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Abstract: The present study aimed at solving the stochastic generalized fractional diffusion equation
(SGFDE) by means of the random finite difference method (FDM). Moreover, the conditions of mean
square convergence of the numerical solution are studied and numerical examples are presented to
demonstrate the validity and accuracy of the method.
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1. Introduction

Many time-dependent processes in science have elements of randomness. In fact, most of the
problems in epidemiology and financial mathematics take stochastic effects into account and generally
lead to stochastic differential equations (SDEs) [1]. More recently, the development of numerical
methods for the approximation of SDEs has become a field of increasing interest, since analytical
solutions of SDEs are not usually available [2]. In recent years, some of the main numerical methods
for solving stochastic partial differential equations (SPDEs), like finite difference and finite element
schemes, have been considered [3–5] (e.g., [6–8]), based on a finite difference scheme in both space
and time.

The field of fractional calculus is almost as old as calculus itself, but over the last few decades
the usefulness of this mathematical theory in applications as well as its merits in pure mathematics
has become increasingly evident. Although there are too many papers and books in this field to
comprehensively address here, we refer readers to some of the main references [9–16].

In this paper, we used generalizations of fractional derivatives as well as applications from [17]
and references therein. The generalized fractional diffusion equations can be considered with random
parameters imposed by environmental factors on the problem. Addressing such equations with random
terms is closer to actual problem modeling. The exact solution of these equations is not possible in
general cases. Therefore, efficient numerical methods can be used to describe the solution of these
equations. In the current study, we attempt to present an SGFDE and introduce a numerical method
based on finite difference for it. We also analyzed the convergence and stability of the proposed
method by specific theorems.

This paper is organized as follows: In Section 2, important preliminaries are discussed, and
the new generalized fractional derivative (GFD) is introduced. The numerical scheme is shown in
Section 3. Section 4 gives convergence analysis. The numerical examples are provided in Section 5,
and conclusions in Section 6.
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2. Preliminaries

In this section, we present significant preliminaries of generalized fractional calculus and mean
square calculus.

2.1. Generalized Fractional Calculus

Definition 1 ([18]). Left/forward generalized fractional integral (GFI) of order α > 0 of a function u(t), with
respect to a scale function z(t) and a weight function ω(t), is defined as

(Iα
a+:[z;ω]u)(t) =

[ω(t)]−1

Γ(α)

∫ t

a

ω(s)z′(s)u(s)
[z(t)− z(s)]1−α

ds, (1)

provided the integral exists.

Definition 2 ([18]). Left/forward GFD of order 1 of a function u(t), with respect to a scale function z(t) and a
weight function ω(t), is defined as

(D[z,ω,L]u)(t) = [ω(t)]−1
[(

1
z′(t)

Dt

)
(ω(t)u(t))

]
(t), (2)

provided the right side of the equation is finite.

Definition 3 ([18]). Left/forward GFD of order m of a function u(t), with respect to a scale function z(t) and a
weight function ω(t), is defined as

(Dm
[z,ω,L]u)(t) = [ω(t)]−1

[(
1

z′(t)
Dt

)m

(ω(t)u(t))
]
(t), (3)

provided the right side of the equation is finite, where m is a positive integer.

Definition 4 ([18]). Left/forward R-L type GFD of order α > 0 of a function u(t), with respect to a scale
function z(t) and a weight function ω(t), is defined as

(Dα
a+:[z,ω,1]u)(t) = Dm

[z,ω,L](Im−α
a+:[z;ω]

u)(t), (4)

provided the right side of the equation is finite, where m− 1 < α < m, and m is a positive integer.

Definition 5 ([18]). Left/forward Caputo type GFD of order α > 0 of a function u(t), with respect to a scale
function z(t) and a weight function ω(t), is defined as

(Dα
a+:[z,ω,2]u)(t) = Im−α

a+:[z;ω]
(Dm

[z,ω,L]u)(t), (5)

provided the right side of the equation is finite, where m− 1 < α < m, and m is a positive integer.

In the above definitions, we only listed the “left/forward” sense of GFIs and GFDs. As it is
the same with classical fractional integrals and fractional derivatives, they can be defined in the
“right/backward” sense, which are referred to in [18]. We will not repeat them here since the derivative
of GFDEs considered in this paper is the left Caputo-type GTFD.

