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Abstract: A new complex variable method is presented for stress and displacement problems in a
non-circular deep tunnel with certain given boundary conditions at infinity. In order to overcome
the complex problems caused by non-circular geometric configurations and the multiply-connected
region, a complex variable method and continuity boundary conditions are used to determine stress
and displacement within the tunnel lining and within the surrounding rock. The coefficients in the
conformal mapping function and stress functions are determined by the optimal design and complex
variable method, respectively. The new method is validated by FLAC3D finite difference software
through an example. Both the new method and the numerical simulation obtained similar results
for the stress concentration and the minimum radial displacement occurred at a similar place in the
tunnel. It is demonstrated that the new complex variable method is reliable and reasonable. The new
method also provides another way to solve non-circular tunnel excavation problems in a faster and
more accurate way.

Keywords: non-circular deep tunnel; complex variables; conformal mapping; elasticity;
numerical simulation

1. Introduction

With the rapid economic development in China, which has caused the expansion of road and
railway networks from east to west and to areas in the northeast that are surrounded by mountains,
the construction of tunnels is broadly used to improve existing transportation networks. Lining is
the primary support adopted to ensure rock pressure. It has been of high interest in determining
stress fields within lining using analytical methods. Analytical solutions for stress distribution within
circular lining and around circular and elliptical holes have been proposed by many authors (Bobet [1,2];
Lee and Nam [3]; Timoshenko and Goodier [4]).

Many studies have been carried out to determine the stress and deformation of tunnels by
applying numerical methods, which have been generally used to provide an understanding of how the
stress and deformation of lining are influenced by different parameters. Numerical methods are largely
employed to find the stress and deformation stages of lining in the preliminary stages of design.

Muskhelishvili’s [5] complex variable method is one of the useful analytical approaches that fully
expounded a basic theory of complex potential functions in order to address some issues of plane
elasticity mechanics. Based on this method, Exadaktyol and Stavtopoulou [6,7] proposed a closed-form
plane strain solution for stress and displacement around semicircular holes. Verruijt [8,9] calculated
the stress and displacement components around a circular tunnel in an elastic half-plane. Zhao and
Yang [10] obtained a general solution for deep square tunnels with different pressure coefficients.
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Kargar et al. [11] made an attempt to study lining stress and deformation in a non-circular deep tunnel
using the Cauchy integral formula of complex variable methods. Li and Chen [12] obtained analytical
solutions for a non-circular tunnel lining in power series forms. However, the analytical solutions for
stress and displacement found in the above-mentioned literature have seldom come to an available
expression for non-circular deep tunnels, especially non-circular deep tunnels with a lining, except for
Kargar et al. [11] and Li [12].

When considering the problem with circular support, the solution is much easier. When a
non-circular lining is included, the problem considers a multiply-connected region and conformal
mapping, which increases the complexity of the problem. Kargar’s [11] method can calculate the
stress of a non-circular deep tunnel with a lining, although the method needs to integrate. The
integral is too complex and difficult to calculate. Li’s [12] method only considered the non-circular
tunnel lining without thinking about the surrounding rock around the lining. In order to simplify the
calculation, Li [12] assumed that the surrounding rock has a certain given surface traction applied to
the lining. In this study it will be shown that these difficulties can be surmounted at last for the case of
a non-circular deep tunnel with certain boundary conditions at infinity, by a new complex variable
method in power series forms.

Based on the research findings proposed, an attempt was made in this paper to find the stress
distribution and radial displacement of the lining in a non-circular deep tunnel, considering the
boundary conditions of the surrounding rocks by applying a complex variable power series method,
which is more efficient, simple and accurate. Finally, the new method was validated by the FLAC finite
difference software through an example.

