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Abstract: The Hausdorff distance is a widely used tool to measure the distance between different sets.
For the approximation of certain objects via stochastic search algorithms this distance is, however,
of limited use as it punishes single outliers. As a remedy in the context of evolutionary multi-objective
optimization (EMO), the averaged Hausdorff distance ∆p has been proposed that is better suited as
an indicator for the performance assessment of EMO algorithms since such methods tend to generate
outliers. Later on, the two-parameter indicator ∆p,q has been proposed for finite sets as an extension
to ∆p which also averages distances, but which yields some desired metric properties. In this paper,
we extend ∆p,q to a continuous function between general bounded subsets of finite measure inside
a metric measure space. In particular, this extension applies to bounded subsets of Rk endowed with
the Euclidean metric, which is the natural context for EMO applications. We show that our extension
preserves the nice metric properties of the finite case, and finally provide some useful numerical
examples that arise in EMO.

Keywords: averaged Hausdorff distance; evolutionary multi-objective optimization; power means;
metric measure spaces; performance indicator; Pareto front

1. Introduction

The Hausdorff distance dH (see [1]) is an established and widely used tool to measure the
proximity of different sets. It is, among others, used in several research fields such as image matching
(e.g., [2–4]), the approximation of manifolds in dynamical systems ([5–7]), in fractal geometry ([8]),
or in the context of convergence analysis in multi-objective optimization ([9–13]). One major reason
for the use of dH is that it defines a metric on the set of all nonempty bounded closed sets in a metric
space. However, one characteristic of the Hausdorff distance is that it heavily punishes single outliers
which is a severe drawback in many cases. For instance, it is known that stochastic search algorithms
are generally quite effective in the (global) approximation of certain objects, however, it is also known
that these approximations may come with a few outliers (e.g., [14]). For those cases, the approximation
quality is not reflected by the value of the Hausdorff distance.

As a remedy, in the context of evolutionary multi-objective optimization, Schütze et al. [14]
have made a first effort to propose the averaged Hausdorff distance ∆p. As opposed to dH , this indicator
averages the distances involved in the proximity measure of the given sets and is hence much more
suitable in the context of stochastic search as single (or few) outliers in a candidate solution set are not
punished hard any more. On the other hand, compared to dH , ∆p has two shortcomings: (i) it only
defines an inframetric instead of a metric; and (ii) it is only defined for finite approximations of
the solution set. In the particular context of continuous multi-objective optimization, it is known
that the solution set, the so-called Pareto set, and its image, the Pareto front, form manifolds of
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certain dimensions. Hence, it is natural that the candidate solution set (i.e., the set computed
by a given solver) is not restricted to finitely many points, but may also form a continuous set.
This is in fact already the case for set-based optimization techniques such as the cell-to-cell mappings
([15–17]) and the subdivision techniques ([10,18,19]). In the context of evolutionary multi-objective
optimization, typically a finite set of candidate solutions (a population) is generated ([20–23]). However,
also here it is a rather natural approach to construct a continuous set out of the final population using,
e.g., interpolation techniques (see [24,25]).

In [26], a modification of the ∆p indicator called the (p, q)-averaged Hausdorff distance ∆p,q

has been introduced by the first two authors. This indicator generalizes the averaged Hausdorff
distance ∆p, is strongly related to the Hausdorff distance dH , and admits an expression in terms
of the matrix `p,q-norm ‖ · ‖p,q. Moreover, when 1 6 p, q < ∞ it is a proper metric, while for the
remaining cases where |p|, |q| > 1 it is still an inframetric. In addition, when finding optimal archives
the parameters p and q play crucial geometrical roles. More precisely, in the context of EMO, p handles
the closeness to the Pareto front and q handles the dispersion. The indicator, however, is restricted to
finite sets.

In this work, we propose a more general version of the ∆p,q indicator that can be applied to
general measurable subsets and that preserves the useful advantages of the finite case. Consideration
is also given to the Pareto-compliance of an intermediate indicator GDp,q that is employed to define
∆p,q. The indicator is hence the first one that can be used in the context of multi-objective optimization
using continuous approximations of the Pareto set/front as described above. Numerical results on
two well known evolutionary algorithms will show the benefit of such continuous archives compared
to discrete ones that have been used so far in lack of a suitable performance indicator.

This paper is organized as follows: In Section 2, we briefly state the background required for the
understanding of this work. In Section 3, we introduce the extended version of the GDp,q and ∆p,q

indicators, discussing their properties and providing some sufficient criteria for the Pareto compliance
of the first one. In Section 4, we present some numerical results that show the applicability and the
benefit of the novel indicator in particular in the context of multi-objective optimization. Finally,
we draw our conclusions and present possible paths for future research in Section 5.

2. Preliminaries

In this section, we briefly present the required background on integral power means and
multi-objective optimization that will be needed for our purposes. Throughout the document we
employ the notation R× := R K {0} and R := [−∞, ∞] for simplicity.

2.1. Integral Power Means

The theory can be presented in the general setting of metric measure spaces, briefly outlined below,
but for simplicity the reader may assume that the specific context of our interest is that of well-behaved
bounded subsets of the n-dimensional Euclidean space Rn endowed with its standard Lebesgue
measure which gives rise to the conventional notion of volume (when it is defined). For a quick review
of measure spaces see [27] (Section 1.4), and for a simple explanation of the Lebesgue measure see [28]
(Chapter 2). Integral means appear already in [29] (Chapter 6). A comprehensive account on the
properties of means can be found in [30].

For greater generality, we recall that (Σ, d, µ) is called a metric measure space if (Σ, d) is a metric
space with a measure µ defined on its Borel σ-algebra M(Σ), i.e., the smallest σ-algebra containing all
the open subsets of the metric topology of (Σ, d). A measure µ is said to be finite if µ(Σ) < ∞, and in
this case Σ is called a finite-measure space.
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Now, given p ∈ R× and any measurable function f : X ⊂ Σ→ [0, ∞) over a finite-measure set X,
we can define the p-average of f over X (or the p-power mean of f over X), by

Mp
x∈X

( f (x)) :=
(

1
µ(X)

∫
X

f (x)p dµ

) 1
p

. (1)

Henceforth, the integral at the RHS will be abbreviated as

−
∫

X
f p dµ :=

1
µ(X)

∫
X

f (x)p dµ.