Remark 1. The properties of various fractional integrals and fractional derivatives can be seen in ([19],
Chapter 2). The R-L fractional derivatives are closely related to the Caputo fractional derivatives. These two
derivatives are used in many areas. The R-L fractional derivative is usually discussed in pure mathematical
problems, while the Caputo fractional derivative is always employed for depicting the real-world models, since
the initial and boundary conditions required are of classical style.
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2.2. Mean Square Calculus

Definition 6 ([5]). A sequence of r.v’s {Xnk, n, k > 0} converges in mean square (m.s) to a random variable
X if

lim
nk→∞

‖ Xnk − X ‖= 0 i.e., Xnk
m.s−→ X.

Definition 7 ([5]). A stochastic difference scheme Ln
k un

k = Gn
k approximating SPDE Lv = G is consistent in

mean square at time t = (n + 1)∆t, if for any differentiable function Φ = Φ(x, t), we have in mean square

E
∣∣∣(LΦ− G

)n
k −

(
Ln

k Φ(k∆x, n∆t)− Gn
k
)∣∣∣2 −→ 0,

as k→ ∞, n→ ∞, ∆x → 0, ∆t→ 0, and (k∆x, n∆t)→ (x, t).

Definition 8 ([5]). A stochastic difference scheme is stable in mean square if there are positive constants ε, δ

and constants k, b such that

E
∣∣∣un+1

k

∣∣∣2 ≤ kebt
∣∣∣u0
∣∣∣2,

for all 0 ≤ t = (n + 1)∆t, 0 ≤ ∆x ≤ ε, and 0 ≤ ∆t ≤ δ.

Definition 9 ([5]). A stochastic difference scheme Ln
k un

k = Gn
k approximating SPDE Lv = G is convergent in

mean square at time t = (n + 1)∆t if

E
∣∣∣un

k − u
∣∣∣2 −→ 0,

as k→ ∞, n→ ∞, ∆x → 0, ∆t→ 0, and (k∆x, n∆t)→ (x, t).

3. Stochastic Generalized Fractional Diffusion Equations and Numerical Scheme

In this section, we propose an SGFDE and introduce the finite difference method (FDM) to solve
this equation.

3.1. Statement of SGFDEs

According to Equations (1), (2), and (5), the generalized time-fractional derivative (GTFD) of
u(x, t) is defined as

[]
∗∂αu(x, t)
∗∂tα

=
[ω(t)]−1

Γ(1− α)

∫ t

0

1
[z(t)− z(s)]α

∂

∂s
[ω(s)u(x, s)]ds

=
[ω(t)]−1

Γ(1− α)

{ ∫ t

0

ω′(s)u(x, s)
[z(t)− z(s)]α

ds +
∫ t

0

ω(s)
[z(t)− z(s)]α

∂u(x, s)
∂s

ds
}

, (6)

where 0 < α < 1, and t > 0.
Now, we define a class of stochastic generalized time-fractional diffusion equations as:

∗∂αu(x, t)
∗∂tα

= ν
∂2u(x, t)

∂x2 + f (x, t) + σẆ(x, t), 0 < x < L, t > 0,

u(x, 0) = u0(x),
u(0, t) = g1(t), u(L, t) = g2(t),

(7)

where 0 < α < 1 is the fractional order, ν > 0 is the diffusion coefficient, Ẇ(x, t) =
∂W(x, t)

∂t
denotes

the space-time white noise process, and σ is a constant. When z(t) = t and ω(t) = 1, Equation (7)
becomes the common SFDEs. We restrict Equation (7) on a bounded domain Ω = x× t = [0, L]× [0, T].
Generally, g1(t) and g2(t) can be nonzero functions depending on t. However, for simplicity, we will
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set g1(t) = g2(t) = 0 in the following discussion. The numerical scheme for solving Equation (7) is
discussed below.

3.2. Numerical Scheme

In this part, we introduce the FDM to solve Equation (7) with initial condition and zero-boundary
conditions. Without loss of generality, we consider Equation (7) on the bounded regular domain

Ω = x× t = [0, 1]× [0, T] with an equispaced mesh. Let ∆x =
1
N

and ∆t =
T
M

, the mesh points are

{(xi, tj) | xi = i∆x, tj = j∆t}, where i = 0, 1, . . . , N, and j = 0, 1, . . . , M. For simplicity in the following
discussion, we denote u(xi, tj) = ui

j, ω(tj) = ωj, z(tj) = zj and f (xi, tj) = f i
j .

