOLVE formula

=IVSOLVE(B18:B21, B2:B6, B13:B14) (37)

in array D1:H102 as shown partially in Figure 21. Note that the final time is now a variable for
IVSOLVE which was passed in the 3rd parameter B13:B14. The cost index formula for this problem is
simple and was defined by formula B23 which references x3(tF) and x4(tF) of the IVSOLVE solution
array. To impose the bound constraint (35), we sampled the control formula in column J at the solution
output time points as shown in Figure 21 and demanded that the maximum and minimum values of
the control vector as computed by formulas B25 and B26 satisfy the appropriate bounds.

Math. Comput. Appl. 2018, 23, 54 20 of 28

Math. Comput. Appl. 2018, 23, x 20 of 27

 A B
1 ODE system variables with initial conditions
2 t 0
3 x_1 1
4 x_2 150
5 x_3 0
6 x_4 10
7 Parametrized controllers with starting guess
8 c_0 3
9 c_1 0

10 c_2 0
11 u =c_0+c_1*t+c_2*t^2
12 ODE time domain with final time guess
13 ts 0
14 tF 50
15 ODE system equations
16 g1_ =(0.408/(1+x_3/16))*(x_2/(0.22+x_2))
17 g2_ =(1/(1+x_3/71.5))*(x_2/(0.44+x_2))
18 x1dot =g1_*x_1-u*x_1/x_4
19 x2dot =-10*g1_*x_1+u*(150-x_2)/x_4
20 x3dot =g2_*x_1-u*x_3/x_4
21 x4dot =u
22 Cost Index
23 J =G102*H102
24 Constraints helpers
25 max(u) =MAXA(J2:J102)
26 min(u) =MINA(J2:J102)

Figure 20. Spreadsheet parametrized model for problem 3.4. The colored ranges are inputs for
IVSOLVE formula (37).

 D E F G H I J
1 t x_1 x_2 x_3 x_4 u
2 0 1 150 0 10 3
3 0.5 1.062808 148.0676 0.478626388 11.5 3
4 1 1.142691 146.2653 0.936035562 13 3

100 49 15.05587 0.078212 73.9061806 157 3
101 49.5 15.05539 0.077045 73.75951155 158.5 3
102 50 15.05491 0.07591 73.61434682 160 3

Figure 21. Partial display of IVP (28)–(34) solution obtained by IVSOLVE formula (37), and generated
values for the parametrized control of problem 3.4.

=IVSOLVE(B18:B21,B2:B6,B13:B14)

=c_0+c_1*D2+c_2*D2^2

Figure 20. Spreadsheet parametrized model for problem 3.4. The colored ranges are inputs for
IVSOLVE formula (37).

Math. Comput. Appl. 2018, 23, x 20 of 27

 A B
1 ODE system variables with initial conditions
2 t 0
3 x_1 1
4 x_2 150
5 x_3 0
6 x_4 10
7 Parametrized controllers with starting guess
8 c_0 3
9 c_1 0

10 c_2 0
11 u =c_0+c_1*t+c_2*t^2
12 ODE time domain with final time guess
13 ts 0
14 tF 50
15 ODE system equations
16 g1_ =(0.408/(1+x_3/16))*(x_2/(0.22+x_2))
17 g2_ =(1/(1+x_3/71.5))*(x_2/(0.44+x_2))
18 x1dot =g1_*x_1-u*x_1/x_4
19 x2dot =-10*g1_*x_1+u*(150-x_2)/x_4
20 x3dot =g2_*x_1-u*x_3/x_4
21 x4dot =u
22 Cost Index
23 J =G102*H102
24 Constraints helpers
25 max(u) =MAXA(J2:J102)
26 min(u) =MINA(J2:J102)

Figure 20. Spreadsheet parametrized model for problem 3.4. The colored ranges are inputs for
IVSOLVE formula (37).

 D E F G H I J
1 t x_1 x_2 x_3 x_4 u
2 0 1 150 0 10 3
3 0.5 1.062808 148.0676 0.478626388 11.5 3
4 1 1.142691 146.2653 0.936035562 13 3

100 49 15.05587 0.078212 73.9061806 157 3
101 49.5 15.05539 0.077045 73.75951155 158.5 3
102 50 15.05491 0.07591 73.61434682 160 3

Figure 21. Partial display of IVP (28)–(34) solution obtained by IVSOLVE formula (37), and generated
values for the parametrized control of problem 3.4.

