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Abstract: Hulls of linear codes have been extensively studied due to their wide applications and links
with the efficiency of some algorithms in coding theory. In this paper, the average dimension of the
Euclidean hull of negacyclic codes of length n over finite fields Fq, denoted by E(n,−1, q), has been
investigated. The formula for E(n,−1, q) has been determined. Some upper and lower bounds of
E(n,−1, q) have been given as well. Asymptotically, it has been shown that either E(n,−1, q) is zero
or it grows the same rate as n.

Keywords: average hull dimension; negacyclic codes; hulls; self-reciprocal polynomials

MSC: 94B15, 94B05.

1. Introduction

In practice, communication systems are not 100% reliable due to noise or other forms of
interference. Coding theory is a branch of Engineering Mathematics that has been introduced and
applied to solve this problem since the 1960s. Codes have later been extensively studied and linked
with other problems and applications.

In 1990, the (Euclidean) hull of a linear code has been introduced to classify finite projective
planes in [1]. It is defined to be the intersection of a linear code and its Euclidean dual. Hulls of linear
codes have various applications and play an important role in the efficiency determination of some
algorithms in coding theory such as computing permutation equivalence of two linear codes and
finding the automorphism group of linear codes (see, for example, [2–6]). Precisely, the efficiency
of these computations is limited by the hull size of codes. In [7], the hulls of linear codes have been
applied in constructing good entanglement-assisted quantum error correcting codes.

Properties of hulls of codes have been extensively studied. The average dimensions of the
Euclidean hull of linear codes and of cyclic codes were given in [8,9], respectively. The dimensions of
the hulls of cyclic codes and negacyclic codes were determined in [10]. Later, the complete study of the
average dimension of the Hermitian hull of cyclic and constacyclic codes was given in [11,12]. It is of
natural interest to study the average dimension of the Euclidean hull of constacyclic codes. In [13],
it has been shown that the Euclidean dual of λ-constacyclic code is again λ-constacyclic if and only if
λ = ±1. Therefore, the average dimension of the Euclidean hull of negacyclic codes (λ = −1) is the
only remaining case.

In this paper, we focus on the average dimension of the Euclidean hull of negacyclic codes of
length n over finite fields Fq as well as its lower and upper bounds. The paper is organized as follows.
Basic properties of codes and polynomials over finite fields are recalled in Section 2. In Section 3,
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the expression for E(n,−1, q), the formula for the average dimension of neagcyclic codes, is given
together with some upper bounds. In Section 4, upper and lower bounds on E(n,−1, q) are derived.
The summary and remarks are given in Section 5.

2. Preliminaries

Let p be a prime and let q be a p-power. Denote by Fq the finite field of order q and characteristic p.
For given positive integers k ≤ n, a linear code of length n and dimension k over Fq is a k-dimensional
subspace of the Fq-vector space Fn

q . The Euclidean dual of a linear code C is defined to be

C⊥ =

{
(u0, u1 . . . , un−1) ∈ Fn

q :
n−1

∑
i=0

uici = 0 for all (c0, c1 . . . , cn−1) ∈ C

}
.

The Euclidean hull of a linear code C is defined to be

Hull(C) = C ∩ C⊥.

A linear code of length n over Fq is said to be negacyclic if (−cn−1, c0, . . . , cn−2) ∈ C for all
(c0, c1, . . . , cn−1) ∈ C.

Let C(n,−1, q) denote the set of all neagcyclic codes of length n over Fq. The average dimension of
the hull of negacyclic codes of length n over Fq is defined to be

E(n,−1, q) := ∑
C∈C(n,−1,q)

dim Hull(C)
|C(n,−1, q)| .

Every non-zero negacyclic code C of length n over Fq can be viewed as an ideal of the principal
ideal ring Fq[x]/〈xn + 1〉 generated by a monic divisor g(x) of xn + 1 (see [10]). In this case, g(x) is
called the generator polynomial for C and dim C = n− deg(g(x)).