The GTFD at the mesh point can be approximated as:

∗∂αu(xi, tj+1)
∗∂tα

=
[ω(tj+1)]

−1

Γ(1− α)

∫ tj+1

0

[ω(s)u(xi, s)]′

[z(tj+1)− z(s)]α
ds

=
[ω(tj+1)]

−1

Γ(1− α)

j

∑
k=0

{ ∫ tk+1

tk

u(xi, s)
dω(s)

ds
[z(tj+1)− z(s)]α

ds +
∫ tk+1

tk

ω(s)
∂u(xi, s)

∂s
[z(tj+1)− z(s)]α

ds
}

(8)

=
[ω(tj+1)]

−1

Γ(1− α)

j

∑
k=0
{I1,k + I2,k}, (9)

where

I1,k =
∫ tk+1

tk

u(xi, s)
[z(tj+1)− z(s)]α

ω(tk+1)−ω(tk)

∆t
ds

=
ui

k + ui
k+1

2(1− α)

ωk+1 −ωk
zk+1 − zk

[
(zj+1 − zk)

1−α − (zj+1 − zk+1)
1−α
]

and

I2,k =
∫ tk+1

tk

ω(s)
[z(tj+1)− z(s)]α

u(xi, tk+1)− u(xi, tk)

∆t
ds

=
ui

k+1 − ui
k

2(1− α)

ωk+1 + ωk
zk+1 − zk

[
(zj+1 − zk)

1−α − (zj+1 − zk+1)
1−α
]
.

The second-order derivative in Equation (7) can be approximated by

∂2u(xi, tj+1)

∂x2 =
ui+1

j+1 − 2ui
j+1 + ui−1

j+1

(∆x)2 + o((∆x)2) (10)

and

Ẇ(xi, tj+1) =
Wi

j+1 −Wi
j

∆t
+ o(∆t), (11)

for i = 1, 2, . . . , N − 1.
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Substituting Equations (8), (10), and (11) into Equation (7), and denoting

aj =
[ωj+1]

−1

2Γ(2− α)
, j = 0, 1, . . . , M− 1,

µk =
ωk+1 −ωk
zk+1 − zk

[
(zj+1 − zk)

1−α − (zj+1 − zk+1)
1−α
]
, k = 0, 1, . . . , j,

ηk =
ωk+1 + ωk
zk+1 − zk

[
(zj+1 − zk)

1−α − (zj+1 − zk+1)
1−α
]
, k = 0, 1, . . . , j,

c =
ν

(∆x)2 ,

γ =
σ

∆t
,

we obtain the full discretization scheme of Equation (7):

aj

[ j

∑
k=0

µk(ui
k+1 + ui

k) +
j

∑
k=0

ηk(ui
k+1 − ui

k)

]
= c[ui+1

j+1 − 2ui
j+1 + ui−1

j+1] + f i
j+1 + γ(Wi

j+1 −Wi
j ), (12)

for j = 0, 1, . . . , M− 1.
Therefore, when j ≥ 1, we have the following iteration scheme:

cui−1
j+1 − (ajµj + ajηj + 2c)ui

j+1 + cui+1
j+1 = aj

[ j−1

∑
k=0

µk(u
i
k+1 + ui

k) +
j−1

∑
k=0

ηk(u
i
k+1 − ui

k) + (µj − ηj)ui
j

]
− f i

j+1 − γ(Wi
j+1 −Wi

j ), (13)

and when j = 0, Equation (12) becomes

cui−1
1 − (a0µ0 + a0η0 + 2c)ui

1 + cui+1
1 = a0(µ0ui

0 − η0ui
0)− f i

1 − γ(Wi
1 −Wi

0).

For convenience, denoting k j+1 = ajµj + ajηj + 2c, Equation (12) can be presented in a compact form:

Kj+1Uj+1 = Fj+1, 0 ≤ j ≤ M− 1, (14)

where

Kj+1 =


−k j+1 c

c −k j+1 c
. . . . . . . . .

c −k j+1 c
c −k j+1

 ,

Uj+1 = [u1
j+1, . . . , ui

j+1, . . . , uN−1
j+1 ]T , u0

j = uN
j = 0,

Fj+1 = [F1
j+1, . . . , Fi

j+1, . . . , FN−1
j+1 ]T ,

and

Fi
j+1 =


aj

[
∑

j−1
k=0 µk(ui

k+1 + ui
k) + ∑

j−1
k=0 ηk(ui

k+1 − ui
k)

+(µj − ηj)ui
j

]
− f i

j+1 − γ(Wi
j+1 −Wi

j ), if 1 ≤ j ≤ M− 1,

a0(µ0ui
0 − η0ui

0)− f i
1 − γ(Wi

1 −Wi
0), if j = 0.
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4. Convergence

The following theorem plays an important role in verifying the convergence and stability of
the FDM.