=IVSOLVE(B18:B21,B2:B6,B13:B14)

=c_0+c_1*D2+c_2*D2^2

Figure 21. Partial display of IVP (28)–(34) solution obtained by IVSOLVE formula (37), and generated
values for the parametrized control of problem 3.4.

Math. Comput. Appl. 2018, 23, 54 21 of 28

3.4.2. Results and Analysis

Excel solver was run starting from the initial guess for the unknown control coefficients and
terminal time shown in Figure 20. The cost index J (B23) was selected to be maximized by varying the
terminal time tF (B14), and the coefficients c_0, c_1 and c_2, (B8:B10) subject to the constraints:

B25 <= 12, corresponding to (35)

B26 >= −12, corresponding to (35)

H102 <= 200, corresponding to (36).

Excel NLP solver converged in approximately 29 s to the result shown in Figure 22, and plotted
in Figure 23. A partial listing of the converged control values and IVP solution reflecting the new
terminal time is shown in Figure 24.

Math. Comput. Appl. 2018, 23, x 21 of 27

3.4.2. Results and Analysis

Excel solver was run starting from the initial guess for the unknown control coefficients and
terminal time shown in Figure 20. The cost index J (B23) was selected to be maximized by varying
the terminal time tF (B14), and the coefficients c_0, c_1 and c_2, (B8:B10) subject to the constraints:

B25 <= 12, corresponding to (35)

B26 >= −12, corresponding to (35)

H102 <= 200, corresponding to (36).

Excel NLP solver converged in approximately 29 s to the result shown in Figure 22, and plotted in
Figure 23. A partial listing of the converged control values and IVP solution reflecting the new terminal
time is shown in Figure 24.

Figure 22. Answer report generated by Excel solver for problem 3.4. Figure 22. Answer report generated by Excel solver for problem 3.4.

Math. Comput. Appl. 2018, 23, 54 22 of 28
Math. Comput. Appl. 2018, 23, x 22 of 27

Figure 23. Optimal trajectories computed by the spreadsheet method for problem 3.4.

 D E F G H I J
1 t x_1 x_2 x_3 x_4 u
2 0 1 150 0 10 -0.44065
3 0.616388 1.313316 147.1366 0.712647865 9.737328 -0.41144
4 1.232776 1.702539 143.5086 1.64960033 9.49305 -0.38097

100 60.40604 14.84059 2.12186 102.2278477 189.4647 8.393491
101 61.02243 14.88833 1.630308 102.4917196 194.6852 8.545821
102 61.63882 14.925 1.25 102.6127698 200 8.699408

Figure 24. Partial listing of the converged IVP solution and control values of problem 3.4.

The achieved maxima for the cost index was at 20522.5 and the terminal time 𝑡 was found at
approximately 61.64. These values are in very good agreement with the best results reported by
Banga et al. [8] at 20839, and 61.17 h. Figure 25 shows direct comparison of the states and control
trajectories with digitized plot values from Banga et al. The agreement is quite good for the most part
despite fundamentally different control parametrization and algorithms employed by the two methods.
In particular, the control parametrization in [8] is approximated by connected line segments, whereas
our control is a continuous parabola.

Figure 23. Optimal trajectories computed by the spreadsheet method for problem 3.4.

Math. Comput. Appl. 2018, 23, x 22 of 27

Figure 23. Optimal trajectories computed by the spreadsheet method for problem 3.4.

 D E F G H I J
1 t x_1 x_2 x_3 x_4 u
2 0 1 150 0 10 -0.44065
3 0.616388 1.313316 147.1366 0.712647865 9.737328 -0.41144
4 1.232776 1.702539 143.5086 1.64960033 9.49305 -0.38097

100 60.40604 14.84059 2.12186 102.2278477 189.4647 8.393491
101 61.02243 14.88833 1.630308 102.4917196 194.6852 8.545821
102 61.63882 14.925 1.25 102.6127698 200 8.699408

Figure 24. Partial listing of the converged IVP solution and control values of problem 3.4.

The achieved maxima for the cost index was at 20522.5 and the terminal time 𝑡 was found at
approximately 61.64. These values are in very good agreement with the best results reported by
Banga et al. [8] at 20839, and 61.17 h. Figure 25 shows direct comparison of the states and control
trajectories with digitized plot values from Banga et al. The agreement is quite good for the most part
despite fundamentally different control parametrization and algorithms employed by the two methods.
In particular, the control parametrization in [8] is approximated by connected line segments, whereas
our control is a continuous parabola.

