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Abstract: Planning conflict-free trajectories is a long-standing problem in Air Traffic Management.
Navigation functions designed specifically to produce flyable trajectories have been previously
considered, but lack the robustness to uncertain weather conditions needed for use in an operational
context. These uncertainties can be taken into account be modifying the boundary of the domain
on which the navigation function is computed. In the following work, we present a method for
efficiently taking into account boundary variations, using the Hadamard variation.

Keywords: navigation function; Hadamard formula; trajectory planning; air traffic control

1. Introduction

The aviation industry currently faces meaningful challenges to overcome the increasing traffic
across the world. Safety solutions are a demand in all flight phases in order to cope with traffic
capacity, all-weather conditions and efficiency. In order to address the 5% per year increase in air
traffic, the Single European Sky ATM Research (SESAR) program in Europe and the NextGen program
in the USA have been initiated to design new rules and tools for future air traffic management (ATM).

Each flight phase has specific operational constraints. Of interest here is the en-route flight phase.
This phase is comprised from completion of initial climb through cruise altitude and completion of
controlled descent to the initial approach fix. En-route air traffic is currently managed by subdividing
airspace into sectors and air routes. In each sector, a team of air traffic controllers supervises the
transiting aircraft and prevents conflicts by deviating some aircraft from their planned route. Each team
communicates with the teams responsible for neighbouring sectors to transfer aircraft flying through
several sectors.

As traffic grows, the workload in a sector may exceed air traffic controller capabilities. In this
case, the sector is subdivided into smaller sectors, thus lowering the number of aircraft under
the responsibility of an air traffic controller at any given time. However, this increases the time
spent transferring aircraft between sectors up to the point where coordinating between sectors takes
precedence over separating aircraft and solving conflicts. The SESAR program overcomes this pitfall
by delegating most of the separation task to the aircraft themselves, thus inducing a higher level of
automation. In this context, fixed air routes will no longer be necessary and trajectories will be planned
in 4D in such a way that conflicts are avoided by design.

A major challenge associated with aircraft trajectory planning, in addition to operational
constraints and flight dynamics, is the influence of wind. Much research has been conducted to
plan such routes several days in advance. However, no algorithm is known to produce planning such
that the resulting aircraft trajectories be robust to uncertain head- or tailwind. Artificial potential
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fields, as first used by [1], enable a mobile to reach a destination while avoiding obstacles in
a complex environment. This method has been extended to dynamic environments, with multiple
mobile trajectory planning as in [2], coordinating between mobiles in [3] and moving obstacles
in [4]. Navigation functions, a specific case of artificial potential fields, introduced originally for robots
trajectory planning by [5,6], were extended to generate aircraft trajectories under speed constraints
in [7]. Such trajectories also exhibit low curvature on simulated situations, although a theoretical
bound is yet to be obtained. Furthermore, conflict avoidance is guaranteed.

Navigation functions have also been used to plan trajectories under a wind constraint in [8] for
sailboat navigation. Recent developments in navigation functions also include their application to the
case of real-time spacecraft guidance [9], or in uncertain environments [10].

However, the navigation function works under the assumption that aircraft or other mobiles
move in a deterministic way. We present in this paper a method to account for time uncertainty in
aircraft trajectory planning. To account for this uncertainty, we consider the variation of the navigation
function with respect to variations of the boundary of the configuration space. Of interest in this paper
is the practical construction of Hadamard’s variational formula, as presented in [11], for the Green’s
function of the Laplace equation on a two-dimensional sphere world.

The purpose of this paper is to present a method for computing the Hadamard variational formula
given a specific domain perturbation. This variational formula requires knowledge of the Green’s
function on the initial domain. Numerical evaluations of the Green’s function for certain problems,
such as the Helmholtz operator on periodic structures [12], heat diffusion in 1D [13], the elliptic
problem [14], or the exterior Neumann problem [15].

An analytical expression of the Green’s function for Laplace’s equation has also been obtained in
multiply connected domaines [16]. However, this formulation is difficult to implement in practice, as
it relies on the Schottky–Klein prime function [17].

The motivation for this paper is from designing schemes to plan trajectories for multiple mobiles
under uncertainty using harmonic navigation functions.

