
Mathematical 

and Computational 

Applications

Article

Optimal Control and Computational Method for the
Resolution of Isoperimetric Problem in a
Discrete-Time SIRS System

Fadwa El Kihal , Imane Abouelkheir, Mostafa Rachik and Ilias Elmouki *

Department of Mathematics and Computer Sciences, Faculty of Sciences Ben M’Sik,
Hassan II University of Casablanca, Casablanca 20000, Morocco; fadwa.elkihal@gmail.com (F.E.K.);
abouelkheir88@gmail.com (I.A.); m_rachik@yahoo.fr (M.R.)
* Correspondence: i.elmouki@gmail.com

Received: 7 September 2018; Accepted: 22 September 2018; Published: 24 September 2018

Abstract: We consider a discrete-time susceptible-infected-removed-susceptible “again” (SIRS)
epidemic model, and we introduce an optimal control function to seek the best control policy
for preventing the spread of an infection to the susceptible population. In addition, we define
a new compartment, which models the dynamics of the number of controlled individuals and who
are supposed not to be able to reach a long-term immunity due to the limited effect of control.
Furthermore, we treat the resolution of this optimal control problem when there is a restriction on
the number of susceptible people who have been controlled along the time of the control strategy.
Further, we provide sufficient and necessary conditions for the existence of the sought optimal
control, whose characterization is also given in accordance with an isoperimetric constraint. Finally,
we present the numerical results obtained, using a computational method, which combines the secant
method with discrete progressive-regressive schemes for the resolution of the discrete two-point
boundary value problem.

Keywords: discrete-time model; SIRS model; optimal control; isoperimetric problem

1. Introduction

Many mathematical models in epidemiology are used to assist in finding the most appropriate
control strategies for a given group of individuals who belong to different classes. These classes
are often represented in epidemic systems, using compartments that are usually named susceptible
(S), exposed (E), infectious or infected (I) and removed or recovered (R) [1]. In this paper, we are
interested in the study of a population infected by an epidemic and whose dynamics are described
using a discrete-time SIRS system. The SIRS models in the continuous-time case have been widely
studied by many researchers as in [2], where Acedo et al. proposed an analytical approach to find the
exact global solution of the classical SIRS epidemic system. Furthermore, there are Alexander and
Moghadas in [3] and Hu et al. in [4], who all provided bifurcation analysis of the SIRS model with
different incidence rates. The authors who contributed with Teng in [5] and in [6] found significant
results from the study of the persistence and extinction of disease using SIRS models. As for Jin et al.
in [7], Liu and Zhou in [8] and Chen in [9], they obtained stability conditions for other SIRS systems.
A stability analysis of the SIRS model in the discrete-time case is not often available, but there exist
interesting analyses done for some classes of this type of model; see for example, the work of Hu et al.
in [10]. As an application of such models in a particular case of disease, Mukhopadhyay and Tapaswi
published their paper about Japanese encephalitis in [11]. Other authors studied SIRS dynamics when
the model framework was in the form of a discrete metapopulation-like system [12].
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In parallel, there are many researchers who have benefited from modeling approaches in
epidemics, in order to determine the best prevention strategies against the spread of infection to
susceptibles, using different optimization techniques such as optimal control methods; see examples
in [13–20]. On the other hand, some models as in [21–23] discussed the impact of limited public health
resources in the propagation of infectious diseases, but there are very few optimization problems
that have been adapted to such subjects. Here, we try to resolve this issue by exploiting studies
published in [24–26], where medical constraints have been modeled differently with a constraint called
“isoperimetric”. More precisely, we propose an anti-epidemic control strategy that targets susceptible
people, under the isoperimetric condition that we could not control all individuals of this category due
to restricted health resources.

We consider a simple discrete-time epidemic compartmental model devised in the form of
difference equations, which describe the dynamics of a discrete-time SIRS model with a temporary
controlled class, meaning that the controlled people cannot acquire long-lived immunity to move
towards the removed compartment due to the temporary effect of the control parameter. Thereafter,
we characterize the sought optimal control, and we show the effectiveness of this limited control policy.
This optimal control problem leads to the execution of two numerical methods all combined together
at the same time, namely the forward-backward sweep method to generate the optimal state and
control functions and the secant method adapted to the isoperimetric restriction.