Figure 24. Partial listing of the converged IVP solution and control values of problem 3.4.

The achieved maxima for the cost index was at 20522.5 and the terminal time tF was found at
approximately 61.64. These values are in very good agreement with the best results reported by
Banga et al. [8] at 20839, and 61.17 h. Figure 25 shows direct comparison of the states and control
trajectories with digitized plot values from Banga et al. The agreement is quite good for the most
part despite fundamentally different control parametrization and algorithms employed by the two
methods. In particular, the control parametrization in [8] is approximated by connected line segments,
whereas our control is a continuous parabola.

Math. Comput. Appl. 2018, 23, 54 23 of 28
Math. Comput. Appl. 2018, 23, x 23 of 27

Figure 25. Direct comparison of spreadsheet solution with reported solution obtained by Banga et al.
for problem 3.4.

4. Conclusions

We devised a practical and systematic spreadsheet solution strategy for solving general optimal
control problems. The strategy is based on an adaptation of the partial-parametrization direct solution
method which preserves the structure of the original mathematical optimization statement, but
transforms it into a simplified NLP problem suitable for Excel NLP solver. The solution strategy is
formulated by the aid of several elementary calculus functions from an available Excel calculus Add-
in [11] for solving differential equations, computing integrals and derivatives. The calculus functions
are employed as building blocks in a hierarchical functional paradigm implemented by standard Excel
formulas in conjunction with Excel built-in NLP solver to carry out a dynamic optimization program.

Results were obtained for four representative problems selected to illustrate modeling of several
conditions including dependence on higher order derivatives of state and controls as well as implicit
IVP problems and integral constraints. The results were compared with published solutions obtained
by other methods, and in some cases, were shown to be better by the measure of the cost index. The
performance of the method is also notable with computing times on the order of seconds to a minute
on a standard laptop. As has been illustrated by the solution procedure, applying the technique involves
no more than defining a few formulas that parallel the original mathematical equations. No special
programming skill is needed beyond basic familiarity with the common spreadsheet operation. The
minimal problem setup effort, in combination with the ubiquity of Excel spreadsheet, present reasons
to explore the method as an alternative, simpler educational tool for rather complex problems.

Figure 25. Direct comparison of spreadsheet solution with reported solution obtained by Banga et al.
for problem 3.4.

4. Conclusions

We devised a practical and systematic spreadsheet solution strategy for solving general optimal
control problems. The strategy is based on an adaptation of the partial-parametrization direct
solution method which preserves the structure of the original mathematical optimization statement,
but transforms it into a simplified NLP problem suitable for Excel NLP solver. The solution strategy
is formulated by the aid of several elementary calculus functions from an available Excel calculus
Add-in [11] for solving differential equations, computing integrals and derivatives. The calculus
functions are employed as building blocks in a hierarchical functional paradigm implemented by
standard Excel formulas in conjunction with Excel built-in NLP solver to carry out a dynamic
optimization program.

Results were obtained for four representative problems selected to illustrate modeling of several
conditions including dependence on higher order derivatives of state and controls as well as implicit
IVP problems and integral constraints. The results were compared with published solutions obtained
by other methods, and in some cases, were shown to be better by the measure of the cost index.
The performance of the method is also notable with computing times on the order of seconds to
a minute on a standard laptop. As has been illustrated by the solution procedure, applying the
technique involves no more than defining a few formulas that parallel the original mathematical
equations. No special programming skill is needed beyond basic familiarity with the common
spreadsheet operation. The minimal problem setup effort, in combination with the ubiquity of

Math. Comput. Appl. 2018, 23, 54 24 of 28

Excel spreadsheet, present reasons to explore the method as an alternative, simpler educational tool
for rather complex problems.

The success of the devised strategy for optimal control of ordinary differential equations supports
future research for extending the strategy to optimal control of partial differential equations. In [22],
the author demonstrated an analogous formulation combing the NLP solver with a PDE solver from
the same Add-in [11] for parameter estimation of partial differential algebraic equations, and it may be
feasible that certain formulations of optimal control of partial differential equations are solvable in the
spreadsheet by a similar strategy. On the other hand, it is worth investigating devising an alternative
strategy based on the indirect solution method [4,5] for optimal control problems. The indirect method
requires solving a boundary value problem which could be solved by the aid of a boundary value
problem solver function also available in the Excel calculus Add-in [11].

Supplementary Materials: An Excel workbook containing the solved problems in this paper is available online
at http://www.mdpi.com/2297-8747/23/4/54/s1.