If necessary, when the measure µ is clear from the context, the element dµ will be written as
dx to emphasize the variable of integration x. In addition, the notation Mp( f (X)) ≡ Mp

x∈X
( f (x)) and

|X| ≡ µ(X) will also be employed to simplify expressions whenever appropriate.
Let us note that for p > 1 we have Mp( f (X)) = µ(X)−

1
p ‖ f ‖p, where ‖ · ‖p denotes the p-norm

of the Lebesgue space Lp(X, µ). Furthermore, it is not difficult to show, with the aid of L’Hôpital’s
rule, that the integral power mean Mp can be extended to the cases p = ±∞. Indeed, if f 6≡ 0,

denoting the essential supremum and essential infimum of f on X by ‖ f ‖∞ := ess supx∈X f (x) and
‖1/ f ‖−1

∞ := ess infx∈X f (x), respectively, it follows that

M∞
x∈X

( f (x)) := lim
p→∞

(
−
∫

X
f p dµ

)1
p

= ‖ f ‖∞ lim
p→∞

(
−
∫

X

(
f (x)
‖ f ‖∞

)p

dµ

)1
p

= ‖ f ‖∞,

because the last integrand is smaller than 1 and the limit is 1. Similarly,

M−∞
x∈X

( f (x)) := lim
p→−∞

(
−
∫

X
f p dµ

)1
p

= lim
p→∞

(
−
∫

X

(
1
f

)p

dµ

)− 1
p

=

∥∥∥∥ 1
f

∥∥∥∥−1

∞
.

We recall that ‖ · ‖∞ is precisely the norm of the Lebesgue space L∞(X, µ). We can also define Mp

when p = 0 as follows:

M0
x∈X

( f (x)) := exp
(
−
∫

X
log f dµ

)
.

It can be considered the integral generalization of the notion of geometric mean for finitely
many elements.

2.2. Multi-objective Optimization

As an application of the (p, q)-distances, we will consider in this work continuous multi-objective
optimization problems (MOPs). Problems of this kind can be expressed mathematically as

min {F(x) : x ∈ Q ⊂ Rn}, (2)

where the function F is defined as a vector of objective functions

F : Q ⊂ Rn → Rk, F(x) := ( f1(x), . . . , fk(x)).

We will assume here that all objectives fi : X → R, for i ∈ {1, . . . k}, are continuous. The optimality
of MOPs is typically defined via the concept of dominance (see [31]).

Definition 1. In the context of MOPs the following are standard notions:

(i) Let v = (v1, . . . , vk) and w = (w1, . . . , wk) ∈ Rk. Then the vector v is less than w (denoted v <P w),
if vi < wi for all i ∈ {1, . . . , k}. The relation 6P is defined analogously.



Math. Comput. Appl. 2018, 23, 51 4 of 24

(ii) A vector y ∈ Q is dominated by a vector x ∈ Q (in short: x ≺ y) with respect to (2) if F(x) 6P F(y)
and F(x) 6= F(y), i.e., there exists a j ∈ {1, . . . , k} such that f j(x) < f j(y).

(iii) A point x ∈ Q is called Pareto optimal or a Pareto point if there is no y ∈ Q which dominates x.
(iv) The set of all Pareto optimal solutions is called the Pareto set, denoted by PQ.
(v) The image of the Pareto set, F(PQ), is called the Pareto front.

It is known that under certain mild smoothness assumptions the Pareto set and the Pareto
front define (k− 1)-dimensional objects [32]. Hence, for set oriented solvers such as cell mapping,
subdivision techniques, and evolutionary algorithms, the question naturally arises as to how to
measure the approximation quality of the obtained solution set with respect to the Pareto set/front.
To accomplish this task, several performance indicators have been proposed in the specialized literature.
There exist, for instance, the hypervolume indicator [21,33], the R2 indicator [34], the IGD+ [35], and the
DOA [36]. Moreover, in the context of multi-criteria decision-making processes, the properties of
some distance measures, as the Hamming, Euclidean, and Hausdorff metrics, is investigated in [37,38].
In this work, we will focus on a new variant of the Hausdorff distance [6]. For convenience of the
reader, we recall in the following the most important definitions.

Definition 2. Let u, v ∈ Rn, arbitrary A, B ⊂ Rn, and ‖ · ‖ be a vector norm. The Hausdorff distance dH(·, ·)
is defined as follows:

(i) dist(u, A) := inf {‖u− v‖ : v ∈ A},
(ii) dist(B, A) := sup {dist(u, A) : u ∈ B},
(iii) dH(A, B) := max {dist(A, B), dist(B, A)}.

The Hausdorff distance dH is widely used in many fields. It is, however, of limited practical use
when measuring the distance of the outcome of a stochastic search method such as an evolutionary
algorithm to the Pareto set/front. The main reason for this is that evolutionary algorithms may
generate outliers that are punished too strongly by dH . As a remedy, the averaged Hausdorff distance
has been proposed in [14]. In this study the vector norm is the 2-norm, i.e., the Euclidean norm.

Definition 3 (Schütze et al. [14]). For p ∈ N, and finite sets A, B ⊂ Rn the value

∆p(A, B) := max {GDp(A, B), IGDp(A, B)},

where

GDp(A, B) :=
(

1
|A| ∑

a∈A
d(a, B)p

)1
p

and IGDp(A, B) :=
(

1
|B| ∑

b∈B
d(b, A)p

)1
p

,

is called the averaged Hausdorff distance between A and B.

The indicator ∆p can be viewed as a composition of slight variations of the Generational Distance
(GD, see [39]) and the Inverted Generational Distance (IGD, see [40]). It is ∆∞ = dH , but for finite
values of p the indicator ∆p averages the distances considered in dH . More precisely, the larger the
value of p, the harder single outliers will be punished by ∆p. Hence, as opposed to dH , the distance
∆p does not punish single (or few) outliers in a candidate set. For more discussion about ∆p and its
relation to other indicators we refer to [14,41].

Definition 4 (Vargas–Bogoya [26]). For p, q ∈ R×, and finite sets A, B ⊂ Rn the value

∆p,q(A, B) := max {GDp,q(A, B K A), GDp,q(B, A K B)},
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where GDp,q(A, B) :=
(

1
|A| ∑

a∈A

(
1
|B| ∑

b∈B
d(a, b)q

)p
q
)1

p

is called the (p, q)-averaged Hausdorff distance

between A and B.