For a polynomial f (x) = a0 + a1x + · · ·+ akxk ∈ Fq[x] of degree k and a0 6= 0, the reciprocal

polynomial of f (x) is defined to be f ∗(x) := f (0)−1xdeg f (x) f
(

1
x

)
. It is not difficult to see that

( f ∗)∗ (x) = f (x). Then, we have two types of polynomials. A polynomial f (x) is called self-reciprocal if
f (x) = f ∗(x). Otherwise, f (x) and f ∗(x) are called a reciprocal polynomial pair.

Let C be a negacyclic code of length n over Fq with the generator polynomial g(x) and let
h(x) = xn+1

g(x) . Then, h∗(x) is a monic divisor of xn + 1 and it is the generator polynomial of C⊥ by
Lemma 2.1 of [13]. Therefore, Hull(C) is generated by the polynomial lcm(g(x), h∗(x)) (see Theorem 1
of [10]).

Recall that the characteristic of Fq is p. Then, a positive integer n can be written in the form
of n = npν, where p - n and ν ≥ 0. Using arguments similar to those in Section 4 of [10], up to
permutation, there exist nonnegative integers s and t such that

xn + 1 =
(

xn + 1
)pν

=
s

∏
i=1

gi(x)pν
t

∏
j=1

f j(x)pν
f ∗j (x)pν

, (1)

where f j(x) and f ∗j (x) are a reciprocal polynomial pair and gi(x) is a monic irreducible self-reciprocal
polynomial for all 1 ≤ i ≤ s and 1 ≤ j ≤ t.

For a given negacyclic code C of length n over Fq, based on the factorization in (1), the generator
polynomial of C can be viewed of the form

g(x) =
s

∏
i=1

gi(x)ui
t

∏
j=1

f j(x)zj
(

f ∗j (x)
)wj

,
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where 0 ≤ ui, zj, wj ≤ pν. It follows that the generator polynomial of C⊥ is

h∗(x) =
s

∏
i=1

gi(x)pν−ui
t

∏
j=1

f j(x)pν−wj
(

f ∗j (x)
)pν−zj

,

and hence the generator polynomial of Hull(C) is

lcm(g(x), h∗(x)) =
s

∏
i=1

gi(x)max{ui , pν−ui}
t

∏
j=1

f j(x)max{zj , pν−wj}
(

f ∗j (x)
)max{wj , pν−zj}

. (2)

Since 1 and −1 are identical when the characteristic of Fq is even, in the rest of this paper,
we assume that the characteristic p of Fq is odd.

3. The Average Dimension E(n,−1, q)

In this section, we focus on an explicit expression for the formula of the average dimension of the
Euclidean hull of negacyclic codes of length n over Fq. Employing techniques similar to those for the
cyclic case in [9], slightly different results for the negacyclic case can be deduced.

Assume that xn + 1 has the factorization in the form of Equation (1) and let Bn,−1,q = ∑s
i=1 deg gi(x).

The expectation E( · ) in Lemma 1 can be obtained using arguments similar to those in the proof of
Proposition 22 of [9] .

Lemma 1. Let p be an odd prime and let ν be a nonnegative integer. Let 0 ≤ u, z, w ≤ pν. Then, the following
statements hold:

1. E(max{u, pν − u}) = 3pν+1
4 .

2. E(max{z, pν − w}) = pν(4pν+5)
6(pν+1) .

The average dimension of the Euclidean hull of neagcyclic codes of length n over Fq can be
determined as follows.