Funding: This research received no external funding.

Conflicts of Interest: The author of the manuscript is the founder of ExcelWorks LLC of Massachusetts, USA
supplying the Excel calculus Add-in [11], utilized in this research work.

Appendix A

The following subsections present brief descriptions of the calculus functions utilized in this
work. The functions are enabled as an extension of Excel math functions by installing ExceLab calculus
Add-in [11]. For more detailed descriptions of the functions, the reader is referred to [11].

Appendix A.1 IVSOLVE: Initial Value Problem Solver

The worksheet function IVSOLVE solves an initial value differential algebraic equation system in
the interval t ∈

[
ts, t f

]
M dx

dt = F(x(t), t)
x(t0) = x0

(A1)

x(t) = (x1(t), x2(t), . . . , xn(t)), and M is an optional mass matrix which may be singular. IVSOLVE
uses by default RADUA5 an implicit 5th-order Runge-Kutta scheme with adaptive time step [15],
and at minimum, requires three input parameters to describe the ODE system:

1. Reference to the right-hand side formulas corresponding to the vector-valued function
F(x(t), t) = (f1(x(t), t), f2(x(t), t), . . . , fn(x(t), t)).

2. Reference to the system variables in the specific order (t, x1, x2, . . . , xn).
3. The integration time interval end points.

Additional optional parameters include specifying a mass matrix as well as algorithmic controls.
IVSOLVE is run as an array formula in an allocated array of cells. It evaluates to an ordered tabular
result where the time values are listed in the first column, and the corresponding state variables’ values
are listed in adjacent columns. By default, IVSOLVE reports the output at uniform intervals according
to the allocated number of rows for the output array. Custom output formats can be achieved via the
optional parameters including specifying custom divisions or exact points. We demonstrate IVSOLVE
for the following DAE problem (reproduced from [14]):

dy1
dt = −0.04y1 + 104y2y3, t ∈ [0, 1000]

dy2
dt = 0.04y1 − 104y2y3 − 3 ∗ 107y2

2
0 = y1 + y2 + y3 − 1

y1(0) = 1, y2(0) = 0, y3(0) = 0

(A2)

http://www.mdpi.com/2297-8747/23/4/54/s1

Math. Comput. Appl. 2018, 23, 54 25 of 28

Referring to Figure A1, the system RHS formulas are defined in cells A1:A3 using cell T1 for the
time variable and Y1, Y2, Y3 for the state variables which are assigned the initial conditions as shown
in the figure.

Math. Comput. Appl. 2018, 23, x 25 of 27

Referring to Figure A1, the system RHS formulas are defined in cells A1:A3 using cell T1 for the
time variable and Y1, Y2, Y3 for the state variables which are assigned the initial conditions as shown
in the figure.

Figure A1. Spreadsheet model for equation system (A2).

To solve the system, we execute the array formula

=IVSOLVE (A1:A3, (T1,Y1:Y3), {0,1000}, 1)

in an allocated array, (e.g., C1:F22) by pressing the 3 keys Control+Shift+Enter simultaneously. IVSOLVE
computes and displays the solution shown Figure A2. Here we have used the 4th optional parameter
to specify that the last equation, (A3) is an algebraic equation.

Figure A2. Partial listing of the result computed by IVSOLVE (left) for system (A2), and a plot of the
trajectories (right).

Appendix A.2. QUADF: Formula Integrator Function

The spreadsheet function QUADF computes definite and improper one-dimensional integrals 𝑓(𝑥)𝑑𝑥. QUADF utilizes QUADPACK numerical integration algorithms [17] suitable for smooth,
irregular, and integrands with known singularities. By default, it uses QAG, an adaptive algorithm
using Gauss-Kronrod 21-point integration rule. We demonstrate QUADF by computing the
following integral (reproduced from [14]): ln 𝑥√𝑥 𝑑𝑥 = −4 (A3)

Referring to Figure A3, the integrand formula is defined in cell A1 using X1 as dummy variable for
the integration. The QUADF integration formula

=QUADF (A1, X1, 0, 1)

is defined in A2 passing in the integrand formula, the variable of integration, and values for the limits.
Evaluating A2 yields the result.

Figure A3. Demonstration of QUADF for computing integral (A3) in Excel.

Figure A1. Spreadsheet model for equation system (A2).