After a state of the art on navigation functions in Section 2.1, Section 2.2 presents a method for
numerically computing the Green’s function of the Laplacian operator, and Section 2.3 applies this
method to the computation of the variation of the navigation function with respect to the domain
boundary variation. The methods are illustrated and the results for this method are exhibited in
Section 3. Finally, future work is outlined in Section 4.

2. Materials and Methods

2.1. Navigation Functions

Navigation functions on an arbitrary sphere world were introduced by Rimon and Koditschek [18]
in the context of robot navigation for generating trajectories that present a guarantee of obstacle
avoidance. Navigation functions are a family of potential functions, with their maximum on the
boundary of the obstacles, their minimum at the destination and no interior local minimum or
maximum. Formally, navigation functions are defined as follows:

Definition 1. A map ϕ : En → [0, 1] is a navigation function on a compact connected smooth manifold
F ⊂ En if it is:

1. Analytic on the interior of F ,
2. Polar on F with a minimum at an interior point qd ∈ ◦F ,
3. Admissible on F ,
4. Morse on Ω.

Once the navigation function is computed, robot trajectories are determined by following −∇ f
at non critical points or the steepest descent given by the Hessian at critical points. The trajectories
hereby obtained reach the destination while avoiding obstacles.
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Navigation functions have been extended to aircraft trajectory planning [19], taking into account
ATM considerations such as limits on speed and curvature, as aircraft can only fly at [−3%, +6%] of
their nominal speed [20].

Of present interest are harmonic navigation functions on a manifold of R2 with non-overlapping
spherical boundaries. Such a domain is referred to as a sphere world. Let D be a sphere world as
described and zd the destination point in the interior of D.

Consider the Dirichlet problem

∆φ = 0 on the interior of D,

φ(z) = c ∈ R∗+, z ∈ ∂D, (1)

φ(zd) = 0,

where

∆ =
∂2

∂x2 +
∂2

∂y2 (2)

is the Laplacian operator in two dimensions. As stated in [21], the function φ on L2(D) defined by this
problem is a navigation function. Indeed, no interior point can be a local extrema so that φ is polar.
φ is admissible by construction and is Morse on D.

However, navigation functions work under the assumption that trajectories are deterministic.
The kind of trajectory obtained by this method is not robust against uncertainties, and thus
phenomenon such as wind may cause the separation norms to be violated. This prevents navigation
functions from being deployed in an operational context. The purpose of this work is to provide tools
for extending navigation functions to the case of aircraft trajectories under a wind uncertainty.

In the following sections, we will introduce the Green’s function and a numerical method to obtain
it on sphere worlds, and its application to navigation function under a domain boundary uncertainty.

2.2. Semi-Analytical Approximation of the Green’s Function for the Laplacian Operator

2.2.1. Green’s Function

Let Ω ∈ R2 be a planar bounded domain with the boundary ∂Ω =
⋃

i Ci such that Ci be non
intersecting circles and C1 be exterior to all other circles, as illustrated in Figure 1. The centers of
circles Ci are noted ci and the radii ri. In this configuration, ∂Ω is Lipschitz-continuous and Ω is
a Lipschitz domain.

Let us consider the equation

−∆u = f on Ω, u = 0 on ∂Ω, (3)

where f ∈ L2(Ω) is a given function. If the domain boundary ∂Ω is sufficiently smooth, then Equation (3)
admits a unique solution u ∈ H1

0(Ω).
The Green’s function, noted G : (x, y) ∈ Ω̄×Ω 7→ R is the solution of

−∆u = δs on Ω, u = 0 on ∂Ω, (4)

where δs is the Dirac distribution centered in s ∈ Ω. Contrary to Equation (3), the right-hand term in
Equation (4) is not L2. However, the Lp-integrability of the Green’s function for elliptical equations on
Lipschitz domains is given by [22]. Furthermore, as presented in [23], it follows from Equation (4) that
the solution u to Equation (3) has the form

u(x) =
∫

∂Ω
u(y)

∂G
∂n

(x, y) dy. (5)
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c1

c4

c2

c3

Figure 1. A sphere world bounded by an outer circle of center c1 and three non overlapping inner
circles of centers c2, c3 and c4, respectively.