Theorem 1. Let Fq be a finite field of order q and odd characteristic p and let n be a positive integer such that
n = npν, p - n and ν ≥ 0. Then, the average dimension of the Euclidean hull of negacyclic codes of length n
over Fq is

E(n,−1, q) = n
(

2pν + 1
6(pν + 1)

)
− Bn,−1,q

(
p2ν + 2pν + 3

12(pν + 1)

)
. (3)

Proof. By Lemma 1, Equation (2), and arguments similar to those in the proof of Theorem 3.2 of [11],
it can be deduced that

E(n,−1, q) = n
(

1
3
− 1

6(pν + 1)

)
− Bn,−1,q

(
pν + 1

12
+

2
12(pν + 1)

)

= n
(

2pν + 1
6(pν + 1)

)
− Bn,−1,q

(
p2ν + 2pν + 3

12(pν + 1)

)
.

This completes the proof.

The next corollary is a direct consequence of Theorem 1.

Corollary 1. Assume the notations as in Theorem 1. Then, the following statements hold:

1. E(n,−1, q) < n
3 .

2. E(n,−1, q) =
n−Bn,−1,q

4 .
3. E(n,−1, q)< n

4 .
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4. Properties of Bn,−1,q and Bounds on E(n,−1, q)

In this section, some number theoretical tools are constructed and applied to study properties of
Bn,−1,q. As a consequence, lower and upper bounds for E(n,−1, q) can be derived using Bn,−1,q.

For an odd prime power q, let Nq :=
{
` ≥ 1 : ` divides qi + 1

}
. For coprime positive integers i

and j, denote by ordj(i) the multiplicative order of i modulo j. An element in Nq has the following
properties.

Lemma 2. Let q be an odd prime power. If ` ∈ Nq and ` > 2, then ord`(q) is even.

Proof. Since ` ∈ Nq, there exists the smallest positive integer k such that `|(qk + 1). It follows that
`|(q2k − 1). Then, ord`(q)|2k. Since ord`(q) - k, ord`(q) is even.

Next, we introduce a partition for the set Nq. For each integer α ≥ 0, let

Pq,α :=
{
` ∈ Nq : 2α|| ord`(q)

}
,

where 2α||k is used if α is the integer such that 2α|k and 2α+1 - k. Then, we have Nq = Pq,0 ∪ Pq,1 ∪
Pq,2 · · · .

Theorem 2 (Theorem 4 of [9]). Let q be an odd prime power and let ` be a positive integer. Then, the following
statements hold:

1. Let ` be an odd integer. If ` > 1 is such that ` = ∏k
i=1 pei

i the prime factorization of `. Then, ` ∈ Nq if and
only if there exists α > 0 such that pi ∈ Pq,α for all i. In this case, we have ` ∈ Pq,α.

2. Let β ≥ 1 be an integer. Then 2β ∈ Nq if and only if 2β divides q + 1. Moreover, if 2β ∈ Nq, β ≥ 2,
then 2β ∈ Pq,1.

3. Let q and ` be odd. Then, 2` ∈ Nq if and only if ` ∈ Nq. In this case, ` and 2` belong to the same set Pq,α.
4. Let ` = 2β` where ` is odd and β ≥ 2. Then, ` ∈ Nq if and only if 2β ∈ Nq and ` ∈ Pq,1. In this case,

we have ` ∈ Pq,1.

The characterization of elements in Pq,α are given in the following corollary.

Corollary 2. Let γ ≥ 1 be an integer such that 2γ|(q + 1). Let ` be a positive integer relatively prime to q and
let 2β||`. Then, the following statements hold:

1. Pq,0 = {1, 2}.
2. ` ∈ Pq,1 if and only if either ` has an odd prime divisor, each odd prime divisor of ` belongs to Pq,1 and

0 ≤ β ≤ γ, or ` = 2β and 2 ≤ β ≤ γ.
3. Let α ≥ 2. Then, ` ∈ Pq,α if and only if ` has an odd prime divisor, each odd prime divisor of ` belongs to

Pq,α and 0 ≤ β ≤ 1.

Lemma 3. Let α ≥ 1 an integer and let ` be a positive integer. If ` ∈ Pq,α, then ` ≥ 2α + 1.