For finite sets, the indicator ∆p,q, introduced in [26] was also defined for p or q = 0, and even for
p or q = ±∞. It is a generalization of ∆p in the sense that between disjoint subsets we have

lim
q→−∞

∆p,q = ∆p.

The parameters p and q can be independently modified in order to produce customary spread
archives (depending on q) located with customary closeness (depending on p) to the Pareto front.

Finally, let us recall that one characteristic of a performance indicator is Pareto compliance: for two
subsets A and B we say that A � B if for every b ∈ B there exists an element a ∈ A such that a � b.
If this does not hold, we write A � B. We say that a performance indicator I is Pareto compliant if for
any two sets A and B with A � B and B � A it follows I(A) 6 I(B). We refer to [42] for details.

3. The (p, q)-Averaged Hausdorff Distance for Measurable Sets

3.1. Properties of Integral Power Means

We start summarizing some fundamental properties of integral power means that we will need
for our subsequent calculations.

Theorem 1. Let X and Y denote finite-measure spaces, f , g : X → [0, ∞) non-negative measurable functions,
and d : X × Y → [0, ∞) a measurable function with respect to the product measure on X × Y. The integral
power mean M satisfies the following properties:

(i) If p ∈ R and k ∈ [0, ∞), then Mp
x∈X

(k) = k and Mp
x∈X

(k f (x)) = k Mp
x∈X

( f (x)).

(ii) For any p ∈ R, we have Mp
x∈X

(
Mp

y∈Y
(d(x, y))

)
= Mp

y∈Y

(
Mp

x∈X
(d(x, y))

)
.

(iii) If 1 6 p 6 ∞, then Mp
x∈X

( f (x) + g(x)) 6 Mp
x∈X

( f (x)) +Mp
x∈X

(g(x)).

(iv) If p ∈ R and f (x) 6 g(x) for all x ∈ X, then Mp
x∈X

( f (x)) 6 Mp
x∈X

(g(x)).

(v) For p, q ∈ R with 0 < p 6 q, we have that Mp
x∈X

( f (x)) 6 Mq
x∈X

( f (x)).

Proof. The proofs of (i) and (ii) are straightforward. To prove (iii) we only need the Minkowski inequality,

Mp
x∈X

( f (x) + g(x)) = µ(X)−
1
p ‖ f + g‖p

6 µ(X)−
1
p

(
‖ f ‖p + ‖g‖p

)
= Mp

x∈X
( f (x)) +Mp

x∈X
(g(x)).

The proof of (iv) is also straightforward from the definitions and a simple proof of (v) can be given
as a particular case of [43] (Theorem 3) which we recall here for completeness. For a positive real v,
consider the function

ωr(v) :=
∫ v

1
tr−1 dt =


vr − 1

r
, r 6= 0;

log v, r = 0.
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Since the function tu, with t a positive constant and u > 0 is increasing with respect to u, we easily
get ωr(v) 6 ωs(v) for 0 6 r 6 s and every v > 0. Consider the following linear integral operator

J [ f ] :=
1

µ(X)

∫
X

f dµ = −
∫

X
f dµ.

Assume first, that p 6= 0, then for any x ∈ X,

J
[

ωp

(
f (x)

Mp( f (X))

)]
=

1
p

(
J
[

f (x)
Mp( f (X))

]p

−J [1]
)

=
1
p

(
1

(Mp( f (X)))p −
∫

X
f p dµ−−

∫
X

dµ

)
= 0.

Similarly, if p = 0 we have

J
[

ω0

(
f (x)

M0( f (X))

)]
= J [log( f (x))− log(M0( f (X))]

= −
∫

X
log f dµ− log(M0( f (X))J [1] = 0.

Suppose that 0 6 p < q. Since ωp(·) 6 ωq(·) implies J (ωp(·)) 6 J (ωq(·)), we obtain

0 6 J
[

ωq

(
f (x)

Mp( f (X))

)]
=

1
q

[(Mq( f (X))

Mp( f (X))

)q

− 1
]

,

from which it follows that Mp
x∈X

( f (x)) 6 Mq
x∈X

( f (x)).

3.2. Definition of ∆p,q for Measurable Sets

With the aid of Theorem 1 we generalize the results of [26] (Section 3). For easy reference,
we provide here slightly abbreviated but complete proofs. Given a metric measure space (Σ, d, µ),
let M(Σ) denote the σ-algebra of all measurable subsets of Σ and let M<∞(Σ) refer to those elements of
M(Σ) having finite measure. As it should be expected from the context, any set relation obtained from
calculations involving an underlying measure µ should be understood to hold in a measure-theoretic
sense, i.e., almost everywhere (a.e.). For example, for X, Y ∈M<∞(Σ), a result saying X = Y, or X ⊂ Y
actually holds almost everywhere, which means that µ{X 6= Y} = 0, or µ{X * Y} = 0, respectively.
Thus, it is convenient in this setting to identify a set X ∈M<∞(Σ) with the whole equivalence class
[X] := {Y | X = Y, a.e.}, and think of these classes as the elements of M<∞(Σ) to remove the need
for the a.e. abbreviation. Also, to avoid an overload of parentheses in the forthcoming expressions,
the distance d(x, y) between x, y ∈ Σ will be abbreviated by dx,y.

Definition 5. For p, q ∈ R×, the generational (p, q)-distance GDp,q(X, Y) between two sets X, Y ∈M<∞(Σ)
is given by

GDp,q(X, Y) := Mp
x∈X

(
Mq

y∈Y
(dx,y)

)
=

(
−
∫

X

(
−
∫

Y
d q

x,y dy
)p

q

dx
)1

p

,

where the sets X and Y are implicitly assumed to be disjoint when p < 0 or q < 0.

As in the finite case, the definition of GDp,q can be easily extended for p, q ∈ R, but still has two
undesirable drawbacks, first GDp,q(X, X) can be different from zero, and second, in general the values
of GDp,q(X, Y) and GDp,q(Y, X) can be different, thus this indicator does not define a metric. To obtain
a proper metric we introduce the following modification.
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Definition 6. The (p, q)-averaged Hausdorff distance is the map ∆p,q : M<∞(Σ) ×M<∞(Σ) → [0, ∞)

given by
∆p,q(X, Y) := max {GDp,q(X, Y K X), GDp,q(Y, X KY)}.

Remark 1. For finite subsets X, Y ⊂ Rn endowed with the standard counting measure µ, the previous notions
of GDp,q and ∆p,q coincide with the ones in Definition 4.