2.2.2. Green’s Function from Conformal Mappings

Definition 2. Let Ω ⊂ C be a domain. A fundamental solution of the Laplace equation is a mapping G : :
ω×Ω→ R such that z 7→ G(z, z0) is harmonic in Ω− z0 for any z0 ∈ Ω and:

lim
z→z0

G(z, z0) = +∞.

A representation theorem for such a G is given in [24]:

Theorem 1. Let G be a fundamental solution of Laplace equation in a domain Ω. Then, there exists
a function h : Ω × Ω → R, harmonic in its first argument, and a real constant λ > 0 such that for any
(z, z0) ∈ Ω×Ω, z 6= z0:

G(z, z0) = λ log
1

|z− z0|
+ h(z, z0).

For a given λ, h, hence G, is uniquely defined by its values at the boundary ∂Ω. The special choice
λ = 1/2π and vanishing boundary conditions yields the so-called Green’s function of the Laplace
equation. It can be obtained by solving for h the system:

∆zh = δz0 , (6)

h(z, z0) = − 1
2π log 1

|z−z0|
, z ∈ ∂Ω. (7)

Theorem 2. Let G be Green’s function for the Laplace equation in the domain Ω. The following relation holds
in the distributional sense for any z0 ∈ Ω:

∆zG(., z0) = δz0 .

Proof. Using the standard operators ∂, ∂, it comes: ∆zG(., z0) = 4∂∂G(., z0). For an arbitrary function
φ holomorphic in Ω, continuous on ∂Ω:

d (∂G(., z0)φ) = ∂∂G(., z0)dz ∧ dz + ∂G(., z0)∂φdz ∧ dz (8)

= −∂∂G(., z0)dz ∧ dz = − 1
4 ∆G(., z0)φ. (9)

By Stokes theorem:∫
Ω

∆G(z, z0)φ(z)dz ∧ dz = −4
∫

∂Ω ∂G(z, z0)φ(z)dz. (10)

Since dx ∧ dy = −2idz ∧ dz, Equation (10) yields:∫
Ω

∆G(z, z0)φ(z)dx ∧ dy = 2
i
∫

∂Ω ∂G(z, z0)φ(z)dz, (11)
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and finally, using the relation:

∂ log |z− z0| =
1

2(z− z0)
,

the right-hand side term equals:
1

i2π

∫
∂Ω

φ(z)
z− z0

dz = φ(z0).

Using the system defining h to obtain an approximate solution is not an easy task from a numerical
point of view as it requires solving a Laplace equation that becomes increasingly ill-conditioned as z0

approaches the boundary of the domain. This is mainly due to the fact that the singularity lies within
the domain of interest.

In order to transform this inconvenient geometry into a more convenient one, we choose
a conformal mapping that eliminates the singularity at z0.

Consider the following conformal mapping

Tz0 : z 7→ 1
z− z0

. (12)

Provided that z0 is interior to Ω, the map of Ω by Tz0 noted ΩT , as illustrated in Figure 2, is the
unbounded region exterior to a set of non-overlapping circles of center cT

j and of radii rT
j defined by

cT
j =

cj − z0

|cj − z0|2 − r2
j

, (13)

rT
j =

rj∣∣|cj − z0|2 − r2
j

∣∣ . (14)

c1

c3

c2

z0

Tz0

cT
1

cT
3

cT
2

Ω ΩT

Figure 2. Mapping of the sphere world Ω by Tz0 . ΩT is the space exterior to three circles.

Let H = G(·, z0) ◦ Tz0 : z 7→ G(Tz0(z), z0). Given that Tz0 is a conformal mapping, H is the
harmonic solution exterior to non-overlapping disks that vanishes on the disk boundaries and such
that H(z) ∼ log |z| as |z| → ∞. Furthermore, contrary to G(·, z0), function H has no singularity on its
domain. Function G(·, z0) can then be determined given the knowledge of function H

G(·, z0) = H ◦ T−1
z0

. (15)

In the following subsection, we present a method for approximating H.
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2.2.3. Harmonic Function Exterior to Non-Overlapping Disks

We seek a function H on domain ΩT as defined previously. We use the following Laurent expansion
[25] for H

H : z 7→ α +
J

∑
j=1

β j log |z− cT
j |+<

( J

∑
j=1

∞

∑
k=1

(γjk − iδjk)(z− cT
j )
−k
)

(16)

with

J

∑
j=1

β j = 1 (17)

and where α, β j, γjk and δjk are scalars to be determined. This function is harmonic with H(z) ∼ log |z|
as |z| → ∞ and vanishing values on the boundary of ΩT .