Proof. By Corollary 2, we have ` ≥ 3. Since ` ∈ Pq,α, it follows that 2α|| ord`(q). By Little Fermat’s
Theorem, we have ord`(q)|φ(`). Then, 2α|φ(`). Hence, 2α ≤ φ(`) ≤ `− 1.

Let Ω := {j ∈ N : j|2n and 2 - n}. Next, we give the expression of Bn,−1,q.

Lemma 4. Assume that xn + 1 is factorized as in Equation (1). Then,

Bn,−1,q = ∑
j∈Ω∩Nq

φ(j),

where φ is the Euler’s totient function.
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Proof. By Equation (1), we have

xn + 1 =
s

∏
i=1

gi(x)
t

∏
j=1

f j(x) f ∗j (x).

From Equation (29) of [10], xn + 1 can be factored as

xn + 1 = ∏
j∈Ω∩Nq

γ(j)

∏
i=1

gij(x) ∏
j∈ΩrNq

β(j)

∏
i=1

fij(x) f ∗ij(x),

where γ(j) = φ(j)
ordj(q)

, β(j) = φ(j)
2 ordj(q)

, fij(x) and f ∗ij(x) are a monic irreducible-reciprocal polynomial

pair of degree ordj(q), and gij(x) is a monic irreducible self-reciprocal polynomial of degree ordj(q).
Altogether, it can be concluded that

s

∏
i=1

gi(x) = ∏
j∈Ω∩Nq

γ(j)

∏
i=1

gij(x).

Hence,

Bn,−1,q =
s

∑
i=1

deg(gi(x)) = ∑
j∈Ω∩Nq

γ(j)deg(gij(x)) = ∑
j∈Ω∩Nq

φ(j)
ordj(q)

· ordj(q) = ∑
j∈Ω∩Nq

φ(j)

as desired.

Remark 1. From Lemma 4, we have the following facts. The set Ω ∩ Nq can be empty. For convenience,
the empty summation will be regarded as 0. In this case, Bn,−1,q = ∑

j∈Ω∩Nq

φ(j) = ∑
j∈∅

φ(j) = 0. For example,

B4,−1,3 = 0 since Ω ∩ N3 = ∅.

The expression of the set Ω can be simplified using the definition of n as follows.

Lemma 5. Write n = 2βn′, where n′ is an odd integer and β is a non-negative integer. Then, Ω ={
2β+1k : k ∈ N and k|n′

}
.

Proof. Let n = 2βn′. Then, we have Ω = {j ∈ N : j|2n and 2 - n} =
{

j ∈ N : j|2β+1n′ and j - 2βn′
}

.
Hence, 2β+1|j for all j ∈ Ω, which implies Ω =

{
2β+1k : k ∈ N and k|n′

}
.

The following result is a consequence of Lemma 5 and Theorem 2.

Proposition 1. Let γ ≥ 1 be the integer such that 2γ||(q + 1). Then, the following statements hold:

1. Ω ∩ Nq = ∅ if and only if β + 1 > γ.
2. Ω ∩ Nq = Ω if and only if β + 1 ≤ γ and 2n ∈ Nq.
3. ∅ ( Ω ∩ Nq ( Ω if and only if β + 1 ≤ γ and 2n 6∈ Nq.

Proof. To prove (i), assume that β + 1 ≤ γ. Then, by Theorem 2, it can be concluded that 2β+1 ∈ Nq.
Hence, Ω ∩ Nq 6= ∅.

Conversely, assume that β + 1 > γ ≥ 1. Then, β + 1 ≥ 2. Let j ∈ Ω. By Lemma 5, j = 2β+1k for
some k|n′. Therefore, j 6∈ Nq by Theorem 2, which implies Ω ∩ Nq = ∅.

To prove (ii), assume that Ω ∩ Nq = Ω. Then, Ω ⊆ Nq. Since 2n ∈ Ω, we have 2n ∈ Nq. Hence,
2β+1n′ = 2n ∈ Nq which implies β + 1 ≤ γ by Theorem 2.