Figure 1 illustrates how the shape of ∆p,q-metric balls Bε := {x ∈ R2 : ∆p,q(A, x) 6 ε} around
a discrete set A of ten points (that approximates a segment of negative slope in the plane) varies as p
and q take several different values. Notice that for negative values of p and q the balls’ shape resemble
the shape of A and enclose all of its points.

q⟍p
-10 -2 -1 1 2 10

-10

-2

-1

1

2

10

Figure 1. Table of ∆p,q-neighborhoods of increasing radius around a discrete set of ten equidistant
points along the line y = −x inR2, showing how their shape change for different values of p and q.

3.3. Metric Properties

The extension of ∆p,q to measurable sets given in Definition 6 preserves the nice metric properties
of the finite version considered in [26] (Section 3). In particular, Theorem 1 enables us to show a result
analogous to [26] (Theorem 3.3).
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Theorem 2. Suppose that 1 6 p, q < ∞. Then the generational (p, q)-distance GDp,q satisfies the triangle
inequality, namely

GDp,q(X, Z) 6 GDp,q(X, Y) + GDp,q(Y, Z)

for any sets X, Y, Z ∈M<∞(Σ).

Proof. From the triangle inequality for the metric d(·, ·) we have

dx,z 6 dx,y + dy,z (x ∈ X, y ∈ Y, z ∈ Z).

Taking the q-average over Z at both sides and using Theorem 1 (i)–(iii), yields

Mq
z∈Z

(dx,z) 6 Mq
z∈Z

(dx,y + dy,z) 6 Mq
z∈Z

(dx,y) +Mq
z∈Z

(dy,z) = dx,y +Mq
z∈Z

(dy,z). (3)

Now, we consider two cases for the parameters 1 6 p, q < ∞, independently.
Case p 6 q: Taking at both sides of (3) the p-average over X and using Theorem 1 (i), (iii), and (iv),

we get
Mp

x∈X

(
Mq

z∈Z
(dx,z)

)
6 Mp

x∈X

(
dx,y +Mq

z∈Z
(dy,z)

)
= Mp

x∈X
(dx,y) +Mq

z∈Z
(dy,z). (4)

In this expression, the LHS is precisely GDp,q(X, Z) which does not depend on Y. We now take
the p-average over Y at both sides of (4) and use Theorem 1 (i), (iii), and (iv), to obtain

GDp,q(X, Z) 6 Mp
y∈Y

(
Mp

x∈X
(dx,y) +Mq

z∈Z
(dy,z)

)
= Mp

y∈Y

(
Mp

x∈X
(dx,y)

)
+ GDp,q(Y, Z).

To finish this case note that from Theorem 1 (ii), (iv), and (v), we have that

Mp
y∈Y

(
Mp

x∈X
(dx,y)

)
= Mp

x∈X

(
Mp

y∈Y
(dx,y)

)
6 Mp

x∈X

(
Mq

y∈Y
(dx,y)

)
= GDp,q(X, Y)

which proves the claim.
Case q 6 p: Here, we note that the LHS of (3) does not depend on Y, and take at both sides of (3)

the q-average over Y. Hence, Theorem 1 (i), (iii)–(v) yield

Mq
z∈Z

(dx,z) 6 Mq
y∈Y

(
dx,y +Mq

z∈Z
(dy,z)

)
6 Mq

y∈Y
(dx,y) + GDp,q(Y, Z).

Lastly, we take the p-average over X and use Theorem 1 (ii)–(iv), to obtain

GDp,q(X, Z) 6 Mp
x∈X

(
Mq

y∈Y
(dx,y) + GDp,q(Y, Z)

)
= GDp,q(X, Z) + GDp,q(Y, Z),

which is the required result.

Corollary 1. For p, q ∈ R× the (p, q)-averaged Hausdorff distance ∆p,q is a semimetric on the collection
M<∞(Σ) of all measurable subsets of Σ with finite measure. Moreover, between disjoint sets, ∆p,q is a proper
metric on M<∞(Σ) for 1 6 p, q < ∞.

Proof. Definition 6 easily implies that ∆p,q(·, ·) > 0 as well as ∆p,q(X, Y) = ∆p,q(Y, X), for every pair
X, Y ∈M<∞(Σ) and all p, q ∈ R×. From Definition 5 we can see that GDp,q(X, Y K X) = 0 if and only if
X = ∅ or Y ⊆ X (and hence Y K X = ∅). We thus find, for X, Y 6= ∅, that

∆p,q(X, Y) = 0 if and only if X = Y.
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We have shown that ∆p,q is a semimetric on M<∞(Σ), and since the maximum of two functions
satisfying the triangle inequality also satisfies it, Theorem 2 shows that ∆p,q satisfies the triangle
inequality when 1 6 p, q < ∞.

Theorem 3. Suppose that for any sets X, Y, Z ∈ M<∞(Σ) there exist some constants 0 < r < R such
that r 6 du,v 6 R holds for all pairs (u, v) in X × Y, X × Z, or Y × Z. Then, for all non-simultaneously
positive p, q ∈ R× with |p|, |q| > 1 the generational (p, q)-distance GDp,q satisfies the following relaxed
triangle inequality

GDp,q(X, Z) 6
R2

r2

(
GDp,q(X, Y) + GDp,q(Y, Z)

)
.

Proof. We prove the theorem in three steps.
Step 1: Take p ∈ R× and assume that q < 0, we will show that

GDp,|q|(X, Y) 6
R
r

GDp,q(X, Y). (5)

For any x ∈ X and all y1, y2 ∈ Y we have r
R
6

dx,y1

dx,y2
6

R
r

, thus

R
r
>
(
−
∫

Y
−
∫

Y

[
dx,y1

dx,y2

]|q|
dy1 dy2

) 1
|q|

=

(
−
∫

Y
d|q|x,y1 dy1

) 1
|q|
(
−
∫

Y
d −|q|x,y2 dy2

) 1
|q|

.