2. Problem Statement and General Consideration

The problem refers to a non-circular tunnel with lining in an elastic geomaterial. The tunnel is
located at great depth compared with the tunnel dimension; the problem is considered a single hole
with support in an infinite plane. The infinite plate on the complex plane is divided into the two
isotropic homogenous regions of S1 and S2 bounded by contours L1 and L2. The regions S1 and S2

refer to the lining and the surrounding rock, respectively. The boundary of the tunnel lining inside
(L1) is free of stress, and the rock-lining interface (L2) satisfies the continuity boundary conditions.
It is assumed that the region S1 in the z-plane can be mapped conformally onto a ring (O1) in the
ζ-plane. The surrounding rock, region S2 in the z-plane, can be mapped conformally onto the region
O2, which is the area outside the L2 outline in the ζ-plane, see Figure 1. The general formula of the
conformal mapping function is determined based on the Laurent series as follows:

w(ζ) = R(ζ+
∞

∑
k=0

Jkζ
−k) (1)

where R is positive real number reflecting the hole’s size, and the Jk are generally complex numbers,
which are determined by the shape of the tunnel. In most situations it is accurate enough to only
take the first few of Jk of the series. θ and ρ are assumed to be two polar coordinates of point ζ in the
ζ-plane.
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In the complex variable method [5,13,14], the solution is expressed in terms of two functions ϕ
and ψ, which must be analyzed in the region S1 occupied by the elastic material. The stresses are
determined based on the stress functions in the equations:

σθ + σρ = 4Re
[
ϕ′(ζ)

w′(ζ)

]
(2)

σθ − σρ + τρθ =
2ζ2

ρ2
1

w′(ζ)

[
w(ζ)

ϕ′′ (ζ)w′(ζ)−ϕ′(ζ)w′′ (ζ)
w′(ζ)w′(ζ)

+ψ′(ζ)

]
(3)

where σρ, σθ and τρθ are the radial, circumferential and tangential stress components, respectively.
The displacements are given by

2G(uρ + iuθ) =
ζ

ρ

w′(ζ)
|w(ζ)|

[
κϕ(ζ)− w(ζ)

w′(ζ)
ϕ′(ζ)−ψ(ζ)

]
(4)

where G is the shear modulus of the elastic material, and κ is determined by Poisson’s ratio υ,
κ = 3− 4υ and κ = 3−υ

1+υ are plane strain and plane stress, respectively. In this paper, plane strain
conditions are assumed. Based on the Kargar’s [11] method and Chen [15], the stress functions ϕ1 and
ψ1 in the region O2 have the following expansions:

ϕ1(ζ) = Γw(ζ) +ϕ0(ζ) (5)

ψ1(ζ) = Γ′w(ζ) +ψ0(ζ) (6)

where

ϕ0(ζ) =
∞

∑
k=0

hkζ
−k (7)

ψ0(ζ) =
∞

∑
k=0

mkζ
−k (8)

where hk, mk are generally complex numbers, which must be determined from boundary conditions.
ϕ0(ζ) and ψ0(ζ) are holomorphic functions with ϕ0(∞) = 0 and ψ0(∞) = 0, Γ and Γ′ are real

and complex constants with regard to the stress state at infinity, which are determined as follows:

Γ =
1
4
(σ1 + σ2) =

1 + K
4

γH (9)

Γ′ = −1
4
(σ1 − σ2)e−2iα = −1−K

4
γH (10)

where σ1 and σ2 are the principal stress components at infinity; α is the angle made between the
σ1 direction and the x axis; K is the lateral pressure coefficient; γ and H are the unit weight of the
surrounding rock and the depth of tunnel, respectively.

The stress functions ϕ2(ζ) and ψ2(ζ), which are represent region O1, have the following Laurent
series expansions:

ϕ2(ζ) =
∞

∑
k=0

akζ
k +

∞

∑
k=1

bkζ
−k (11)

ψ2(ζ) =
∞

∑
k=0

ckζ
k +

∞

∑
k=1

dkζ
−k (12)

where ak, bk, ck, dk are generally complex numbers that must be determined from boundary conditions.
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Stress functions ϕ1(ζ), ψ1(ζ), ϕ2(ζ) and ψ2(ζ) should satisfy the continuity boundary conditions
on R2 circles and satisfy the boundary conditions on R1 circles. The displacement at lining and rock
should be equal on the boundary R2. It can be concluded as:

uR2
ρ1 + iuR2

θ1 = uR2
ρ2 + iuR2

θ2 (13)

where uR2
ρ1 and uR2

θ1 are the lining displacement components of boundary R2 in the ρ and θ

directions, and uR2
ρ2 and uR2

θ2 are the rock displacement components of boundary R2 in the ρ and
θ directions, respectively.