This series ∑∞
k=1(γjk − iδjk)(z− cT

j )
−k can be approximated by its N first terms. Thus, we consider

the approximation h of function H

h : z 7→ α +
J

∑
j=1

β j log |z− cT
j |+<

( J

∑
j=1

N−1

∑
k=1

(γjk − iδjk)(z− cT
j )
−k
)

. (18)

The Green’s function G(·, z0) can then be approximated by the function g = h ◦ T−1
z0

. This function
g has the additional benefit of being easily derived to any order as it is the composition of standard
functions. Given Equation (18), the derivatives of h are

∀z ∈ Ω̄T ,
∂h
∂x

(z) =
J

∑
j=1

β j
x− xj

|z− cT
j |2
−

J

∑
j=1

N−1

∑
k=1
<
(

k(γjk − iδjk)(z− cT
j )
−k−1

)
∂h
∂y

(z) =
J

∑
j=1

β j
y− yj

|z− cT
j |2

+
J

∑
j=1

N−1

∑
k=1
=
(

k(γjk − iδjk)(z− cT
j )
−k−1

)
.

(19)

The derivatives of g are thus obtained by combining Equations (12), (15) and (19). Once the coefficients
for h are determined, these derivatives come for free, as no additional coefficients need to be computed.
This property is of interest to us for the purpose of the Hadamard variation covered in Section 2.3 as
the normal derivatives on the domain boundary are required.

The values of coefficients of the expansion of h are obtained by a numerical method derived
from that of [26], using collocation points equally spaced on the set of boundary circles, to approach
the coefficients of (18) given a domain Ω. A least squares method can be used to set the boundary
conditions. To ensure that the vanishing condition on the boundary is satisfied, a number n of
collocation points denoted by zi, i ∈ [[1, n]] are set on each circle. Values for the coefficients are chosen
by minimizing the sum of squares of h(zi). Finding the coefficients of h is then equivalent to solving
the optimization problem: {

min ||AX||2,

s.t. vTX = 1,
(20)
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where X and v are two vectors of length (1 + J + 2NJ)

X =
(
α, β1, . . . β J , γ11, δ11, . . . δJN

)
, (21)

v =
(
0 1 . . . 1
←−−−→

J

0 . . . . . . 0
←−−−−−−−−−→

2NJ

)
, (22)

and A is an n by (1 + J + 2NJ) matrix.
The problem set in Equation (20) can be turned into a set of linear equations by using Lagrange

multipliers [27]. Given enough collocation points, this problem has a unique solution X as defined in
Equation (21), from which we obtain the approximation h from Equation (18) of the harmonic function
on ΩT and the approximation g of the Green’s function, with function g defined for a fixed point z0 as

g = h ◦ T−1
z0

. (23)

2.3. First Order Variation of the Harmonic Solution

The purpose of this section is to present the main results relating the behavior of the solution of
an elliptic problem with Dirichlet boundary conditions to the variation of its border. Let (M, g) be
a connected orientable smooth Riemannian manifold of dimension d and let γi, i = 1 . . . N be a finite
set of disjoint embedded smooth submanifolds of dimension d− 1 that partitionM into two disjoint
components M+,M− that are manifolds of dimension d with common boundary γ = ∪i=1...Nγi.
M+ is assumed to be relatively compact. Finally, let X be a smooth vector field onM with flow φ(t, x)
that is transversal to γ (except perhaps at a finite number of points). The flow of X will be denoted
by φ : ]− ε, ε[×M → M, with as usual ∂tφ(0, x) = X(x). For a fixed t, φt will denote the function
φt : x 7→ φ(t, x). The flow φ will model an admissible deformation of the manifold with boundary
M+ ∪ γ. Following [28], the deformed boundary at t ∈]− ε, ε[ will be defined as γt = φ (t, γ) and the
perturbed problem as:

∆ut = 0 in φ(
(
t,M+

)
(24)

ut|γt = ft. (25)

Since the primary goal is to obtain a formula for the Green’s function variation, the problem
stated in Equation (24) will be reformulated to accommodate a distribution in the right-hand term
of Equation (24). Likewise, boundary condition (25) will be simplified later to ut|γt = 0. The final
problem in distributional form is then: ∫

M+
t

∆utvω = T(v),

u|γt = ft,
(26)

where ω is the Riemannian volume form and T is the right-hand term distribution. Recalling that
∆ut = div∇ut, it comes:∫

M+
t

∆utvω =
∫
M+

t

vd(i∇ut ω)

= −
∫
M+

t

g (∇ut,∇v)ω +
∫

γt
v∇ut|Nσ,

(27)

where the subscript N denotes the component of the vector normal to γ and σ = iNω, with N the
normal vector to γ. Any test function v is the image by φ∗t of a test function φ−1∗

t v. The perturbed
problem (27) can thus be rewritten so as to involve only integrals onM+:
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−
∫
M+

φ∗t g (∇ut,∇v) φ∗t ω +
∫

γ
φ∗t vφ∗t∇ut|Nφ∗t σ = φ∗t T(v)

φ∗t v ∈ D (M) .
(28)

Taking the derivative of the first integral on the left-hand side of (28) with respect to t at t = 0 yields:∫
M+

X (g (∇u,∇v))ω +
∫
M+

g (∇u̇,∇v)ω +
∫
M+

g (∇u,∇v)div Xω,

v ∈ D (M) .
(29)

By Cartan’s formula, div(X)ω = d(iXω), thus:∫
M+

g (∇u,∇v)div Xω =
∫
M+

d (g (∇u,∇v) iXω)−
∫
M+

d (g (∇u,∇v)) ∧ iXω

=
∫

γ
g (∇u,∇v) XNσ−

∫
M+

X (g (∇u,∇v))ω.
(30)

Putting it in (29), the derivative becomes:∫
M+

g (∇u̇,∇v)ω−
∫

γ
g (∇u,∇v) XNσ. (31)

The derivative with respect to t at t = 0 of the boundary term:∫
γt

v∇ut|Nσ =
∫

γ
φ∗t v∇φ∗t |Nφ∗t σ

can be expressed as: ∫
γ

v∇u̇|N − X (v∇u|N) σ (32)

with the boundary condition u|γ = 0, the first term vanishes. However, it will be kept in the sequel to
obtain a more general variation formula. Gathering things together yields:

−
∫
M+

g (∇u̇,∇v)ω +
∫

γ
g (∇u,∇v) XNσ +

∫
γ

v∇u̇|N −
∂v
∂N
∇u|N XNσ. (33)

Considering the problem: ∫
M+

u∆G̃xω = δx,

∇v|γ = 0,
(34)

and putting back its solution as v in (33) and using:∫
M+

u∆ω = −
∫
M+

g (∇u̇,∇v)ω

gives for the derivative of the solution:

u̇ =
∫

γ
G̃x∇u̇|Nσ−

∫
γ

∂G̃x

∂N
∇u|NXNσ. (35)

Finally, if u is taken to be the green function of the original problem, the well known Hadamard
formula is obtained [29]:
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δG(x, y) =
∫

∂Ω

∂G
∂n

(w, x)
∂G
∂n

(w, y)XNσ. (36)

3. Results and Discussion

3.1. Numerical Validation of the Green’s Function Approximation

In this section, we discuss the results obtained by implementing the above method and verify
that the resulting functions present certain expected properties. We also justify the decisions regarding
the choice of parameters for Equation (18) in light of the relative error and the computation time.
We finally discuss the relevance of this method for the application at hand, namely computing
navigation functions.

Python 2.7 was used to implement the method described in Section 2.2 on an office computer
with an Intel Core i7-4710MQ CPU, 2.50 GHz, eight cores.

The code is freely available on the HAL repository [30].