Using the fact that q = −|q|, we get

(
−
∫

Y
d|q|x,y1 dy1

) 1
|q|

6
R
r

(
−
∫

Y
dq

x,y2 dy2

)1
q

,

which by (1), proves that M|q|
y∈Y

(dx,y) 6
R
r
Mq
y∈Y

(dx,y). Calculating the p-average Mp
x∈X

of both sides, and from

Theorem 1 (i) and (iv), we finally get Mp
x∈X

(
M|q|
y∈Y

(dx,y)
)
6

R
r

Mp
x∈X

(
Mq

y∈Y
(dx,y)

)
, which, by Definition 5,

is precisely (5).
Step 2: Now, take q ∈ R× and assume that p < 0, we will show that

GD|p|,q(X, Y) 6
R
r

GDp,q(X, Y). (6)

By hypothesis, for any y ∈ Y and all x1, x2 ∈ X we have r
R
6

dx1 ,y

dx2 ,y
6

R
r

. Therefore, proceeding as

before and applying again Theorem 1 (i) and (iv) we conclude that Mq
y∈Y

(dx1,y) 6
R
r
Mq

y∈Y
(dx2,y). Hence,

(
−
∫

X

(
Mq

y∈Y
(dx1,y)

)|p|
dx1

) 1
|p|(
−
∫

X

(
Mq

y∈Y
(dx2,y)

)p
dx2

) 1
|p|

=

(
−
∫

X
−
∫

X

[
Mq

y∈Y
(dx1 ,y)

Mq
y∈Y

(dx2 ,y)

]|p|
dx1 dx2

) 1
|p|

6
R
r

,

from which we deduce(
−
∫

X

(
Mq

y∈Y
(dx1,y)

)|p|
dx1

) 1
|p|

6
R
r

(
−
∫

X

(
Mq

y∈Y
(dx2,y)

)p
dx2

)1
p

.

Using (1), the previous inequality can be written as

M|p|
x∈X

(
Mq

y∈Y
(dx,y)

)
6

R
r

Mp
x∈X

(
Mq

y∈Y
(dx,y)

)
,
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which, by Definition 5, is precisely (6).
Step 3: From the previous two steps we easily obtain

GD|p|,|q|(X, Y) 6
R
r

GD|p|,q(X, Y) 6
R2

r2 GDp,q(X, Y). (7)

Theorem 1 (iv) and Definition 5 imply that GDp,q(X, Z) 6 GD|p|,|q|(X, Z). Finally, the triangle inequality
for GD|p|,|q| (Theorem 2) and (7), produces the desired relation

GDp,q(X, Z) 6 GD|p|,|q|(X, Y) + GD|p|,|q|(Y, Z) 6
R2

r2

(
GDp,q(X, Y) + GDp,q(Y, Z)

)
.

Remark 2. When the pair (p, q) lies in the light-gray or violet regions of Figure 2, the distance GDp,q

satisfies a relaxed triangle inequality, with the drawback that the constant R2/r2 depends on the condition that
r 6 du,v 6 R, for all pairs (u, v) ∈ X × Y, X × Z, or Y× Z. For bounded and separated sets this condition
always holds, and on those sets the associated (p, q)-averaged Hausdorff distance ∆p,q becomes an inframetric as
the following corollary implies.

Corollary 2. Under the same hypothesis of Theorem 3 we have

∆p,q(X, Z) 6
R2

r2

(
∆p,q(X, Y) + ∆p,q(Y, Z)

)
.

Proof. It follows immediately from Theorem 3 and Definition 6.

Theorem 4. Let X, Y ∈M<∞(Σ) and suppose that p, p′, q, q′ ∈ R satisfy p 6 p′ and q 6 q′. Then

∆p,q(X, Y) 6 ∆p′,q(X, Y) and ∆p,q(X, Y) 6 ∆p,q′(X, Y).

Proof. It follows easily from Theorem 1 (v) and Definition 6.

0 1−1

1

−1

p

q

∞

∞

−∞

−∞

Figure 2. Representation of key regions on the (p, q)-plane. Corollary 1 shows that ∆p,q is a proper
metric in the violet region and Corollary 2 shows that it is an inframetric in the orange and light-gray
ones. Numerical evidence suggests that ∆p,q is still a proper metric in the orange regions.
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3.4. Pareto-Compliance

We return now to the setting of MOPs to consider the behavior of the generalized GDp,q and
∆p,q distances as performance indicators by studying their Pareto-compliance. A discussion of the
Pareto-compliance for the indicators GDp and ∆p appeared in [14] (Section 3). Similar observations
are valid for these new (p, q)-indicators, but a detailed and complete account of the details is part of
ongoing research and will appear elsewhere. Here, as a first approach to the compliance question we
present a basic result that describes the behavior of the indicator GDp,q under stronger assumptions
than the compliance notion mentioned at the end of Section 2.2.

Let us assume that given a decision space Q ⊂ Rn, a MOP has an associated objective function
F : Q → Rk, with objective space F(Q) ⊂ Rk endowed with the Euclidean distance d(·, ·) and the
inherited Lebesgue measure µ. Furthermore, let PQ denote the Pareto set and F(PQ) ⊂ Rk the
corresponding Pareto front. If X ⊂ Q denotes an approximating subset (or archive), the explicit
GDp,q-performance indicators assigned to X is given by

IGD
p,q (X) := GDp,q(F(X), F(PQ)).

For the following statement, let us recall here that a partition of a set X is a collection of disjoint
and non-empty subsets of X whose union is the whole of X. Furthermore, for any q ∈ Rwe abbreviate
the q-averaged distance of F(u) ∈ F(Q) to the Pareto front F(PQ) by δq(u) := Mq

v∈PQ
(d(F(u), F(v))).

Theorem 5. Suppose that for fixed p, q ∈ R a pair of measurable archives X, Y ⊂ Q, satisfy that:

(i) X and Y admit finite partitions X =
⊔m

i=1 Xi and Y =
⊔m

i=1 Yi such that for each i ∈ {1, . . . , m}:

(a) Xi ⊂ X and Yi ⊂ Y are subsets of non-null finite measure.

(b) ∀x ∈ Xi, ∀y ∈ Yi: x � y,

(ii) ∀x ∈ X, ∀y ∈ Y: if x � y =⇒ δq(x) 6 δq(y).

Then IGD
p,q (X) 6 IGD

p,q (Y).