The stress at lining and rock should be equal on boundary R2. It can be concluded as:

fR2
1 = fR2

2 (14)

where fR2
1 and fR2

2 are displacement components of boundary R2 in the lining and rock, respectively.
The stress at the lining on the boundary R1 should be 0. It can be concluded as:

fR1
1 = 0 (15)

Based on Chen [15], the boundary conditions (13)–(15) can be rewritten. Equation (13) is expressed
as:

κ1
G1
ϕ0(t2)− 1

G1

(
w(t2)

w′(t2)
ϕ′0(t2) +ψ0(t2)

)
= κ2

G2
ϕ2(t2)− 1

G2

(
w(t2)

w′(t2)
ϕ′2(t2) +ψ2(t2)

)
(16)

The stress boundary condition of Equation (14) is expressed as:

ϕ1(t2) +
w(t2)

w′(t2)
ϕ′1(t2) +ψ1(t2) = ϕ2(t2) +

w(t2)

w′(t2)
ϕ′2(t2) +ψ2(t2) (17)

The stress boundary condition of Equation (15) is expressed as:

ϕ2(t1) +
w(t1)

w′(t1)
ϕ′2(t1) +ψ2(t1) = 0 (18)

where t1 and t2 are the point of the boundary R1 and R2 in the ζ-plane, respectively. uρ1 and uθ1 are
the displacement components of the lining–rock interface in the ρ and θ directions.

The expressions Γw(ζ) and Γ′w(ζ) should not be incorporated into continuity Equation (16) since
they define initial ground stress and deformation in the surrounding rock when tunnels are excavated.
Equations (16) and (17) are concerned with the continuity of deformation and the stress field across the
lining–rock interface due to the no-slip condition. Equation (18) is concerned that the tunnel lining
inside (L1) is entirely free of stress.

3. Solution

In order to eliminate the difficulties caused by the power series, Equations (16)–(18) are rewritten
in the form:

κ1
G1
ϕ0(t2)w′(t2) − 1

G1
w(t2)ϕ′0(t2)− 1

G1
ψ0(t2)w′(t2)

= κ2
G2
ϕ2(t2)w′(t2)− 1

G2
w(t2)ϕ′2(t2)− 1

G2
ψ2(t2)w′(t2)

(19)

ϕ1(t2)w′(t2)+ w(t2)ϕ′1(t2) +ψ1(t2)w′(t2)

= ϕ2(t2)w′(t2) + w(t2)ϕ′2(t2t) +ψ2(t2)w′(t2)
(20)

ϕ2(t1)w′(t1) + w(t1)ϕ
′
2(t1) +ψ2(t1)w′(t1) = 0 (21)
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The form of an infinite polynomial times another infinite polynomial, such as ϕ0(t2)w′(t2) of
Equation (19), is hard to calculated and merge so that the equation cannot be calculated. To acquire a
solution for Equations (19)–(21), Li’s method needs to be introduced, which converts the form of the
multiplication of two infinite polynomials to an infinite matrix, which can be easily calculated and
merged for a computer.

From the power series theory of the complex variable method written by Chen [15], the first factor
of Equation (19) on the left can be rewritten as follows:

κ1
G1
ϕ0(t2)w′(t2) = κ1

G1

∞
∑

k=0
hvρ

−vσ−v +
+∞
∑

v=−∞
vLvρ

v−1σ1−v

= κ1
G1

(
∞
∑

k=0
hvρ

−vσ−v +
0
∑

v=−∞
vLvρ

v−1σ1−v

+
∞
∑

k=0
hvρ

−vσ−v +
+∞
∑
0

vLvρ
v−1σ1−v

) (22)

where k is substituted by v to facilitate the calculation. σ is the angle of the point of the boundary; ρ is
the radius of the boundary circle in the ζ-plane, which equals 1 at the lining–rock interface. σ and ρ
can be related by ζ = ρσ, where σ = exp (iθ). Lv can be calculated by R and Jk, and Equation (1) is
rewritten in the form:

w(ζ) =
+∞

∑
v=−∞

Lvζ
−v (23)