Conversely, assume that β + 1 ≤ γ and 2n ∈ Nq. Let j ∈ Ω. Then, j|2n. Since 2n ∈ Nq, j ∈ Nq,
Ω ⊆ Nq.
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Statement (iii) follows immediately from (i) and (ii).

By Proposition 1, we have the following corollary.

Corollary 3. Let γ ≥ 1 be the integer such that 2γ||(q + 1). Then, the following statements hold:

1. Bn,−1,q = 0 if and only if β + 1 > γ.
2. Bn,−1,q = n if and only if β + 1 ≤ γ and 2n ∈ Nq.
3. 0 < Bn,−1,q < n if and only if β + 1 ≤ γ and 2n 6∈ Nq.

Proof. By Proposition 1, β + 1 > γ if and only if Ω ∩ Nq = ∅. Equivalently,

Bn,−1,q = ∑
j∈Ω∩Nq

φ(j) = ∑
j∈∅

φ(j) = 0.

This proves (i).
By Proposition 1, β + 1 ≤ γ and 2n ∈ Nq if and only if Ω ∩ Nq = Ω. Equivalently,

Bn,−1,q = ∑
j∈Ω∩Nq

φ(j) = ∑
j∈Ω

φ(j) = ∑
k|n′

φ(2β+1k) = 2β ∑
k|n′

φ(k) = 2βn′ = n.

Statement (iii) can be deduced directly from (i) and (ii).

Corollary 4. Assume the notations as above. Then, the following statements hold:

1. E(n,−1, q) = n
(

1
3 −

1
6(pν+1)

)
if and only if β + 1 > γ.

2. If β + 1 > γ, then n
4 ≤ E(n,−1, q) < n

3 .

Proof. The first statement can be deduced directly from Theorem 1 and Corollary 3. The second
statement follows from Corollary 1 and the fact that 1

6(pν+1) reaches its maximum value 1
12 when

ν = 0.

Next, we focus on the case where β + 1 ≤ γ. Let ` be a positive integer relatively prime to q.
Let ` = 2β pe1

1 . . . pek
k be the prime factorization of `, where β ≥ 0, k ≥ 0, p1, p2, . . . , pk are distinct odd

primes, and ei ≥ 1 for all i = 1, 2, . . . , k. Partition the index set {1, . . . , k} into K′, K1, K2, . . . as follows:

1. i ∈ K′ if pi 6∈ Pq,α for all α ≥ 1,
2. i ∈ Kα if pi ∈ Pq,α.

Let d′ = ∏i∈K′ pei
i and dα = ∏i∈Kα

pei
i for all 1 ≤ α ≤ k. For convenience, the empty product

will be referred to as 1. Therefore, we have ` = 2βd′d1d2 . . . which is called the Nq-factorization of `,
where di = 1 for all but finitely many integers i. By Theorem 2, we have dα ∈ Pq,α. The characterization
of ` 6∈ Nq is given in the following lemma.

Lemma 6 (Lemma 9 of [9]). Let γ ≥ 1 be the integer such that 2γ||(q + 1). Let ` ≥ 2 be such that
gcd(`, q) = 1 and let ` = 2βd′d1d2 . . . be the Nq-factorization of `. If ` 6∈ Nq, then at least one of the following
conditions is valid:

1. β > γ.
2. d′ > 1.
3. β ≥ 2 and dα > 1 for an integer α ≥ 2.
4. dα1 > 1 and dα2 > 1 for two distinct α1 ≥ 1 and α2 ≥ 1.

The following proposition provides a simplified expression of Bn,−1,q.
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Proposition 2. Let n = 2βd′d1d2 . . . be an Nq-factorization of n = 2βn′. If β + 1 ≤ γ and 2n 6∈ Nq, then

Bn,−1,q =

{
d1 + ∑α≥2(dα − 1), if β = 0,

2βd1, if β 6= 0.

Proof. We distinguish the proof into two cases where β = 0 and β 6= 0.