To solve the system, we execute the array formula

=IVSOLVE (A1:A3, (T1,Y1:Y3), {0,1000}, 1)

in an allocated array, (e.g., C1:F22) by pressing the 3 keys Control+Shift+Enter simultaneously.
IVSOLVE computes and displays the solution shown Figure A2. Here we have used the 4th optional
parameter to specify that the last equation, (A3) is an algebraic equation.

Math. Comput. Appl. 2018, 23, x 25 of 27

Referring to Figure A1, the system RHS formulas are defined in cells A1:A3 using cell T1 for the
time variable and Y1, Y2, Y3 for the state variables which are assigned the initial conditions as shown
in the figure.

Figure A1. Spreadsheet model for equation system (A2).

To solve the system, we execute the array formula

=IVSOLVE (A1:A3, (T1,Y1:Y3), {0,1000}, 1)

in an allocated array, (e.g., C1:F22) by pressing the 3 keys Control+Shift+Enter simultaneously. IVSOLVE
computes and displays the solution shown Figure A2. Here we have used the 4th optional parameter
to specify that the last equation, (A3) is an algebraic equation.

Figure A2. Partial listing of the result computed by IVSOLVE (left) for system (A2), and a plot of the
trajectories (right).

Appendix A.2. QUADF: Formula Integrator Function

The spreadsheet function QUADF computes definite and improper one-dimensional integrals 𝑓(𝑥)𝑑𝑥. QUADF utilizes QUADPACK numerical integration algorithms [17] suitable for smooth,
irregular, and integrands with known singularities. By default, it uses QAG, an adaptive algorithm
using Gauss-Kronrod 21-point integration rule. We demonstrate QUADF by computing the
following integral (reproduced from [14]): ln 𝑥√𝑥 𝑑𝑥 = −4 (A3)

Referring to Figure A3, the integrand formula is defined in cell A1 using X1 as dummy variable for
the integration. The QUADF integration formula

=QUADF (A1, X1, 0, 1)

is defined in A2 passing in the integrand formula, the variable of integration, and values for the limits.
Evaluating A2 yields the result.

Figure A3. Demonstration of QUADF for computing integral (A3) in Excel.

Figure A2. Partial listing of the result computed by IVSOLVE (left) for system (A2), and a plot of the
trajectories (right).

Appendix A.2 QUADF: Formula Integrator Function

The spreadsheet function QUADF computes definite and improper one-dimensional integrals∫ b
a f (x)dx. QUADF utilizes QUADPACK numerical integration algorithms [17] suitable for smooth,

irregular, and integrands with known singularities. By default, it uses QAG, an adaptive algorithm
using Gauss-Kronrod 21-point integration rule. We demonstrate QUADF by computing the following
integral (reproduced from [14]):

1∫
0

ln x√
x

dx = −4 (A3)

Referring to Figure A3, the integrand formula is defined in cell A1 using X1 as dummy variable for the
integration. The QUADF integration formula

=QUADF (A1, X1, 0, 1)

is defined in A2 passing in the integrand formula, the variable of integration, and values for the limits.
Evaluating A2 yields the result.

Math. Comput. Appl. 2018, 23, 54 26 of 28

Math. Comput. Appl. 2018, 23, x 25 of 27

Referring to Figure A1, the system RHS formulas are defined in cells A1:A3 using cell T1 for the
time variable and Y1, Y2, Y3 for the state variables which are assigned the initial conditions as shown
in the figure.

Figure A1. Spreadsheet model for equation system (A2).

To solve the system, we execute the array formula

=IVSOLVE (A1:A3, (T1,Y1:Y3), {0,1000}, 1)

in an allocated array, (e.g., C1:F22) by pressing the 3 keys Control+Shift+Enter simultaneously. IVSOLVE
computes and displays the solution shown Figure A2. Here we have used the 4th optional parameter
to specify that the last equation, (A3) is an algebraic equation.

Figure A2. Partial listing of the result computed by IVSOLVE (left) for system (A2), and a plot of the
trajectories (right).

Appendix A.2. QUADF: Formula Integrator Function

The spreadsheet function QUADF computes definite and improper one-dimensional integrals 𝑓(𝑥)𝑑𝑥. QUADF utilizes QUADPACK numerical integration algorithms [17] suitable for smooth,
irregular, and integrands with known singularities. By default, it uses QAG, an adaptive algorithm
using Gauss-Kronrod 21-point integration rule. We demonstrate QUADF by computing the
following integral (reproduced from [14]): ln 𝑥√𝑥 𝑑𝑥 = −4 (A3)

Referring to Figure A3, the integrand formula is defined in cell A1 using X1 as dummy variable for
the integration. The QUADF integration formula

=QUADF (A1, X1, 0, 1)

is defined in A2 passing in the integrand formula, the variable of integration, and values for the limits.
Evaluating A2 yields the result.