The first item on the right of the Equation (22) must be expanded as follows:

κ1
G1

0
∑

v=−∞
vLvρ

v−1σ1−v
∞
∑

v=0
avρ

vσv =

− κ1
G1

(L−1ρ
−2σ2 + 2L−2ρ

−3σ3 + 3L−3ρ
−4σ4 + · · ·)(h0 + h1ρ

−1σ−1

+ h2ρ
−2σ−2 + h3ρ

−3σ−3 + · · · )

(24)

where the positive power of σ in Equation (24) is obtained as:

σ1 − κ1
G1

(h1L−1ρ
−3σ+ 2h2L−2ρ

−5σ+ 3h3L−3ρ
−7σ+ · · ·)

σ2 − κ1
G1

(h0L−1ρ
−2σ2 + 2h1L−2ρ

−4σ2 + 3h2L−3ρ
−6σ2 + · · ·)

σ3 − κ1
G1

(2h0L−2ρ
−3σ3 + 3h1L−3ρ

−5σ3 + 4h2L−4ρ
−7σ3 + · · ·)

· · · · · ·

(25)

The zero and negative powers of σ in Equation (24) can be derived:

σ0 − κ1
G1

(h2L−1ρ
−4 + 2h3L−2ρ

−6 + 3h4L−3ρ
−8 + · · ·)

σ−1 − κ1
G1

(h3L−1ρ
−5σ−1 + 2h4L−2ρ

−7σ−1 + 3h5L−3ρ
−9σ−1 + · · ·)

σ−2 − κ1
G1

(h4L−1ρ
−6σ−2 + 2h5L−2ρ

−8σ−2 + 3h6L−3ρ
−10σ−2 + · · ·)

· · · · · ·

(26)

The second item on the right of Equation (22) can be expanded as follows:

κ1
G1

+∞
∑

v=1
vLvρ

v−1σ1−v
∞
∑

v=0
hvρ

−vσ−v

= κ1
G1

(· · ·+ 3L3ρ
2σ−2 + 2L2ρ

1σ−1 + L1)(h0 + h1ρ
−1σ−1 + h2ρ

−2σ−2

+ h3ρ
−3σ−3 + · · · )

(27)
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There are only zero and negative powers of σ in the above Equation (23), which can be derived
as follows:

σ0 κ1
G1

h0L1

σ−1 κ1
G1

(h1L1ρ
−1σ−1 + 2h0L2ρσ

−1)

σ−2 κ1
G1

(h2L1ρ
−2σ−2 + 2h1L2σ

−2 + 3h0L3ρ
2σ−2)

· · · · · ·

(28)

The general formula of Equation (29) are determined based on the expanded functions of Equation
(25) as follows:

κ1

G1

∞

∑
k=0

hkρ
−2k−v(k + v− 1)L−k−v+1σ

v (29)

The general formula of Equation (30) is determined based on the expanded functions of Equations
(26) and (28) as follows:

− κ1

G1

∞

∑
k=0

hkρ
−2k+v(k− v− 1)L−k+v+1σ

−v v = 0, 1, 2, 3 · · · (30)

Based on the power series of the complex variable method written by Chen [15], which have been
presented in Equations (22)–(30), the other items of Equation (19) can be determined and separate the
positive and negative exponents of Equation (19); the positive power system of Equation (19) can be
expanded as follows:

κ2
G2

∞
∑

k=0
akρ

2k−v(k− v + 1)Lk−v+1σ
v − κ2

G2

∞
∑

k=1
bkρ
−2k−v(k + v− 1)L−k−v+1σ

v

− 1
G2

∞
∑

k=1
akρ

2k+v−2kLk+v−1σ
v + 1

G2

∞
∑

k=1
bkρ
−2k+v−2kL−k+v−1σ

v

+ 1
G2

∞
∑

k=0
ckρ
−v(k + v− 1)L−k−v+1σ

v

− 1
G2

∞
∑

k=1
dkρ

−v(k− v + 1)Lk−v+1σ
v

+ κ1
G1

∞
∑

k=0
hkρ

−2k−v(k + v− 1)L−k−v+1σ
v

− 1
G1

∞
∑

k=0
hkρ

−2k+v−2kL−k+v−1σ
v + 1

G1

∞
∑

k=0
mkρ

−v(k− v + 1)Lk−v+1σ
v

= 0
v = 1, 2, 3 · · ·

(31)