2. Materials

Let us define a discrete-time model with the four following main compartments:

• S: the number of susceptible people to infection or who are not yet infected,
• CS: the number of susceptible people who are temporarily controlled, so they cannot move

to the removed class due to the limited effect of control. It can represent the compartment of
vaccinated people in case a vaccination is not 100% effective due to the difficulty of producing
a perfect vaccine, the heterogeneity of the population or a vaccine not conferring a lifelong
immunity [17,27],

• I: the number of infected people who are capable of spreading the epidemic to those in the
susceptible and temporarily controlled categories,

• R: the number of removed people from the epidemic, but can return to the susceptible class
because of the short-term removal individuals’ immunity.

In our modeling approach, we aim to describe the dynamics of variables S, CS, I and R at time i
based on the following difference equations:

Si+1 = Si − βSi Ii − aθiSi + Πi − µSi + σRi
CSi+1 = CSi + aθiSi − bβCSi Ii − µCSi

Ii+1 = Ii + β(Si + bCSi )Ii − γIi − µIi
Ri+1 = Ri + γIi − µRi − σRi

(1)

with initial conditions S0 > 0, CS0 ≥ 0, I0 ≥ 0 and R0 ≥ 0 and where Πi = µNi with Ni =

Si + CSi + Ii + Ri, gives the newborn people, aθ (0 ≤ a ≤ 1) is the recruitment rate of susceptibles
to the controlled class with θ defining the control parameter as a constant between 0 and 1 (see such
consideration in the case of vaccination in [27]) and “a” modeling the reduced chances of a susceptible
individual to be controlled, β = δ

Ni
with δ the infection transmission rate, µ the natural death rate,

bθ (0 ≤ b ≤ 1) the recruitment rate of controlled people to the infected class even in the presence of θ

with “b” modeling the reduced chances of a temporarily controlled individual to be infected, γ the
recovery rate and σ the losing removal individuals’ immunity rate. We note that the population size Ni
is constant at any time i because Ni+1 = Si+1 + CSi+1 + Ii+1 + Ri+1 = Ni. Hence, Πi = Π = constant.
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3. Methods

Now, we consider the mathematical model (1) with θ as a discrete control function.
Motivated by the desire to reduce the number of infected people as much as possible while

minimizing the value of the control θ over N times, our objective is to seek an optimal control θ∗

such that:

J(θ∗) = min
θ∈Θ

J(θ) (2)

where J is the functional defined by:

J(θ) =
N−1

∑
i=0

(
AIi +

B
2

θ2
i

)
+ AIN (3)

and where the control space Θ is defined by the set:

Θ = {θ ∈ RN |θmin ≤ θi ≤ θmax, θmax ≤ 1 θmin ≥ 0, i = 0, ..., N − 1}}

A and B represent constant severity weights associated with functions I and θ, respectively.
Managers of the anti-epidemic resources cannot well predict whether their control strategy will

reach all the susceptible population over N times. To model the situation in which a restricted resource
of control is available, we consider that the number of susceptible people we can control is equal to a
constant C > 0 for N days. Hence, we try to find θ∗ under the definition of the following isoperimetric
restriction:

C =
N−1

∑
i=0

aθiSi (4)

In [25,26], the authors defined an isoperimetric constraint on the control variable only, to model the
total tolerable dosage amount of a therapy along the treatment period. In their conferences talks [28,29],
Kornienko et al. and de Pinho et al. introduced state constraints in an optimal control problem that is
subject to an S-exposed-I-Rdifferential system to model the situation of the limited supply of vaccine
based on the work in [24] and where the isoperimetric constraint is defined on the product of the
control and state variables. Our study aims to highlight more the importance of such optimal control
approaches by considering a discrete model rather than a continuous one. This would be interesting
since data are often collected at discrete times, as noted in [30].

In our case, to take into account the constraint (4) for the resolution of the optimal control
problem (2), we consider a new variable Z defined as:

Zi+1 = Zi + aθiSi (5)

with Z0 = 0 and ZN = C.
The discrete-time system of (1) becomes:

Si+1 = Si + Π− βSi Ii − aθiSi − µSi + σRi
CSi+1 = CSi + aθiSi − bβCSi Ii − µCSi

Ii+1 = Ii + β(Si + bCSi )Ii − γIi − µIi
Ri+1 = Ri + γIi − µRi − σRi
Zi+1 = Zi + aθiSi

(6)

In the following, we announce two theorems for proving the existence and the characterization of
the sought optimal control θ∗.