Figure A3. Demonstration of QUADF for computing integral (A3) in Excel. Figure A3. Demonstration of QUADF for computing integral (A3) in Excel.

Using recursion, multiple integrals of any order can be computed by direct nesting of QUADF,
as demonstrated by the following volume integral example:

2∫
0

3− 3
2 x∫

0

6−3x−2y∫
0

1− x dz dy dx = 3 (A4)

To compute (A4), we construct a simple program consisting of three nested calls of QUADF as shown
in Figure A4. Using X1, Y1 and Z1 as dummy variables, the integrand formula is defined in A1, and the
inner, middle, and outer integrals formulas are defined in A2, A3 and A4 respectively, with each inner
QUADF formula serving as the integrand for the next outer QUADF formula. Evaluating the outer
integral in A4 computes the triple integral value.

Math. Comput. Appl. 2018, 23, x 26 of 27

Using recursion, multiple integrals of any order can be computed by direct nesting of QUADF,
as demonstrated by the following volume integral example:

1 − 𝑥 𝑑𝑧 𝑑𝑦 𝑑𝑥 = 3 (A4)

To compute (A4), we construct a simple program consisting of three nested calls of QUADF as shown
in Figure A4. Using X1, Y1 and Z1 as dummy variables, the integrand formula is defined in A1, and
the inner, middle, and outer integrals formulas are defined in A2, A3 and A4 respectively, with each
inner QUADF formula serving as the integrand for the next outer QUADF formula. Evaluating the
outer integral in A4 computes the triple integral value.

Figure A4. Demonstration of QUADF for computing multiple integral (A4) in Excel.

Appendix A.3. QUADXY: Discrete Data Integrator

The spreadsheet function QUADXY computes the integral of a curve passing through the set of data
pairs 𝑥 , 𝑦 (𝑥) , 𝑖 = 0. . 𝑛 . The integration interval is defined by the endpoints [𝑥 , 𝑥] . QUADXY
computes the integral by the aid of cubic (default) or linear splines fit to the data [16]. Start and end
point slope information may be specified in the 3rd optional parameter to enhance accuracy near the
end points. The slope data is defined by a reference to a key/value array as illustrated in Figure A5.

Figure A5. Optional input format to QUADXY for endpoints boundary conditions.

For example, the formula

=QUADXY(X1:X20, Y1:Y20, C1:D2)

computes an integral value of 20 data pairs in columns X1 and Y1 with supplied optional end points
slope values shown in Figure A5.

Appendix A.4. DERIVXY: Discrete Data Differentiator

The spreadsheet function DERIVXY employs cubic splines to compute the 𝑑 derivative of a
curve passing through a set of data pairs 𝑥 , 𝑦 (𝑥) , 𝑖 = 0. . 𝑛 at a specified point 𝑥 = 𝑝. Similar to
QUADXY, optional start and or endpoint slope information may be specified to enhance accuracy
near the end points. For example, the formula

=DERIVXY(X1:X20, Y1:Y20, 5, 2)

computes the second derivative for a curve passing through 20 points in columns X1 and Y1 at the
point x = 5.

When using DERIVXY with Excel AutoFill feature to differentiate a given data set at multiple
points, it is necessary to lock the parameters except for the variable point (parameter 3) so they are

Figure A4. Demonstration of QUADF for computing multiple integral (A4) in Excel.

Appendix A.3 QUADXY: Discrete Data Integrator

The spreadsheet function QUADXY computes the integral of a curve passing through the set of
data pairs (xi, yi(xi)), i = 0.. n. The integration interval is defined by the endpoints [x0, xn]. QUADXY
computes the integral by the aid of cubic (default) or linear splines fit to the data [16]. Start and end
point slope information may be specified in the 3rd optional parameter to enhance accuracy near the
end points. The slope data is defined by a reference to a key/value array as illustrated in Figure A5.

Math. Comput. Appl. 2018, 23, x 26 of 27

Using recursion, multiple integrals of any order can be computed by direct nesting of QUADF,
as demonstrated by the following volume integral example:

1 − 𝑥 𝑑𝑧 𝑑𝑦 𝑑𝑥 = 3 (A4)

To compute (A4), we construct a simple program consisting of three nested calls of QUADF as shown
in Figure A4. Using X1, Y1 and Z1 as dummy variables, the integrand formula is defined in A1, and
the inner, middle, and outer integrals formulas are defined in A2, A3 and A4 respectively, with each
inner QUADF formula serving as the integrand for the next outer QUADF formula. Evaluating the
outer integral in A4 computes the triple integral value.