3.1.1. Convergence of the Method

3.1.1.1. Reconstruction of the Harmonic Solution for Constant Boundary Conditions

Given the Green’s function G on a domain Ω̄×Ω, the harmonic solution can be found for any
Dirichlet boundary conditions from Equation (5). In particular, one important property of the Green
function is that if the function u in Equation (5) is constant and equal to 1, then we find that for any
x ∈ Ω ∫

∂Ω

∂G
∂n

(x, y) dy = 1. (37)

We build function g to estimate the Green’s function as defined in Equation (23) on a domain
featuring two inner circle boundaries of centers 2i and −1− 2i and of radii 1. and 0.5, respectively,
and bounded by an outer circle of radius 5. centered at the origin. We then evaluate the quality of the
estimation by comparing the integral of its normal derivative to 1:

ε =
∣∣∣1− ∫

∂Ω

∂g
∂n

(x, y) dy
∣∣∣. (38)

The integral is computed using the quad function from the scipy Python library [31], and based on
a technique from the Fortran library QUADPACK.

Figure 3 is a measure of the quality of the estimation from Equation (37), given by the logarithm
of ε, relative to the number of collocation points at a given point x = −2 interior to the domain and
for a given number of terms in the Laurent expansion N = 2, N = 5 or N = 10. Overall, this value
follows a decreasing curve, thus the distance decreases as the number of collocation points increases.
There is a steep increase of the curve for values of nc around 2N.

For higher fixed values of N, the curve starts at a higher point, and converges for higher values

of nc, but, in either case, the distance from
∫

∂Ω

∂g
∂n

(x, y) dy to 1 plateau around 10−14 for nc > 2N.

This indicates that the obtained values are constrained by round-off errors.
There is no improvement for nc > 2N, since the problem is over-constrained, as can be seen in the

linear problem stated in Equation (20), where 1 + J + 2(N − 1)J coefficients are to be determined from
Jnc equations.

In the following section, we will further evaluate the quality of the approximation of the
Green’s function derived from our method by integrating over the domain boundary to find the
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harmonic solution for non-constant boundary conditions, similar to those of the foreseen application
of our method.

10 20 30 40 50 60

−14

−13

−12

−11

number of collocation points nc

er
ro

r
lo

g
|1
−
∫ ∂

Ω
∂

g
∂

n
(x

,y
)

d
y|

N = 2
N = 4
N = 8

Figure 3. log
∣∣∣1− ∫

∂Ω

∂g
∂n

(x, y) dy
∣∣∣ with x = −2 and a fixed N for values of nc ranging from 2 to 64 in

the configuration described in Section 3.1.1.1. The x-axis is the number of collocation points nc.

3.1.1.2. Reconstruction for Non-Constant Boundary Conditions

On certain sphere worlds, an analytical solution can be found to Equation (3). Here, we consider
the crown defined by the unit circle as an outer boundary, and the circle of center 2/5 and of radius
2/5 as an inner boundary as pictured in Figure 4.

c1 c2

r1 r2

Figure 4. Domain on which an exact solution is computed. The outer boundary is the unit circle.
The inner boundary is the circle of center c2 = 0.4 and of radius r2 = 0.4. The Dirichlet boundary
conditions used are such that the value is c1 = 0 on the inner boundary and r1 = 1 on the
outer boundary.

For a domain bounded by two concentric circles, with constant Dirichlet conditions on each circle,
the harmonic solution to this problem is a function of the form z 7→ A + B log z with constants A
and B chosen to fit the boundary condition. A Möbius mapping [32] can be found that transforms
this symmetrical problem into that described in Figure 4. From here, and given Dirichlet boundary
conditions such that the value on the inner boundary be constant equal to scalar a ∈ R and the value on
the outer boundary be constant equal to b ∈ R, then the harmonic potential on this domain is function

ue : z 7→ b− a
log 2

log
∣∣∣2z− 1

z− 2

∣∣∣+ b. (39)
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We can thus compare the solution reconstructed with the Green’s function as described in
Equation (5), noted ug

ε1 = ||ue − ug||1 ≈
1
n

n

∑
i=1
|ue(zi)− ug(zi)|. (40)