Theorem 1. (Sufficient conditions) For the isoperimetric optimal control problem given by (2) along with the
discrete state equations in (6), there exists a control θ∗ ∈ Θ such that J(θ∗) = minθ∈Θ J(θ).
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Proof. In order to prove the existence of a solution θ∗ in Θ, we try to prove that minθ∈Θ J(θ) exists.
We have a finite number of time steps N and discrete state equations in System (6) with bounded

coefficients γ, µ, b, σ, Π, a and β, then for all θ in the control set Θ, the N-component state variables:

S = (S0, S1, ..., Si, ..., SN−1),

CS = (CS0 , CS1 , ..., CSi , ..., CSN−1),

I = (I0, I1, ..., Ii, ..., IN−1)

and R = (R0, R1, ..., Ri, ..., RN−1) ∀i = 0, ..., N − 1

are uniformly bounded, which implies that ∀θ ∈ Θ, J(θ) is uniformly bounded.
We can deduce then that in fθ∈Θ J(θ) is finite since J(θ) is bounded, and there exists a finite number

j of uniformly bounded sequences θ j ∈ Θ such that limj→∞ J(θ j) = in fθ∈Θ J(θ) and corresponding

sequences of states Sj, Cj
S, I j and Rj.

Thus, there exists θ∗ ∈ Θ and S∗, C∗S, I∗, R∗ ∈ RN such that on a subsequence,

θ j → θ∗,

Sj → S∗,

Cj
S → C∗S,

I j → I∗

and Rj → R∗.

Finally, due to the finite dimensional structure of the system (6) and the objective function J(θ),
θ∗ is an optimal control with corresponding states S∗, C∗S, I∗ and R∗ [26]. Therefore, taking into account
the structure of J being a convex function, in fθ∈Θ J(θ) is achieved.

In order to derive the necessary conditions of optimality, we employ the discrete version of
Pontryagin’s maximum principle stated in Theorem A1 in Appendix A.

Theorem 2. (Necessary conditions) Given the optimal control θ∗ and solutions S∗, C∗S, I∗ and R∗, there exist
λl,i, l = 1, ..., 5, i = 0, ..., N, the adjoint variables satisfying the following equations:

4λ1,i = λ1,i+1(−1 + βI∗i + µ + aθ∗i )− aλ2,i+1θ∗i − βλ3,i+1 I∗i − aθ∗i λ5,i+1 (7)

4λ2,i = λ2,i+1(−1 + bβI∗i + µ)− bλ3,i+1βI∗i (8)

4λ3,i = −A + λ1,i+1βS∗i + bλ2,i+1βC∗Si
− λ3,i+1(−1 + β(S∗i + bC∗Si

)− µ− γ) (9)

−λ4,i+1γ

4λ4,i = λ4,i+1(µ + σ− 1)− σλ1,i+1 (10)

4λ5,i = −λ5,i+1 (11)

with4λl,i = λl,i+1 − λl,i, l = 1, ..., 5, i = 0, ..., N − 1 the difference operator and λ1,N = λ2,N = λ4,N = 0,
λ3,N = A and λ5,N = constant to be determined, as the transversality conditions associated with adjoint
Equations (7)–(11).

In addition, the optimal control θ∗ is characterized at each iteration i by:

θ∗i = min
(

max
(

θmin,
aS∗i (λ1,i+1 − λ2,i+1 − λ5,i+1)

B

)
, θmax

)
∀i = 0, ..., N − 1 (12)

Proof. With the application of a discrete version of Pontryagin’s maximum principle in Appendix A
and as done in [26,31,32], we can determine the discrete optimal control θ∗ for the problem (6) and its
associated trajectories S∗, C∗S, I∗ and R∗.
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We define a discrete Hamiltonian Hi as a brief notation of the function H defined for i = 0, ..., N− 1.
as follows:

H(i, Si, CSi , Ii, Ri, λ1,i+1, λ2,i+1, λ3,i+1, λ4,i+1, λ5,i+1, θi)

= AIi +
B
2

θ2
i + λ1,i+1Si+1 + λ2,i+1CSi+1 + λ3,i+1 Ii+1 + λ4,i+1Ri+1 + λ5,i+1Zi+1

The discrete-time adjoint system is resolved using the following formulations:

4λ1,i = −
∂Hi
∂Si

,4λ2,i = −
∂Hi
∂CSi

,4λ3,i = −
∂Hi
∂Ii

,4λ4,i = −
∂Hi
∂Ri

and4λ5,i = −
∂Hi
∂Zi

that we associate with the following transversality conditions:

λ1,N =
∂φN
∂SN

, λ2,N =
∂φN
∂CSN

, λ3,N =
∂φN
∂IN

, λ4,N =
∂φN
∂RN

with φN representing the payoff term function in (3), namely AIN .
Then, we obtain the following discrete-time adjoint system:

4λ1,i = λ1,i+1(−1 + βIi + µ + aθi)− aλ2,i+1θi − βλ3,i+1 Ii − aθiλ5,i+1
4λ2,i = λ2,i+1(−1 + bβIi + µ)− bλ3,i+1βIi
4λ3,i = −A + λ1,i+1βSi + bλ2,i+1βCSi − λ3,i+1(−1 + β(Si + bCSi )− µ− γ)− λ4,i+1γ

4λ4,i = λ4,i+1(µ + σ− 1)− σλ1,i+1
4λ5,i = −λ5,i+1

with the transversality conditions λ1,N = 0, λ2,N = 0, λ4,N = 0, λ3,N = A and λ5,N is unknown.
In order to find the transversality condition λ5,N = constant, we use the secant-method as the

appropriate numerical technique for finding the zero of the function λ5,N → V(λ5,N) = Z̃N − ZN where
Z̃N is the value of Z at final iteration N for various values of λ5,N and ZN is the value fixed by C [25,33].

Since θi is a bounded control, we can then define a Lagrangian L as follows:

L((i, Si, CSi , Ii, Ri, λ1,i+1, λ2,i+1, λ3,i+1, λ4,i+1, λ5,i+1, θi, ω1,i, ω2,i)

= Hi + ω1,i(θmax − θi) + ω2,i(θi − θmin)

where ω1,i, ω2,i ≥ 0 ∀i verifying at θi = θ∗i , the two conditions ω1,i(θmax − θ∗i ) = 0 and ω2,i(θ
∗
i −

θmin) = 0.
Let Li be the brief notation of L and L∗i be the brief notation of L at S∗, C∗S, I∗, R∗ and θ∗.

The condition of minimization is defined as:

L∗i = min
θi∈Θ

Li(
∗∗).

In order to find the solution θ∗i of (∗∗), we differentiate the Lagrangian Li with respect to θi on the
set Θ to obtain the optimality equation:

∂Li
∂θi

= Bθi + aSi(λ2,i+1 − λ1,i+1) + aSiλ5,i+1 −ω1,i + ω2,i = 0 at θ∗i .

Furthermore, we find

θ∗i =
aS∗i (λ1,i+1 − λ2,i+1 − λ5,i+1)−ω2,i + ω1,i

B
.
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If:

θmin < θ∗i < θmax,

then:

ω1,i = ω2,i = 0,

therefore:

θ∗i =
aS∗i (λ1,i+1 − λ2,i+1 − λ5,i+1)

B
.

If:

θ∗i = θmin,

then:

ω1,i = 0,

therefore:

θmin =
aS∗i (λ1,i+1 − λ2,i+1 − λ5,i+1)−ω2,i

B
,

implying that:

ω2,i = a (S∗i (λ1,i+1 − λ2,i+1)− S∗i λ5,i+1)− Bθmin.

Knowing that ω2,i ≥ 0 and B > 0, we obtain θ∗i ≤
aS∗i (λ1,i+1 − λ2,i+1 − λ5,i+1)

B
.

If:

θ∗i = θmax,

then:

ω2,i = 0,

thus:

θmax =
aS∗i (λ1,i+1 − λ2,i+1 − λ5,i+1) + ω1,i

B
,

implying that ω1,k = Bθmax − a
(
S∗i (λ1,i+1 − λ2,i+1)− S∗i λ5,i+1

)
.

Knowing that ω1,i ≥ 0 and B > 0, we obtain θ∗i ≥
aS∗i (λ1,i+1 − λ2,i+1 − λ5,i+1)

B
.