Proof. From condition (i) the archives X and Y admit partitions into the same number m of subsets
and from (ii) it is clear that for any i ∈ {1, . . . , m} if x ∈ Xi and y ∈ Yi then δq(x) 6 δq(y). Hence,
taking integral p-averages over Xi, and then over Yi of the quantities at both sides of this inequality we
obtain for each i that

ap
i :=

1
|Xi|

∫
Xi

δq(x)p dx 6
1
|Yi|

∫
Yi

δq(y)p dy =: bp
i . (8)

Now, for each i ∈ {1, . . . , m} for which the inequality |Xi |
|X| 6

|Yi |
|Y| does not hold, we can further

subdivide Xi into a sufficiently large partition of mi non-null finite measure subsets Xi,1, Xi,2, . . . , Xi,mi ,
so that for all j ∈ {1, . . . , mi} we can guarantee that

wi,j :=
|Xi,j|
|X| 6

|Yi|
|Y| =

: w̃i. (9)

Please note that this should be possible due to the assumption that Xi has non-null finite measure.
Since part (b) of condition (i) still holds for these subsets, (i.e., ∀x ∈ Xi,j, ∀y ∈ Yi: x � y), an analogous
relation to Inequality (8) is valid for them. Explicitly, for each i ∈ {1, . . . , n} and all j ∈ {1, . . . , mi}
we have

ap
i,j :=

1
|Xi,j|

∫
Xi,j

δq(x)p dx 6
1
|Yi|

∫
Yi

δq(y)p dy =: bp
i .

Due to the chosen partitions of X and Y, it is clear that |X| = ∑m
i=1 |Xi|, where |Xi| = ∑mi

j=1 |Xi,j|,
and |Y| = ∑m

i=1 |Yi|. Therefore, with the notation of (9) it follows ∑m
i=1 ∑mi

j=1 wi,j = ∑m
i=1 w̃i = 1,
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which implies that the quantities wi,j and w̃i can be regarded as normalized weights appropriate for
taking weighted averages. Using that 0 6 ai,j 6 bi and 0 6 wi,j 6 w̃i 6 1, simple properties of (discrete)
weighted power means ensure that ∑m

i=1 ∑mi
j=1 wi,j ap

i,j 6 ∑m
i=1 w̃i bp

i . Thus, we can finally write

IGD
p,q (Y)

p =
1
|X|

m

∑
i=1

mi

∑
j=1

∫
Xi,j

δq(x)p dx =
m

∑
i=1

mj

∑
j=1

|Xi,j|
|X| ap

i,j =
m

∑
i=1

mi

∑
j=1

wi,j ap
i,j

6
m

∑
i=1

w̃i bp
i =

m

∑
i=1

|Yi|
|Y| bp

i =
1
|Y|

m

∑
i=1

∫
Yi

δq(y)p dy = IGD
p,q (Y)

p,

proving the statement.

Remark 3. Condition (i) of Theorem 5 implies the simpler (and weaker) dominance conditions:

(a’) X � Y (i.e., ∀y ∈ Y, ∃x ∈ X such that x � y), and
(b’) ∀x ∈ X, ∃y ∈ Y such that x � y.

In many simple examples for which (a’) and (b’) hold, it is not difficult to find the partitions needed for
Theorem 5 (i), however this is not always possible, and the question of when such partitions exist will not be
considered here. Figure 3, show examples where (a’) and (b’) hold and the inequality IGD

p,q (X) 6 IGD
p,q (Y) is both,

true (left) and false (right). In these cases it can be shown that X and Y satisfy (left), and do not satisfy (right)
the requirements of Theorem 5 (i), respectively.

Remark 4. Another important observation is that condition (ii) of Theorem 5 allows for some freedom in
the choice of an appropriate q ∈ R such that the inequality δq(x) 6 δq(y) holds for x � y, ensuring the
compliance to Pareto optimality. This freedom is not available for the indicator GDp because in that case δq(x)
should be replaced by the corresponding quantity when q→ ∞ which is the standard distance from a set to a
point d(F(x), F(PQ)). The possibility to choose a value of q according to the problem is clearly an advantage,
and provides an argument in favor of the generalized version GDp,q.

F(X)

F(Y)

F(PQ)

F(X)

F(Y)

F(PQ)

Figure 3. (Left) Example of a Pareto front F(PQ) with two archives satisfying condition (i) of Theorem 5
for which IGD

p,q (X) 6 IGD
p,q (Y). (Right) Example of a Pareto front F(PQ) with two archives satisfying

conditions (a’) and (b’) of Remark 3 but for which IGD
p,q (X) 
 IGD

p,q (Y). In this case partitions of the
archives satisfying Theorem 5 (i) do not exist.

4. Numerical Examples

In this section, we demonstrate the applicability and usefulness of the new distance measure on
two examples.
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4.1. General Example

As a first example we consider the following sets within the Euclidean plane R2: the first set,
A, is a line segment connecting two points a = (−1, 0) and b = (1, 0), i.e.,

A = ab. (10)

Next, for some given δ > 0 and any fixed value of ε > 0 we consider sets Bδ defined as the union of
line segments

Bδ = cdδ ∪ eδ fδ ∪ gδh, (11)

where c = (−1, ε), dδ = (−δ, ε), eδ = (−δ, 1), fδ = (δ, 1), gδ = (δ, ε), and h = (1, ε) are the segment
end-points in R2. Hereby, a set Bδ can be seen as a certain approximation of A, where the segment eδ fδ

can be considered to be the outlier in the approximation.
Figure 4 shows the sets A and Bδ for the values δ ∈ {0.05, 0.10, 0.20, 0.40} and ε = 0.10. Apparently,

for smaller δ, the outlier region gets smaller, and hence, the approximation Bδ of A gets “better”. This is
reflected by the values of the (p, q)-distance in Table 1.

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0 δ = 0.05

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0 δ = 0.10

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0 δ = 0.20

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0 δ = 0.40

Figure 4. Example of four approximations of A (black horizontal segment) with Bδ (blue piecewise
function) for four different values of δ and fixed ε = 0.10.

Table 1. ∆p,q values for A and Bδ in (10) and (11), for different values of p, q, and δ, with fixed ε = 0.10.

p q ∆pq(A, B0.05) ∆pq(A, B0.10) ∆pq(A, B0.20) ∆pq(A, B0.40)

1 1 0.7149 0.7464 0.8091 0.9324
1 −1 0.4105 0.4506 0.5311 0.6945
1 −100 0.1503 0.1961 0.2878 0.4711
1 −200 0.1479 0.1934 0.2844 0.4663
1 −10, 000 0.1451 0.1901 0.2802 0.4602
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On the other hand, if choosing the classical Hausdorff distance, all values of dH(A, Bδ) are equal
to 1, regardless of the choice of δ > 0. Hence, the (p, q)-distance is more appropriate in this example to
identify “better” approximations.