The zi in this equation are placed on a fine enough Cartesian grid, such that the result has converged.
In Figure 5a, the logarithm of the distance between both solutions is presented. As the number of

terms used in the Laurent series increases, the difference ε1 decreases for high numbers of collocation
points. As discussed previously, the error converges for values of nc greater than 2N. As such, as the
number of terms N in the Laurent expansion increases, the error ε1 converges for larger numbers nc of
collocation points, but converges towards a lower value.
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Figure 5. log ε1 with our method based on the Green’s function compared to that obtained with
the finite elements method. (a) log ε1 as a function of nc for a fixed number of terms in the Laurent
expansion N = 2, N = 5 or N = 10; (b) log ε1 as a function of the number of mesh vertices for the
finite element method with Lagrangian elements of order 2.
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In Figure 5b, log ε1 is represented for the comparison between the analytical solution and that
obtained with the finite elements method using Lagrange elements of order 2. Here, we observe that
the error for the solution computed with the Green’s function is comparable to that for the finite
elements method.

Although we compare the results obtained using the reconstruction from the Green’s function
to those of the finite element method, it is to be noted that reconstructing the harmonic solution
from the Green’s function is more time-consuming than solving the finite elements problem, as the
Green’s function simultaneously gives the harmonic solution for all boundary conditions. As such,
our method is not appropriate for solving single navigation functions. However, in the context of
solving boundary variation problems, the hereby presented method computing the Green’s function is
superior. We further illustrate this in the following paragraphs by exhibiting the time complexity.

3.1.2. Time Complexity

In this section, we consider the execution time to compute the approximation of the Green’s
function at one point, noted as g in Section 2.2. We normalize the resulting times relative to the
execution time in the test case where N = 2 and nc = 2. The results are presented in Figure 6 for
different values of N and of nc.

0 10 20 30 40 50 60 70
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20

40

number of collocation points nc

ex
ec

ut
io

n
ti

m
e

N = 2
N = 5

N = 10

Figure 6. Normalized execution as a function of nc for a fixed number of terms in the Laurent expansion
N = 2, N = 5, or N = 10.

As can be seen in Figure 6, the time required to compute the Green’s function rapidly increases
as the number of terms in the Laurent expansion increases. However, as seen in Sections 3.1.1.1 and
3.1.1.2, the solution rapidly converges and good results can be obtained with small values of N.

The order of magnitude for the base case in our configuration, with nc = 2 and N = 2,
is a millisecond. This relatively small amount of time must be put in perspective with the fact that the
approximation g of the Green’s function may be computed hundreds of times for different points of
the domain in order to estimate the value of the harmonic solution in one point.

In the following section, we will present a practical example of our method, relevant to the
application at hand.

3.1.3. Possible Applications of the Solution

3.1.3.1. Green’s Function of Sphere Worlds

Having constructed a semi-analytical method for carrying out the computations of the Green’s
function, we now include representative examples illustrating our construction on sphere worlds.
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Figure 7 depicts examples of sphere worlds with one obstacle and the singularity placed at
different points in the domain. The resulting function vanishes except in the vicinity of the singularity.
In each of the Laurent expansion, ten terms are used. Thirty collocation points are set on the domain
boundaries at regular intervals.

Sphere worlds with more obstacles can be tackled with no additional difficulty.

(a) Singular point z0 = 0.1 (b) Singular point z0 = −0.3− 0.7i

Figure 7. Approximation g of the Green’s function on unit disc with obstacle of radius 0.1 centered at
−0.2− 0.5i and destination disc of radius 0.2 centered at 0.5i.

3.1.3.2. Computing Navigation Functions

In order to demonstrate the usability of our method in the context of aircraft trajectory planning,
we have carried out the computation of navigation functions with the Green’s function and traced
some resulting trajectories. These are exhibited in Figure 8. The domain is defined with dimensions
similar to those found in operational contexts. The outer boundary, figuring that the limit of the
airspace is 100 NM in diameter; the obstacle discs, representing the other aircraft are 5 NM in diameter.
The destination is near the center of the domain.

The trajectories are plotted using a gradient descent method [33] with a constant step. We find
that the generated trajectories all converge towards the destination, while avoiding all obstacles with
a wide margin, as is illustrated in Figure 8.