Using these standard optimality arguments, we characterize the control u∗k by:

θ∗i =



aS∗i (λ1,i+1−λ2,i+1−λ5,i+1)
B if θmin <

aS∗i (λ1,i+1−λ2,i+1−λ5,i+1)
B < θmax

θmin if aS∗i (λ1,i+1−λ2,i+1−λ5,i+1)
B ≤ θmin

θmax if aS∗i (λ1,i+1−λ2,i+1−λ5,i+1)
B ≥ θmax
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or by a more reduced form, we can write

θ∗i = min
(

max
(

θmin,
aS∗i (λ1,i+1 − λ2,i+1 − λ5,i+1)

B

)
, θmax

)
4. Numerical Results and Discussion

In this section, we resolve the discrete two-point value problem defined by System (6) with
initial conditions along with Equations (7)–(11) with final conditions, using a discrete version of the
forward-backward sweep method (FBSM) [26,33] with the incorporation of a discrete progressive
iterative scheme to stock at each iteration i, the values of the state variables corresponding to
the forward discrete-time system (6), to use them in a second discrete regressive iterative scheme
incorporated for stocking at each time i, the values of the adjoint state variables corresponding to the
backward discrete-time adjoint system (7)–(11). In fact, at each time i, the values stocked of both state
and adjoint state variables were utilized in the characterization of the optimal control θ∗. In brief,
our algorithm is defined by the following four steps of numerical calculus (Algorithm 1).

Algorithm 1: Resolution steps of the discrete two-point boundary value optimal control
problem (6)–(11).

Step 0:
Guess an initial estimation of θ.

Step 1:
Use the initial condition S(0), CS(0), I(0), R(0) and Z(0) and the stocked values by θ.
Find the optimal states S∗, C∗S, I∗, R∗ and Z∗, which iterate forward in the discrete two-point

boundary value problem (6).
Step 2:

Use the stocked values by θ and the transversality conditions λl,N+1 for l = 1, 2, 3, 4 while
searching the constant λ5,N+1 using the secant-method. More precisely, the secant method is used to
obtain the zero of the function λ5,N → V(λ5,N) = Z̃N − ZN where Z̃N is the value of Z at final
iteration N for various values of λ5,N , and ZN is the value fixed by C. In addition, due its structure
in (4), we choose the constant C in a way that it cannot exceed an upper bound N0 × N where N0 is
the initial population size and N is the number of iterations.

Find the adjoint variables λl for l = 1, 2, 3, 4, 5, which iterate backward in the discrete two-point
boundary value problem (6).

Step 3:
Update the control utilizing new S, CS, I, R, Z and λl for l = 1, 2, 3, 4, 5 in the characterization of

θ∗ as presented in (12).
Step 4:

Test the convergence. If the values of the sought variables in this iteration and the final iteration are
sufficiently small, check out the recent values as solutions. If the values are not small, go back to Step 1.

Figure 1 depicts the behavior of the number of susceptible people in the absence and presence
of the control, and we can see that the number of susceptible people had decreased from its initial
condition once the control had been introduced, while there was no significant decrease of the S
function compared to the case when there was yet no control. With these parameters used, it reached
only three people because of the maximal value of one taken by the optimal control θ∗ in almost
alltimes of the control strategy, as seen in the last figure.

In Figure 2, we can well understand the increase of the number of the removed people because
of a natural recovery, but it cannot represent a significant recovery because it has not reached even
14 people, and this means that only a very small number of people have been removed based on the
initial condition I(0) considered. In the presence of the control, the R function increased towards
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a much higher number of removed people and showed it can even reach more than 31 individuals
recovered from the disease in the first 17 days; this number decreased thereafter because of the results
in the next figure, which will show that infection will disappear as we move forward in time.

0 10 20 30 40 50
0

10

20

30

40

50

60

time (in days)

S

 

 

0 10 20 30 40 50
54.85

54.9

54.95

55

time (in days)

S

Zoom of S without control

without control

with control

Figure 1. Number of susceptible people in the absence and presence of the control in the two cases
θ = 0 and θ 6= 0. Parameter values: Π = µN0, a = 0.5, b = 0.1, β = 10−5, µ = 0.00045, γ = 0.75× 10−2,
σ = 5× 10−4. Initial conditions: S(0) = 55, CS(0) = 0, I(0) = 42, R(0) = 0. Severity weight constants:
A = 1 and B = 4× 105.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

time (in days)

R

 

 

without control

with control

Figure 2. Number of removed people in the absence and presence of the control in the two cases θ = 0
and θ 6= 0, with the same parameter values, initial conditions and severity weights as in Figure 1.
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In Figure 3, the simulation shows that the number of infected people could decrease only because
of a natural recovery or death, while the infection was still serious and remained present in more
than 28 individuals. After the introduction of the control, the I function started to decrease once the
anti-epidemic was followed, and it tended to zero values after 37 days; this means most people would
recover from the disease at the end of the control strategy.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

time (in days)

I

 

 

without control

with control

Figure 3. Number of infected people in the absence and presence of the control in the two cases θ = 0
and θ 6= 0, with the same parameter values, initial conditions and severity weights as in Figure 1.