Case 1 β = 0. We have n = d′d1d2 . . . = n′. By Lemma 5 and Theorem 2, we have

Bn,−1,q = ∑
j∈Ω∩Nq

φ(j) = ∑
k|n, 2k∈Nq

φ(2k) = φ(2) + ∑
α≥1

∑
k|dα , k 6=1

φ(2k)

= 1 + ∑
α≥1

∑
k|dα , k 6=1

φ(k) = 1 + ∑
α≥1

(dα − 1) = d1 + ∑
α≥2

(dα − 1).

Case 2 β 6= 0. We have β + 1 ≥ 2 and n = 2βd′d1d2 . . . = 2βn′. By Corollary 2, we have 2β+1k ∈ Nq.
Since k|n′ if and only if k|d1, it follows that

Bn,−1,q = ∑
j∈Ω∩Nq

φ(j) = ∑
k|n′ , 2β+1k∈Nq

φ(2β+1k) = ∑
k|d1

φ(2β+1k) = 2β ∑
k|d1

φ(k) = 2βd1.

The results follow.

Theorem 3. Let q be an odd prime power and 2γ||(q + 1). Let n = npν, where p - n and ν ≥ 0. Let n = 2βn′,
where 2 - n′. Then, the following statements hold:

1. E(n,−1, q) = 0 if and only if β + 1 ≤ γ, ν = 0, and 2n ∈ Nq.
2. If β + 1 ≤ γ, ν > 0, and 2n ∈ Nq, then n

6 ≤ E(n,−1, q) < n
4 .

3. If β + 1 ≤ γ and 2n 6∈ Nq, then n
12 ≤ E(n,−1, q) < n

3 .

Proof. By Equation (3), E(n,−1, q) = 0 if and only if

Bn,−1,q

n
=

4p2ν + 2pν

p2ν + 2pν + 3
.

By Corollary 3, it is not difficult to see that
Bn,−1,q

n ≤ 1 and
Bn,−1,q

n = 1 if and only if β + 1 ≤ γ and

2n ∈ Nq. On the other hand, we have 4p2ν+2pν

p2ν+2pν+3 ≥ 1 and 4p2ν+2pν

p2ν+2pν+3 = 1 if and only if pν = 1. Therefore,
Bn,−1,q

n = 4p2ν+2pν

p2ν+2pν+3 if and only if β + 1 ≤ γ, 2n ∈ Nq and pν = 1. This proves (i).
To prove (ii), assume that β + 1 ≤ γ, ν > 0, and 2n ∈ Nq. By Corollary 3, we have Bn,−1,q = n.

By Equation (3), it follows that

E(n,−1, q) = n
(

2pν + 1
6(pν + 1)

)
− n

(
p2ν + 2pν + 3

12(pν + 1)

)
=

n
12(pν + 1)

(
3p2ν − 3

)
=

n
4

(
1− 1

pν

)
.

It is not difficult to see that E(n,−1, q) < n
4 . Since ν > 0, it follows that pν ≥ 3. Hence,

the minimum value of 1− 1
pν is 2

3 . Therefore, we have n
6 ≤ E(n,−1, q) < n

4 .
To prove (iii), assume that β + 1 ≤ γ and 2n 6∈ Nq.

Case 1 gcd(n, q) 6= 1. By Corollary 1, we have E(n,−1, q) =
n−Bn,−1,q

4 . Then, by Equation (3),
E(n,−1, q) can be expressed as

E(n,−1, q)
n

=
1
4
− 1

4pν
+

E(n̄,−1, q)
n

(
p2ν + 2pν + 3

3(pν + 1)

)
≥ 1

4
− 1

4pν
. (4)
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It is not difficult to see that E(n,−1,q)
n ≥ 1

6 for all pν ≥ 3. Hence, E(n,−1, q) ≥ n
6 .