The negative power system of Equation (19) can be expanded as follows:

κ2
G2

∞
∑

k=0
akρ

2k+v(k + v + 1)Lk+v+1σ
−v − κ2

G2

∞
∑

k=1
bkρ
−2k+v(k− v− 1)L−k+v+1σ

−v

− 1
G2

∞
∑

k=1
akρ

2k−v−2kLk−v−1σ
−v + 1

G2

∞
∑

k=1
bkρ
−2k−v−2kL−k−v−1σ

−v

+ 1
G2

∞
∑

k=0
ckρ

v(k− v− 1)L−k+v+1σ
−v

− 1
G2

∞
∑

k=1
dkρ

v(k + v + 1)Lk+v+1σ
−v

+ κ1
G1

∞
∑

k=0
hkρ

−2k+v(k− v− 1)L−k+v+1σ
−v

− 1
G1

∞
∑

k=0
hkρ

−2k−v−2kL−k−v−1σ
−v

+ 1
G1

∞
∑

k=0
mkρ

v(k + v + 1)Lk+v+1σ
−v

= 0
v = 1, 2, 3 · · ·

(32)
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The positive power system of Equation (20) is determined as follows:

∞
∑

k=0
akρ

2k−v(k− v + 1)Lk−v+1σ
v −

∞
∑

k=1
bkρ
−2k−v(k + v− 1)L−k−v+1σ

v

+
∞
∑

k=1
akρ

2k+v−2kLk+v−1σ
v −

∞
∑

k=1
bkρ
−2k+v−2kL−k+v−1σ

v

−
∞
∑

k=0
ckρ
−v(k + v− 1)L−k−v+1σ

v +
∞
∑

k=1
dkρ

−v(k− v + 1)Lk−v+1σ
v

+
∞
∑

k=0
hkρ

−2k−v(k + v− 1)L−k−v+1σ
v +

∞
∑

k=0
hkρ

−2k+v−2kL−k+v−1σ
v

−
∞
∑

k=0
mkρ

−v(k− v + 1)Lk−v+1σ
v

= 2Γ
∞
∑

k=0
Lkρ

2k−v(k− v + 1)Lk−v+1σ
v

− 2Γ
∞
∑

k=1
L−kρ

−2k−v(k + v− 1)L−k−v+1σ
v

− Γ′
∞
∑

k=0
Lkρ

−v(k + v− 1)L−k−v+1σ
v

+ Γ′
∞
∑

k=1
L−kρ

−v(k− v + 1)Lk−v+1σ
v

v = 1, 2, 3 · · ·

(33)

The negative power system of Equation (20) can be expanded as follows:

∞
∑

k=0
akρ

2k+v(k + v + 1)Lk+v+1σ
−v −

∞
∑

k=1
bkρ
−2k+v(k− v− 1)L−k+v+1σ

−v

+
∞
∑

k=1
akρ

2k−v−2kLk−v−1σ
−v −

∞
∑

k=1
bkρ
−2k−v−2kL−k−v−1σ

−v

−
∞
∑

k=0
ckρ

v(k− v− 1)L−k+v+1σ
−v +

∞
∑

k=1
dkρ

v(k + v + 1)Lk+v+1σ
−v

+
∞
∑

k=0
hkρ

−2k+v(k− v− 1)L−k+v+1σ
−v +

∞
∑

k=0
hkρ

−2k−v−2kL−k−v−1σ
−v

−
∞
∑

k=0
mkρ

v(k + v + 1)Lk+v+1σ
−v

= 2Γ
∞
∑

k=0
Lkρ

2k+v(k + v + 1)Lk+v+1σ
−v

− 2Γ
∞
∑

k=1
Lkρ

−2k+v(k− v− 1)L−k+v+1σ
−v − Γ′

∞
∑

k=0
Lkρ

v(k− v− 1)L−k+v+1σ
−v

+ Γ′
∞
∑

k=1
L−kρ

v(k + v + 1)Lk+v+1σ
−v

v = 1, 2, 3 · · ·

(34)

where ρ is the radius of the circle, which equals 1 at the lining–rock interface.
The positive power system of Equation (21) is determined as follows:

∞
∑

k=0
akρ

2k−v(k− v + 1)Lk−v+1σ
v −

∞
∑

k=1
bkρ
−2k−v(k + v− 1)L−k−v+1σ

v

+
∞
∑

k=1
akρ

2k+v−2kLk+v−1σ
v −

∞
∑

k=1
bkρ
−2k+v−2kL−k+v−1σ

v

−
∞
∑

k=0
ckρ
−v(k + v− 1)L−k−v+1σ

v +
∞
∑

k=1
dkρ

−v(k− v + 1)Lk−v+1σ
v

= 0
v = 1, 2, 3 · · ·

(35)

The negative power system of Equation (20) can be expanded as follows:
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∞
∑

k=0
akρ

2k+v(k + v + 1)Lk+v+1σ
−v −

∞
∑

k=1
bkρ
−2k+v(k− v− 1)L−k+v+1σ

−v

+
∞
∑

k=1
akρ

2k−v−2kLk−v−1σ
−v −

∞
∑

k=1
bkρ
−2k−v−2kL−k−v−1σ

−v

−
∞
∑

k=0
ckρ

v(k− v− 1)L−k+v+1σ
−v +

∞
∑

k=1
dkρ

v(k + v + 1)Lk+v+1σ
−v

= 0
v = 1, 2, 3 · · ·

(36)

where ρ is the radius of the circle, which equals 0.8633 at the lining–atmosphere interface.
Equations (31)–(36) can be written as a set of linear equations:

[[A] [B] [C] [D] [H] [M]](6v+3)×(6k+4)



[a](k+1)×1
[b]k×1
[c](k+1)×1
[d]k×1
[h](k+1)×1
[m](k+1)×1


= [F](6k+3)×1 (37)

where [A], [B], [C], [D], [H], [M] represent the coefficients of the ak, bk, ck, dk, hk and mk terms in the
equations, respectively. [F] represents the coefficient of the right side of each equation; [a], [b], [c], [d],
[h], and [m] represent the unknowns, respectively. The coefficients ak, bk, ck, dk, hk and mk required
in the final stress function are obtained by Equation (37).

As Equation (26) has 6k + 4 unknowns and 6v + 3 conditions, where v→ ∞ and k→ ∞ ,
there cannot be a unique solution. It can be easily seen that Equation (37) is linearly related when
k→ ∞ and ρ = 1. The number of conditions in the equation set is reduced from (6v + 3) to (6v + 2).
Considering thatϕ0(∞) = 0 andψ0(∞) = 0, the coefficients hk and mk can take any value if k→ ∞ . It
is indicated that h∞ and m∞ can take zero. Since the coefficients h∞ and m∞ are known, the number of
unknown coefficients in the equation set is reduced from (6k + 4) to (6k + 2). The number of unknown
coefficients equals the boundary conditions, in which all the coefficients have been determined
uniquely. Equations (5), (6), (11) and (12) are obtained by the calculated coefficients, and the stress and
deformation of the non-circular deep tunnel are obtained through Equations (2)–(4).

4. Implementation

In this section, the new complex variable method is applied to an example and a comparison is
provided with FLAC finite difference software in order to verify the formula.

4.1. Fundamental Assumption

(a) The tunnel is assumed to have an infinite length; the surrounding rock mass is homogeneous,
isotropic and linear elastic and without creep or viscous behaviors. (b) The tunnel’s length and depth
are assumed to far outweigh its diameter; the surrounding rock mass conforms to the plane strain
condition (κ = 3− 4υ).