Figure A4. Demonstration of QUADF for computing multiple integral (A4) in Excel.

Appendix A.3. QUADXY: Discrete Data Integrator

The spreadsheet function QUADXY computes the integral of a curve passing through the set of data
pairs 𝑥 , 𝑦 (𝑥) , 𝑖 = 0. . 𝑛 . The integration interval is defined by the endpoints [𝑥 , 𝑥] . QUADXY
computes the integral by the aid of cubic (default) or linear splines fit to the data [16]. Start and end
point slope information may be specified in the 3rd optional parameter to enhance accuracy near the
end points. The slope data is defined by a reference to a key/value array as illustrated in Figure A5.

Figure A5. Optional input format to QUADXY for endpoints boundary conditions.

For example, the formula

=QUADXY(X1:X20, Y1:Y20, C1:D2)

computes an integral value of 20 data pairs in columns X1 and Y1 with supplied optional end points
slope values shown in Figure A5.

Appendix A.4. DERIVXY: Discrete Data Differentiator

The spreadsheet function DERIVXY employs cubic splines to compute the 𝑑 derivative of a
curve passing through a set of data pairs 𝑥 , 𝑦 (𝑥) , 𝑖 = 0. . 𝑛 at a specified point 𝑥 = 𝑝. Similar to
QUADXY, optional start and or endpoint slope information may be specified to enhance accuracy
near the end points. For example, the formula

=DERIVXY(X1:X20, Y1:Y20, 5, 2)

computes the second derivative for a curve passing through 20 points in columns X1 and Y1 at the
point x = 5.

When using DERIVXY with Excel AutoFill feature to differentiate a given data set at multiple
points, it is necessary to lock the parameters except for the variable point (parameter 3) so they are

Figure A5. Optional input format to QUADXY for endpoints boundary conditions.

For example, the formula

=QUADXY(X1:X20, Y1:Y20, C1:D2)

computes an integral value of 20 data pairs in columns X1 and Y1 with supplied optional end points
slope values shown in Figure A5.

Appendix A.4 DERIVXY: Discrete Data Differentiator

The spreadsheet function DERIVXY employs cubic splines to compute the dth derivative of a
curve passing through a set of data pairs (xi, yi(xi)), i = 0..n at a specified point x = p. Similar to

Math. Comput. Appl. 2018, 23, 54 27 of 28

QUADXY, optional start and or endpoint slope information may be specified to enhance accuracy near
the end points. For example, the formula

=DERIVXY(X1:X20, Y1:Y20, 5, 2)

computes the second derivative for a curve passing through 20 points in columns X1 and Y1 at the
point x = 5.

When using DERIVXY with Excel AutoFill feature to differentiate a given data set at multiple
points, it is necessary to lock the parameters except for the variable point (parameter 3) so they are not
incremented during the AutoFill. For example, the following formula is safe to use with AutoFill to
generate derivatives at points stored in Z1, Z2, Z3, etc.

=DERIVXY(X1:X20, Y1:Y20, Z1)

References

1. Geering, H.P. Optimal Control with Engineering Applications; Springer: Berlin, Germany, 2007.
2. Sethi, S.P. Optimal Control Theory: Applications to Management Science and Economics, 3rd ed.; Springer: Berlin,

Germany, 2019.
3. Aniţa, S.; Arnăutu, V.; Capasso, V. An Introduction to Optimal Control Problems in Life Sciences and Economics:

From Mathematical Models to Numerical Simulation with MATLAB; Birkhäuser: Basel, Switzerland, 2011.
4. Betts, J.T. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd ed.; Advances

in Design and Control; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2009.
5. Böhme, T.J.; Frank, B. Indirect Methods for Optimal Control. In Hybrid Systems, Optimal Control and Hybrid

Vehicles. Advances in Industrial Control; Springer: Cham, Switzerland, 2017.
6. Elnagar, G.; Kazemi, M.A. Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical

Systems. Comput. Optim. Appl. 1998, 11, 195–217. [CrossRef]
7. Böhme, T.J.; Frank, B. Direct Methods for Optimal Control. In Hybrid Systems, Optimal Control and Hybrid