(a) 6 obstacles (b) 12 obstacles

Figure 8. Navigation functions with trajectories from starting points 40 − 40i, 35 − 55i, 50 − 25i,
−80− 40i and −80 + 50i represented.
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3.2. Numerical Validation of the Hadamard Variation of the Green’s Function

In the present section, we will exhibit the results obtained with the aforementioned method for
variations of the domain boundary. We consider here a sphere world Ω bounded by one destination
disc (c0, r0), one obstacle disc (c1, r1) and an outer boundary disc (c2, r2), such as the one presented in
Figure 7. We hereby study two manners of disturbing the domain boundary

• by varying the center of the obstacle disc, which is representative of the effect of a locally constant
wind on an aircraft.

• and by varying the radius of the obstacle disc.

The domain resulting from disturbing the domain boundary is denoted by Ω∗. In any case, the form of
δρ as introduced in Equation (36) can be explicitly expressed for the entire domain border. Let ~δc and
δr be respectively the variation of the obstacle disc center and radius. Then, the domain variation is

δρ =

{
~n(w) · ~δc + δr, on the obstacle,

0, elsewhere,
(41)

where~n(w) is the normal vector to the domain boundary at point w ∈ ∂Ω. For a pure translation of
the disc, the term δr is null. For a pure variation of the obstacle disc radius, the term ~δc is null.

In practice, for determining aircraft trajectories, only the center of the obstacle disc is submitted
to uncertainty, since the radius obstacle disc is defined by the aircraft separation norms. However,
when the wind field cannot be considered to be locally constant, it makes sense to allow the disc to
deform to an ellipse to account for the anisotropic nature of the perturbation. Extensive simulations
with various wind fields is an ongoing work within the frame of the STARGATE project.

In the following paragraphs, we will consider the variation of the Green’s function for small
variations of the obstacle radius.

We first introduce notations. Let G : Ω̄×Ω be the Green’s function computed at each η ∈ Ω̄ from
Equation (23). Given the study of parameters in Section 3.1, the values of N and nc in computing the
Green’s function are set respectively to 10 and 30. δG denotes the variation of the Green’s function as
defined in Equation (36) and the Green’s function estimated using the Hadamard variation is noted
G̃ = G + δG. The Green’s function on the perturbed domain Ω∗ is noted G∗ : Ω̄∗ ×Ω∗ and is similarly
computed at each η ∈ Ω̄∗ from Equation (23). Finally, δG, the Hadamard variation of the Green’s
function is compared to G − G∗, the actual variation of the Green’s function on the entire domain
Ω̄×Ω using the relative error for the variation as a metric

εg =

∣∣∣∣∣∣∣∣ |(G∗ − G)− δG|
|G∗ − G|+ |δG|

∣∣∣∣∣∣∣∣
1
, (42)

where the norm || · ||1 is computed on Ω̄×Ω by discretizing the domain along a Cartesian grid as was
done for Equation (40). This error, which is expected to approach 0 for small values of δρ, is given in
Figure 9 for perturbations of decreasing amplitudes, for a dilation of the radius of the inner disc.
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Figure 9. Relative error of the variation of the Green’s function deduced from the Hadamard variation
for a perturbation of the radius of the inner disc (displacement component ~δc is null). The x-axis is the
logarithm of the inverse of the step by which the inner disc is modified.

4. Conclusions

In this article, a method for effectively computing the navigation function when the domain
boundary is uncertain was presented. It is a two-fold method, where Section 2.2 aims at determining
the Green’s function for the Laplacian operator and Section 2.3 uses the resulting Green’s function
for determining the Hadamard variation. This promising method can be extended to the case of
stochastic partial differential equations used within the frame of aircraft trajectory planning by
harmonic navigation functions. Future work includes an extensive performance assessment for
tactical conflict solving in air traffic management applications. This study will be conducted in the
final validation part of the STARGATE project and will be made available on the project Website [34].
Key performance indicators addressed will include at least: fuel consumption increase, average/worst
case deviation from the initial flight plan, and average/worst case delay.

Finally, based on the work presented in [35], the stochastic extension to biharmonic navigation
functions will be investigated. It is already known that a Hadamard variation formula exists for such
problems, but it remains to find an adequate semi-analytical formulation for the Green’s function.
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