Theorem 1 (A Stochastic Version of Lax-Richtmyer, [20]). A random difference scheme Li
ju

i
j = Gi

j
approximating SPDE Lv = G is convergent in mean square at time t = (j + 1)∆t if it is consistent and
stable in mean square.

From FDM presented by Equation (12), we have the following stability theorem.

Theorem 2. The numerical scheme in Equation (12) is stable, and hence is convergent, if and only if the
coefficient matrix Kj+1 satisfies

aj | µj − ηj + µj−1 + ηj−1 |< aj(µj + ηj) + csN , j = 1, 2, . . . , M− 1,

with
sN = 4 sin2(

π

2N
), c =

ν

(∆x)2 ,

where aj > 0, µj, ηj ≥ 0 and c > 0 for all j = 1, 2, . . . , M− 1.

Proof. Note that matrix Kj+1 is strictly diagonally dominant for every j. Therefore Kj+1 is invertible,
and Equation (14) is solvable. Now we rewrite Equation (12) in an iteration form

Kj+1Uj+1 = AjUj + aj

[ j−2

∑
k=0

µk(Uk+1 + Uk) +
j−2

∑
k=0

ηk(Uk+1−Uk) + (µj−1 − ηj−1)Uj−1

]
− f j+1 − γ(Wj+1 −Wj), (15)

where Aj = aj(µj − ηj + µj−1 + ηj−1)I and I denotes the identity matrix. Equation (15) is formed as a
recurrence relation and allows us to compute Uj+1 by using Uj. Thus, if denoting the exact solution of
u(., tj) by uj, we have

uj+1 = K−1
j+1 Ajuj + Pj + o

(
∆t + (∆x)2), ∆x → 0, ∆t→ 0, (16)

for all j ≤ M− 1, where

Pj = K−1
j+1

{
aj

[ j−2

∑
k=0

µk(Uk+1 + Uk) +
j−2

∑
k=0

ηk(Uk+1 −Uk) + (µj−1 − ηj−1)Uj−1

]
− f j+1 − γ(Wj+1 −Wj)

}
.

Let ε j = uj −Uj be the a posteriori error. By Equations (15) and (16), we get

ε j+1 = K−1
j+1 Ajε j + o

(
∆t + (∆x)2), ∆x → 0, ∆t→ 0, (17)

where the matrix Q = K−1
j+1 Aj is called the amplification matrix.

The amplification matrix Q belongs to the τ algebra of size N − 1 (see [21,22] and references
therein), and hence its eigenvalues are explicitly known so that (see [23]):

λk(Q) =
aj(µj − ηj + µj−1 + ηj−1)

−aj(µj + ηj)− csk,N
,

with
sk,N = 4 sin2(

kπ

2N
), c =

ν

(∆x)2 , k = 1, . . . , N − 1.
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Furthermore, the τ algebra is a subset of the normal matrices and hence the spectral radius coincides
with the induced Euclidean norm. Hence, in our setting we have

‖ Q ‖2= ρ(Q) = max
k:1≤k≤N−1

|λk(Q)|,

which coincides with
aj | µj − ηj + µj−1 + ηj−1 |

aj(µj + ηj) + csN
.

It is easy to conclude that Equation (17) implies the consistence of the numerical scheme.
From Equation (17), we have

E ‖ ε j+1 ‖≤‖ Q ‖ E ‖ ε j ‖ +C
(
∆t + (∆x)2), j = 0, 1, . . . , M− 1, (18)

where C is a positive constant and E is the mathematical expectation.
We assume that ε0 = 0 since the initial condition is known, then we can easily deduce that

E ‖ ε j+1 ‖ ≤
(
1+ ‖ Q ‖ + ‖ Q ‖2 + . . .+ ‖ Q ‖j )C(∆t + (∆x)2)

=
1− ‖ Q ‖j+1

1− ‖ Q ‖ C
(
∆t + (∆x)2), (19)

for j = 0, 1, . . . , M− 1. By the assumption of ‖ Q ‖< 1, we have

E ‖ ε j+1 ‖≤
1− ‖ Q ‖j+1

1− ‖ Q ‖ C
(
∆t + (∆x)2), ∆x → 0, ∆t→ 0

for j = 0, 1, . . . , M− 1. This completes the proof.