Vehicles. Advances in Industrial Control; Springer: Cham, Switzerland, 2017.
8. Banga, J.R.; Balsa-Canto, E.; Moles, C.G.; Alonso, A.A. Dynamic optimization of bioprocesses: Efficient and

robust numerical strategies. J. Biotechnol. 2003, 117, 407–419. [CrossRef] [PubMed]
9. Rodrigues, H.S.; Torres Monteiro, M.T.; Torres, D.F.M. Optimal Control and Numerical Software: An

Overview. arXiv, 2014; arXiv:1401.7279.
10. Ghaddar, C.K. Novel Spreadsheet Direct Method for Optimal Control Problems. Math. Comput. Appl. 2018,

23, 6. [CrossRef]
11. ExcelWorks LLC, MA, USA. ExceLab Calculus Add-in and Reference Manual. Available online: https:

//excel-works.com (accessed on 22 September 2018).
12. Nævdal, E. Solving Continuous Time Optimal Control Problems with a Spreadsheet. J. Econ. Educ. 2003,

34, 2. [CrossRef]
13. Weber, E.J. Optimal Control Theory for Undergraduates Using the Microsoft Excel Solver Tool. Comput. High.

Educ. Econ. Rev. 2007, 19, 4–15.
14. Ghaddar, C. Unconventional Calculus Spreadsheet Functions. World Academy of Science, Engineering

and Technology, International Science Index 112. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 2016,
10, 194–200.

15. Hairer, E.; Wanner, G. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems; Springer
Series in Computational Mathematics; Springer: Berlin, Germany, 1996.

16. De Boor, C. A Practical Guide to Splines (Applied Mathematical Sciences); Springer: Berlin, Germany, 2001.
17. Piessens, R.; de Doncker-Kapenga, E.; Ueberhuber, C.W.; Kahaner, D.K. Quadpack: A Subroutine Package for

Automatic Integration; Springer: Berlin, Germany, 1983.
18. Lasdon, L.S.; Waren, A.D.; Jain, A.; Ratner, M. Design and Testing of a Generalized Reduced Gradient Code

for Nonlinear Programming. ACM Trans. Math. Softw. 1978, 4, 34–50. [CrossRef]
19. Dolan, E.D.; More, J.J. Benchmarking Optimization Software with Cops; Technical Report; Argonne National

Laboratory: Argonne, IL, USA, 2001.

http://dx.doi.org/10.1023/A:1018694111831
http://dx.doi.org/10.1016/j.jbiotec.2005.02.013
http://www.ncbi.nlm.nih.gov/pubmed/15888349
http://dx.doi.org/10.3390/mca23010006
https://excel-works.com
https://excel-works.com
http://dx.doi.org/10.1080/00220480309595206
http://dx.doi.org/10.1145/355769.355773

Math. Comput. Appl. 2018, 23, 54 28 of 28

20. Lim, A.E.B.; Liu, Y.Q.; Teo, K.L.; B, M.J. Linear-quadratic optimal control with integral quadratic constraints.
Optim. Control Appl. Methods 1999, 20, 79–92. [CrossRef]

21. Bhattacharya, R. OPTRAGEN 2.0: A MATLAB Toolbox for Optimal Trajectory Generation; Texas A & M
University: College Station, TX, USA, 2013.

22. Ghaddar, C.K. Rapid Modeling and Parameter Estimation of Partial Differential Algebraic Equations by a
Functional Spreadsheet Paradigm. Math. Comput. Appl. 2018, 23, 39. [CrossRef]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/(SICI)1099-1514(199903/04)20:2<79::AID-OCA647>3.0.CO;2-3
http://dx.doi.org/10.3390/mca23030039
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mechanics of Spreadsheet Direct Method
	Solution Strategy
	Convergence and Error Control

	Illustrative Optimal Control Problems
	Minimum Energy Shape: Hanging Chain
	Solution by Direct Spreadsheet Method
	Results and Analysis

	Quadratic Control Problem with Integral Constraint
	Solution by Direct Spreadsheet Method
	Results and Analysis

	Robot Motion Planning: Obstacle Avoidance
	Solution by Direct Spreadsheet Method
	Results and Analysis

	Nonlinear Bioprocess Optimization: Batch Production
	Solution by Direct Spreadsheet Method
	Results and Analysis

	Conclusions
	
	IVSOLVE: Initial Value Problem Solver
	QUADF: Formula Integrator Function
	QUADXY: Discrete Data Integrator
	DERIVXY: Discrete Data Differentiator

	References