4.2. Comparison of the New Analytical Solution with That of the Numerical Simulation Results

The tunnel distribution diagram is presented and a 3916 zones and 13887 grid-points finite mesh
calculation model was used to simulate stress and displacement distribution in Figure 2. The horizontal
displacement of the finite mesh calculation model is constrained by the left and right boundary, the
vertical displacement is constrained by the bottom boundary, and the top boundary is free and
unconstrained. The numerical model is concerned with continuity of deformation and the stress field
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across the lining–rock interface due to the no-slip condition. The tunnel lining inside should be entirely
free of stress.

The calculation parameters are shown in Table 1.Math. Comput. Appl. 2018, 23, 43 10 of 14 
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Figure 2. (a) Tunnel distribution diagram (Unit: m) and (b) Finite mesh calculation model.

Table 1. Main physical parameter for tunnel calculation.

Material Type Elasticity Modulus E
(MPa) Poisson’s Ratio v Density (kN·m−3)

Lateral Pressure
Coefficient K

Shale 25,000 0.3 26 0.5
Lining 30,000 0.2 25 0.5

According to Lv’s [16,17] method and the geometry of the tunnel (in Figure 2), the conformal
mapping function (Equation (1)) was determined and provided by a self-programming optimal design
software as follows:

w(ζ) = 8.0339(ζ+ 0.3121− 0.0697ζ−1 + 0.0338ζ−2 − 0.0087ζ−3 − 0.0068ζ−4) (38)

where coefficient k = 4 is close enough to Equation (1). The radius ρ = 0.8633 is related to ζ by ζ = ρσ,
where σ = exp (iθ). It is assumed that the tunnel lining inside (L1) can be mapped conformally onto a
circle (R1). When the radius ρ = 1 the L2 can be mapped conformally onto R2.

As an example, the boundary condition across the lining–rock interface and tunnel lining inside
can be determined by Equations (13)–(15). The boundary conditions at infinity can be expressed
through Equations (9) and (10).

Based on Equation (37), a simple computer program written by MATLAB was applied to solve
the problem.

As the coordinates of the analytical solution and numerical simulation are different, it is necessary
to rewrite the results. The comparison of the rewritten results between the analytical solution and
numerical simulation are shown below.

Figure 3 shows the circumferential stress along the rock–lining interface predicted by the new
analytical solution and the FLAC finite difference software. It can be observed that the maximum
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circumferential stress happens at a position of an 85-degree angle (i.e., the widest part of the tunnel) and,
moreover, the circumferential stress of the new analytical solution has not declined rapidly, but creates
a stress concentration at α = 115◦. The circumferential stress along the inner lining periphery is
presented in Figure 4a, demonstrating good agreement between the new analytical solution and the
numerical simulation apart from an 85-degree angle. Normal stress and shear stress along the inner
lining periphery is illustrated in Figure 4b,c; the maximum value of the analytical solution for normal
stress and shear stress are about 200 KPa and 100 KPa, respectively, and the maximum value of the
numerical simulation of normal stress and shear stress are about 350 KPa and 600 KPa. The analytical
solution is smaller than the numerical simulation. The analytical solution is more accurate than the
numerical simulation.
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Figure 4. Stress along the inner lining periphery (a) circumferential stress (b) normal stress
(c) shear stress.

Figure 5 shows the radial displacement of the tunnel along the rock–lining interface predicted by
the analytical solution. It could be demonstrated that the radial displacement along the rock–lining
interface was in good agreement with the displacement boundary condition, which proves its
high accuracy.
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Figure 5. Radial displacement along the rock–lining interface predicted by the analytical solution.

The radial displacement of the tunnel along the inner lining periphery is illustrated in Figure 6,
which shows that the radial displacement of the analytical solution and numerical simulation are
all zero at α = 75◦. It was demonstrated that the numerical solution agrees well with the analytical
solution. Considering the results of Figure 5, the analytical solution had good agreement with the
displacement boundary condition, thus the analytical solution results were reasonable.

Math. Comput. Appl. 2018, 23, 43 13 of 14 

 

solution. Considering the results of Figure 5, the analytical solution had good agreement with the 

displacement boundary condition, thus the analytical solution results were reasonable. 

 

Figure 6. Radial displacement along the inner lining periphery. 