4.2. Approximation of Pareto Sets/Fronts

As a second example we consider the approximation of the Pareto set and front of
a given MOP. For this, we define the following bi-objective problem that is known as the Lamé
super-sphere function [32]:

min
x

F : Rn → R2, (12)

where F(x) = ( f1(x), f2(x)) is given by

f1(x) =
(

1
n

n

∑
i=1

x2
i

)γ
2

and f2(x) =
(

1
n

n

∑
i=1

(xi − 1)2
)γ

2

for x ∈ Rn and γ ∈ R. Figures 5 and 6 show the Pareto sets and fronts for the special cases n = 2 with
γ = 2 and γ = 1/2, respectively.

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

Figure 5. Pareto set (left) and front (right) of MOP (12) for n = 2 with γ = 2.
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Figure 6. Pareto set (left) and front (right) of MOP (12) for n = 2 with γ = 1/2.
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For the first step, we consider a simple hypothetical example to illustrate the concept of continuous
archives in the context of evolutionary multi-objective optimization. For these, assume we are given
the discrete archive A = {x1, . . . , x5} ⊂ R2, where

x1 = (−0.0129,−0.0421), x2 = (0.2525, 0.2912), x3 = (0.4903, 0.4035),

x4 = (0.6258, 0.6912), x5 = (1.0212, 0.9930).

The set A is hence consisting of only five candidate solutions. Analogously, the image F(A) of A can
be considered as an approximation of the Pareto front that consists as well of five candidate solutions.
Now, in order to improve the quality of the approximation, instead of A one can consider the polygon
that is defined by the elements of A, namely

B := x1x2 ∪ · · · ∪ x4x5. (13)

In what follows, we will call this polygon the continuous archive. The approximations A, B, F(A),
and F(B) can be seen in the Figures 7 and 8. By visual inspection, the approximation qualities increase
significantly when using the linear interpolation, in particular in objective space. This is reflected by
the (p, q)-distances which are shown in Table 2 where we can find the following general behavior:
first, the distances within decision and objective spaces, decreases from finite to continuous archives,
and this phenomena is stronger in the objective space; and second, following the result of Theorem 4,
the distances decreases as q decreases.

In a next step, we consider discrete and continuous archives resulting from two of the most
famous EMO algorithms: NSGA-II [44] and MOEA/D [45], see Table 3 for the parameter setting of
these algorithms. To this end, we first consider the result of NSGA-II with a population size of 12 after
500 generations, see Figures 9 and 10 and Table 4 for the numerical results. Finally, we consider the
MOEA/D generational algorithm to get 500 finite archives of 12 elements each, see Figures 11 and 12
and Table 5 for the numerical results.

For both EMO algorithms, it can be observed that the indicator values for the continuous archives
are significantly better than for the respective discrete archives. Next, note that the ∆p,q values oscillate
for NSGA-II which is a typical behavior for this dominance-based algorithm. These oscillations,
however, are less distinct for the continuous archives.

Table 2. ∆p,q values for the Pareto set/front approximations for MOP (12).

p q Decision Space Objective Space

Finite Archive Continuous Archive Finite Archive Continuous Archive

γ = 2

1 1 0.5314 0.4841 0.4369 0.3943
1 −1 0.2732 0.1750 0.2095 0.0945
1 −100 0.1140 0.0213 0.0893 0.0018
1 −200 0.1131 0.0208 0.0886 0.0017
1 −10, 000 0.1122 0.0202 0.0879 0.0017

γ =
1
2

1 1 0.5314 0.4841 0.5629 0.5024
1 −1 0.2732 0.1750 0.2807 0.1072
1 −100 0.1140 0.0213 0.1202 0.0015
1 −200 0.1131 0.0208 0.1192 0.0015
1 −10, 000 0.1122 0.0202 0.1183 0.0014
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Figure 7. Left: Approximations A (blue dots) and B (blue polygon line) of the Pareto set (green thick
line) of MOP (12) for n = 2. Right: corresponding approximations F(A) and F(B) of the Pareto front,
for γ = 2.
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Figure 8. Left: Approximations A (blue dots) and B (blue polygon line) of the Pareto set (green thick
line) of MOP (12) for n = 2. Right: corresponding approximations F(A) and F(B) of the Pareto front,
for γ = 1/2.

Table 3. Parameter setting for NSGA-II and MOEA/D.

Algorithm Parameter Value

NSGA-II

Population size 12
Number of generations 500
Crossover probability 0.8
Mutation probability 1/n
Distribution index for crossover 20
Distribution index for mutation 20

MOEA/D

Population size 12
# weight vectors 12
Number of generations 500
Crossover probability 1
Mutation probability 1/n
Distribution index for crossover 30
Distribution index for mutation 20
Aggregation function Tchebycheff
Neighborhood size 3
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Figure 9. Left: approximations A (blue dots) corresponding to the 500th generation of the NSGA-II
algorithm, and B (blue polygon line) of the Pareto set (green thick line) of MOP (12) for n = 2.
Right: respective approximations F(A) and F(B) of the Pareto front for γ = 2.
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Figure 10. Left: approximations A (blue dots) corresponding to the 500th generation of the NSGA-II
algorithm, and B (blue polygon line) of the Pareto set (green thick line) of MOP (12) for n = 2.
Right: respective approximations F(A) and F(B) of the Pareto front for γ = 1/2.

Table 4. ∆p,q values for the Pareto front approximations for MOP (12) using the NSGA-II archives and
with p = 1, q = −10.

Generation γ = 1/2 γ = 2

Finite Archive Continuous Archive Finite Archive Continuous Archive

50 0.0439 0.0147 0.0696 0.0160
100 0.0498 0.0109 0.0540 0.0102
200 0.0613 0.0118 0.0716 0.0207
250 0.0651 0.0265 0.0572 0.0061
400 0.0602 0.0102 0.0723 0.0276
450 0.0630 0.0154 0.0584 0.0088
460 0.0612 0.0154 0.0658 0.0098
470 0.0523 0.0102 0.0566 0.0083
480 0.0754 0.0269 0.0684 0.0241
490 0.0510 0.0091 0.0584 0.0118
500 0.0722 0.0097 0.0560 0.0103
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Figure 11. Left: approximations A (blue dots) corresponding to the 500th generation of the MOEA/D
algorithm), and B (blue polygon line) of the Pareto set (green thick line) of MOP (12) for n = 2.
Right: respective approximations F(A) and F(B) of the Pareto front for γ = 2.
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Figure 12. Left: approximations A (blue dots) corresponding to the 500th generation of the MOEA/D
algorithm), and B (blue polygon line) of the Pareto set (green thick line) of MOP (12) for n = 2.
Right: respective approximations F(A) and F(B) of the Pareto front for γ = 1/2.