As regards Figure 4, we sought to verify the condition C = 110, which meets the value 2× S0,
and we presented associated simulations of the number of controlled people, which increased to
53 individuals once the optimal control had been introduced and increased thereafter, again showing
that it could even exceed that number, approximately towards 80 people when we go forward towards
the end. In the same figure, we show the values of the optimal control θ∗, which take the value of one
as the maximal peak for almost alldays, and we can also see that the imposed isoperimetric constant
has been verified in the final instant with some error ε = 3.6589. In fact, it is not evident that it reached
any imposed value while verifying convergence tests of both methods used. Sometimes, the program
did not stop iterating or could not show the plot because of a NANvalue, and then, the only solution
was to fix the number of iterations of the secant method in which the imposed initial guess of C was
approximately reached.

In Figure 5, we exhibit the value of the sought constant missing transversality condition λ5,N ,
which will be essential to verify the necessary conditions announced in Theorem 2. As we can observe
from this figure, the value obtained equals −1.3830× 108.

Figure 6 presents a numerical simulation of the Z function when we did not seek the verification
of the condition ZN = C, and we let ZN free, so we could prove that our algorithm in the case of the
isoperimetric constraint helped to approximate ZN to C or even verify the equality between them,
far from the value that could reach ZN when it was free; as we can see from the mentioned figure,
ZN = 105.5729, which led to an important error of about 4.4271 from C that was sought in Figure 4.
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Figure 4. Number of controlled people, the optimal control θ∗ and the variable Z with an imposed
constant C = 110, with the same parameter values, initial conditions and severity weights as in Figure 1.
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Figure 5. Value of the sought transversality condition λ5,N .
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Figure 6. Z function when ZN is free and not forced to equal C.

5. Conclusions

In this paper, an optimal control approach with an isoperimetric constraint has been applied to a
discrete-time SIRS model, which was in the form of a four-compartmental epidemic model where it
was supposed that the controlled population did not reach the removed class due to the temporary
effect of the control. The isoperimetric restriction, which has been proposed to define the number of
susceptible people who receive the control along the anti-epidemic measures period, allowed us to
find the optimal control needed to fight against a disease when there were limited resources.
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Appendix A

Let us define the following:

• I: the set {0, ..., N − 1}
• Xi: the real n-component column vector; i = 0, ..., N
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• θi: the real m-component column control vector; i = 0, ..., N − 1
• Θ = {θ ∈ RN |θmin ≤ θi ≤ θmax, θmax ≤ 1 θmin ≥ 0, i = 0, .., N − 1}}: the set of

admissible controls
• f : Rn × Rm × Θ → Rn, F : Rn × Rm × I → R, φ : Rm × I ∪ {N} → R, continuously

differentiable functions.

Let us consider a discrete-time optimal control problem over times 0, ..., N, defined by:

min{J} =
N−1

∑
i=0

F(Xi, θi, i) + φ(XN , N) (A1)

subject to the discrete-time system:

Xi+1 = Xi + f (Xi, θi, i), i = 0, ..., N − 1 (A2)

X0 given (A3)

θi ∈ Θ (A4)

We now define the Hamiltonian function Hi to be:

Hi = H(Xi, θi, i) = F(Xi, θi, i) + λi+1 f (Xi, θi, i)

and in the optimal control and state by H∗i = H(X∗i , θ∗i , i).
Then, based on results of the discrete version of the maximum principle discussed in [34], we can

derive the following necessary conditions for our problem (A1) based on the following theorem.

Theorem A1. (A discrete version of the maximum principle) Given a discrete optimal control θ∗i in the
sense of sufficient conditions and given solutions X∗i , then the necessary conditions for θ∗i to be optimal for
Problem (A1)–(A4) are:

X∗i+1 = X∗i + f (X∗i , θ∗i , i), X0 given

∆λi = −
∂H∗i
∂Xi

, λN =
∂φ(X∗N , N)

∂XN

H∗i ≤ H(X∗i , θi, i)

for all θ∗i ∈ Θ
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