The discrepancies between the new analytical solution and the numerical simulation described 

above, especially Figure 4, may be due to the fact that the grid size in the numerical modeling is not 

small enough to produce accurate results. The stress information of the numerical simulation is stored 

in zones not in grid points, and the stress cannot be accurately expressed along a specified boundary. 

5. Conclusions 

In this paper, the stress and displacement of a non-circular deep tunnel and within their lining 

supports were studied using a new analytical solution, which is based on the basic theory of complex 

variables and plane elasticity [17], and the following conclusions can be made. 

The analytic functions were exactly established to predict the stress and displacement 

distribution of the non-circular deep tunnel within their lining supports, but it is obviously not 

entirely true that the stress and displacement value is only determined by the in-situ stress boundary 

conditions and coefficient of the elasticity modulus, Poisson’s ratio, lateral pressure and material 

density. The analytical solution for radial displacement was smaller than the numerical simulation 

results, however, and further study will be needed to develop these functions. 

Due to the fact that the grid size in modeling was not small enough to produce accurate results 

and stress information was stored in zones, not in grid points in the numerical simulation, the stress 

cannot be accurately expressed along a specified boundary. But the analytical solution results were 

not affected by grid size and zones in the numerical modeling. 

The curves of the stress value showed that the new analytical solution and numerical simulation 

were in reasonable agreement. Both solutions predicted a normal stress concentration at the lower 

and upper corners of the tunnel, and both maximum circumferential stress results occurred in the 

widest part of the tunnels. The normal and shear stress values of the tunnel along the inner lining 

periphery were almost zero, which proved its high accuracy. 

Although numerical simulation is the main tool for solving tunnel excavation problems, 

especially non-circular tunnels, the complex variable method can provide another way to solve non-

circular tunnel excavation problems in a faster and more accurate way. 

Acknowledgments: We thank the Fundamental Research Funds for the Central Universities (SWJTU11ZT33) 

and the Innovative Research Team in University (IRT0955) for their sponsorship of this project, and thanks to 

Professor Chen, who guided and revised the paper. 

Author Contributions: Yansong Li and Shougen Chen conceived and theoretical research ; Yansong Li  

performed the formula derivation; Yansong Li and Shougen Chen verified results by numerical simulation; 

Yansong Li wrote the paper; Shougen Chen checked and proofread the paper. 

Figure 6. Radial displacement along the inner lining periphery.

The discrepancies between the new analytical solution and the numerical simulation described
above, especially Figure 4, may be due to the fact that the grid size in the numerical modeling is not
small enough to produce accurate results. The stress information of the numerical simulation is stored
in zones not in grid points, and the stress cannot be accurately expressed along a specified boundary.

5. Conclusions

In this paper, the stress and displacement of a non-circular deep tunnel and within their lining
supports were studied using a new analytical solution, which is based on the basic theory of complex
variables and plane elasticity [17], and the following conclusions can be made.

The analytic functions were exactly established to predict the stress and displacement distribution
of the non-circular deep tunnel within their lining supports, but it is obviously not entirely true that
the stress and displacement value is only determined by the in-situ stress boundary conditions
and coefficient of the elasticity modulus, Poisson’s ratio, lateral pressure and material density.
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The analytical solution for radial displacement was smaller than the numerical simulation results,
however, and further study will be needed to develop these functions.

Due to the fact that the grid size in modeling was not small enough to produce accurate results
and stress information was stored in zones, not in grid points in the numerical simulation, the stress
cannot be accurately expressed along a specified boundary. But the analytical solution results were not
affected by grid size and zones in the numerical modeling.

The curves of the stress value showed that the new analytical solution and numerical simulation
were in reasonable agreement. Both solutions predicted a normal stress concentration at the lower and
upper corners of the tunnel, and both maximum circumferential stress results occurred in the widest
part of the tunnels. The normal and shear stress values of the tunnel along the inner lining periphery
were almost zero, which proved its high accuracy.

Although numerical simulation is the main tool for solving tunnel excavation problems, especially
non-circular tunnels, the complex variable method can provide another way to solve non-circular
tunnel excavation problems in a faster and more accurate way.
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