Table 5. ∆p,q values for the Pareto front approximations for MOP (12) using the MOEA/D archives
and with p = 1, q = −10.

Generation γ = 1/2 γ = 2

Finite Archive Continuous Archive Finite Archive Continuous Archive

50 0.0610 0.0171 0.0648 0.0119
100 0.0519 0.0051 0.1093 0.0016
200 0.0536 0.0037 0.0781 0.0009
250 0.0522 0.0037 0.0790 0.0008
400 0.0511 0.0017 0.0784 0.0009
450 0.0511 0.0017 0.0784 0.0009
460 0.0509 0.0012 0.0784 0.0009
470 0.0509 0.0012 0.0784 0.0009
480 0.0509 0.0010 0.0783 0.0009
490 0.0509 0.0010 0.0783 0.0009
500 0.0509 0.0010 0.0783 0.0009
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To further investigate the last statement, we consider finally the convex bi-objective problem
f1, f2 : R3 → R, where x = (x1, x2, x3) and

f1(x) = (x1 + 1)2 + x2
2 + x2

3

f2(x) = (x1 − 1)2 + x2
2 + x2

3. (14)

The Pareto set of MOP (14) is the line segment connecting the points (0, 0, 0) and (1, 0, 0), and the
Pareto front is as shown in Figure 13.
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Figure 13. Pareto set (left) and front (right) of MOP (14).

Figure 14 and Table 6 show the ∆p,q values for both the discrete and continuous archives obtained
by NSGA-II using a population size of 20. As it can be seen, again the continuous archives achieve
much better indicator values, and the amplitudes of the oscillations are significantly smaller compared
to the discrete archives. This is confirmed by Figures 15–17 that show the results of the discrete and
continuous archives after 300, 400, and 500 generations, respectively. As it can be seen, NSGA-II is able
to compute solutions along the Pareto front, however, with varying distribution along this set (In fact,
it is known that there is no “limit archive” for NSGA-II since this algorithm is not indicator-based).
In turn, for each of the results of NSGA-II, all of the continuous archives represent—at least by visual
inspection—perfect approximations of the Pareto front, which is reflected by the good ∆p,q values.

Concluding, the results presented in this section strongly indicate the convenience of the new
indicator that is able to assess the performance of continuous archives. Though in principle also
other indicators can be extended to continuous sets, this has not been done so far, and this is
not a straightforward task. Hence, no comparisons to other indicators can be considered here.
The presented results further indicate the benefit of the use of continuous archives instead of discrete
ones that are being used classically. This would, among others, allow for the usage of smaller
population sizes which would in turn allow to reduce the computational burden of the evolutionary
algorithms (note that the time complexity for all MOEAs in each generation is quadratic in the
population size). The verification of this statement, however, is left for future work as this goes beyond
the scope of this study.
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Figure 14. ∆p,q values for the discrete (black curve) and the continuous archives (blue curve) of NSGA-II
for MOP (14).

Table 6. ∆p,q values for the discrete and continuous archives of NSGA-II for MOP (14). The results are
averaged over 20 independent runs.

Generation Continuous Archive Finite Archive

20 0.1333 0.2401
40 0.0176 0.1451
60 0.0090 0.1561
80 0.0088 0.1355
100 0.0065 0.1472
120 0.0074 0.1412
140 0.0081 0.1395
160 0.0075 0.1549
180 0.0092 0.1468
200 0.0074 0.1429
220 0.0066 0.1408
240 0.0075 0.1397
260 0.0066 0.1460
280 0.0074 0.1439
300 0.0084 0.1421
320 0.0070 0.1352
340 0.0070 0.1373
360 0.0081 0.1454
380 0.0079 0.1413
400 0.0066 0.1388
420 0.0063 0.1400
440 0.0097 0.1384
460 0.0067 0.1418
480 0.0067 0.1421
500 0.0076 0.1426
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Figure 15. Left: Approximations A (blue dots) and B (blue continuous polygon line) of the Pareto
set of MOP (14) in the 300th generation. Right: corresponding approximations F(A) and F(B) of the
Pareto front.
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Figure 16. Left: Approximations A (blue dots) and B (blue continuous polygon line) of the Pareto
set of MOP (14) in the 400th generation. Right: corresponding approximations F(A) and F(B) of the
Pareto front.
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Figure 17. Left: Approximations A (blue dots) and B (blue continuous polygon line) of the Pareto
set of MOP (14) in the 500th generation. Right: corresponding approximations F(A) and F(B) of the
Pareto front.
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5. Conclusions and Future Work

In this work, we have proposed extensions of the existing GDp,q and ∆p,q performance indicators
that allow to compute the distance between two general measurable sets. In particular, this is a natural
setting in multi-objective optimization because the solution of such a problem typically forms a set
of certain dimension (and is thus not given by finitely many points). We have shown that the
extended indicators keep the nice metric properties from its finite-version predecessors (see [14,26]).
Moreover, for GDp,q, sufficient conditions have been provided ensuring that certain compliance to
Pareto optimality of this indicator can be guaranteed. Further study is needed to determine the precise
relation between these conditions and other ones appearing in the literature.

We have demonstrated the applicability and usefulness of the novel indicator on examples related
to evolutionary multi-objective optimization.

As part of future work, we intend to further investigate the use of ∆p,q within evolutionary
multi-objective optimization. For instance, it might be interesting to integrate this performance
indicator within an evolutionary multi-objective optimization algorithm as it was done, e.g., in [46]
for its predecessor ∆p. Although it is clear that the individual roles of p and q are related with the
convexity of the metric neighborhoods of point and sets, further research is needed to elucidate more
precisely useful ways to take advantage of their joint behavior in concrete situations. Additionally,
to understand the behavior of ∆p,q in relation to Pareto compliance and to complete the partial results
that have been established in Section 3.4 for GDp,q, consideration should be given to the inverted
generational indicator IGDp,q. Finally, one interesting aspect is to see if the indicator can be used as
a proximity measure in other research fields.
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