5. Numerical Examples

We solve all examples by means of FDM with ∆x = ∆t = 0.01.

Example 1. Consider the following SGFDE:

∗∂αu(x, t)
∗∂tα

=
∂2u(x, t)

∂x2 + f (x, t) + σẆ(x, t), 0 < α < 1, 0 < t < 1, 0 < x < 1, (20)

with the initial and boundary conditions: u(x, 0) = sin(xπ), u(0, t) = g1(t) = 0, and u(1, t) = g2(t) = 0,

where f (x, t) =
2

Γ(3− α)
(x2 − x)t2−α + π2 sin(xπ)− 2t2, and

∗∂αu(x, t)
∗∂tα

stand for the GTFD of u(x, t)

given by Equation (6). Let ω(t) = 1, z(t) = t, then Equation (20) reduces to a classical FDE.

Figures 1 and 2 show the numerical solutions for different values of α and σ. Figure 3 shows the
numerical solutions at t = 0.2 and different values of α and σ.
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Figure 1. The approximation solutions of Example 1 with σ = 1.
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Figure 2. The approximation solutions of Example 1 with σ = 3.
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Figure 3. The approximation solutions of Example 1 with t = 0.2.

Example 2. Consider the following SGFDE:

∗∂αu(x, t)
∂tα

= ν
∂2u(x, t)

∂x2 + f (x, t) + σẆ(x, t), 0 < t < 1, 0 < x < 1, (21)

with 0 < α < 1, and u(0, t) = u(1, t) = 0.

(1) ν = 1.5, source term f (x, t) =
(x− 1)(t− 1)

2 + sin(xt)
, scale function z(t) = t, weight function ω(t) = exp(t),

and the initial condition as u(x, 0) = x(1− x)3 exp(sin(3.5πx)). We observe that the solutions tend to
zero eventually, which is because Equation (7) is a diffusion equation with zero-boundary conditions.

(2) ν = 0.5, source term f (x, t) =
(x− 1)(t− 1)

2 + sin(xt)
, scale function z(t) = t, weight function ω(t) = exp(t),

and the initial condition as u(x, 0) = x(1− x)3 exp(sin(3.5πx)). Comparison of Figure 4 with Figure 6
shows that when the diffusion coefficient ν reduces, the diffusion becomes slow.

(3) ν = 1.5, source term f (x, t) = 1, scale function z(t) = t, weight function ω(t) = exp(t), and the initial
condition as u(x, 0) = x(1− x)3 exp(sin(3.5πx)). Comparison of Figure 8 with Figure 4 shows that
when the source term is a nonzero constant, which means that the energy will be supplied constantly
during diffusion, the diffusion will tend to be a nonzero stationary distribution.

Figures 4–9 show the numerical solutions for different values of α and σ in three cases.
Figures 10–12 show the numerical solutions at t = 0.2 and different values of α and σ at t = 0.3, 0.4,
and 0.45 in three cases.
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Figure 4. The approximation solutions of Example 2 (case (1)) with σ = 1.
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Figure 5. The approximation solutions of Example 2 (case (1)) with σ = 3.
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Figure 6. The approximation solutions of Example 2 (case (2)) with σ = 1.
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Figure 7. The approximation solutions of Example 2 (case (2)) with σ = 3.
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Figure 8. The approximation solutions of Example 2 (case (3)) with σ = 1.
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Figure 9. The approximation solutions of Example 2 (case (3)) with σ = 3.



Math. Comput. Appl. 2018, 23, 53 13 of 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

u

alpha=0.7

alpha=0.8

alpha=0.9

alpha=1

(a) σ = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

u

alpha=0.7

alpha=0.8

alpha=0.9

alpha=1

(b) σ = 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-0.05

0

0.05

0.1

0.15

0.2

0.25

u

alpha=0.7

alpha=0.8

alpha=0.9

alpha=1

(c) σ = 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

u

alpha=0.7

alpha=0.8

alpha=0.9

alpha=1

(d) σ = 4

Figure 10. The approximation solutions of Example 2 (case (1)) with t = 0.3.
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Figure 11. The approximation solutions of Example 2 (case (2)) with t = 0.4.
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Figure 12. The approximation solutions of Example 2 (case (3)) with t = 0.45.

6. Conclusions

This article introduces a model to the GFDEs as SGFDEs including a random term. The finite
difference method is also used for finding numerical solution of SGFDEs. Numerical examples with
plots of the results are depicted to show the efficiency of the proposed method.
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