Case 2 gcd(n, q) = 1. Let n = 2βd′d1d2 . . . be an Nq-factorization of n and

n = 2βd′d1d2 . . . = 2βd′dα1 dα2 . . . dαj ,

where dαi > 1 for all 1 ≤ i ≤ j and α1 < α2 < · · · < αj. Note that if dαi and d′ are greater than
1, then they are greater than or equal to 3.

Case 2.1 β = 0. We have n = d′dα1 dα2 . . . dαj . It is easy to verify that

Bn,−1,q

n
=

d1 + ∑α≥2(dα − 1)
d′d1d2 . . .

=
1− j + ∑

j
i=1 dαj

d′dα1 dα2 . . . dαj

.

By Lemma 6, we have the following six subcases:

Case 2.1.1 d′ = 1 and j = 0. Then, n = 1 and 2n = 2 ∈ Nq, a contradiction.
Case 2.1.2 d′ = 1 and j = 1. Thus, n = dα1 , 2n = 2dα1 ∈ Nq, a contradiction.
Case 2.1.3 d′ > 1 and j = 0. We have n = d′. Thus,

Bn,−1,q
n = 1

d′ ≤
1
3 .

Case 2.1.4 d′ > 1 and j = 1. Thus, n = d′dα1 . Therefore,
Bn,−1,q

n =
dα1

d′dα1
= 1

d′ ≤
1
3 .

Case 2.1.5 j = 2. Hence, n = d′dα1 dα2 . Without loss of generality, we may assume that dα2 ≤ dα1 .
We have

Bn,−1,q

n
=
−1 + dα1 + dα2

d′dα1 dα2

≤ 2dα1

d′dα1 dα2

≤ 2
d′dα2

≤ 2
dα2

≤ 2
3

.

Case 2.1.6 j ≥ 3. Then, n = d′dα1 dα2 . . . dαj . Let dαr = max1≤i≤j dαi .

Bn,−1,q

n
=

1− j + ∑
j
i=1 dαi

d′dα1 . . . dαj

≤ ∑
j
i=1 dαi

d′dα1 . . . dαj

≤ jdαr

d′dα1 . . . dαj

=
j

d′∏1≤i≤j, i 6=r dαi

≤ j
∏1≤i≤j, i 6=r dαi

.

Let s be an index such that j − 1 ≤ s ≤ j and s 6= r. Then, j < 2j−1 ≤ 2s ≤ 2αs .
Since dαs ∈ Pq,αs , we have dαs ≥ 2αs + 1 by Lemma 3. Hence, j < 2αs < dαs . Therefore,

Bn,−1,q

n
≤ j

∏1≤i≤j, i 6=r dαi

≤ dαs

∏1≤i≤j, i 6=r dαi

=
1

∏1≤i≤j, i 6=r,i 6=s dαi

≤ 1
3

.

Case 2.2 β 6= 0. Then, n = 2βd′d1d2 . . . = 2βd′dα1 dα2 . . . dαj . It follows that

Bn,−1,q

n
=

2βd1

2βd′d1d2 . . .
=

1
d′d2d3 . . .

.

By Lemma 6, we have the following six subcases.

Case 2.2.1 d′ = 1 and j = 0. Then, n = 2β and 2n = 2β+1 ∈ Nq, a contradiction.
Case 2.2.2 d′ = 1 and j = 1. Note that β + 1 ≥ 2. If α1 = 1, then n = 2βd1 and 2n = 2β+1d1 ∈ Nq,

a contradiction. Otherwise, α1 6= 1. Then, n = 2βdα1 and 2n = 2β+1dα1 6∈ Nq. Hence,

Bn,−1,q

n
=

1
dα1

≤ 1
3

.

Case 2.2.3 d′ > 1 and j = 0. Then, n = 2βd′ and 2n = 2β+1d′. Hence,

Bn,−1,q

n
=

1
d′
≤ 1

3
.
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Case 2.2.4 d′ > 1 and j = 1. Then, n = d′dα1 . It follows that

Bn,−1,q

n
≤ 1

d′
≤ 1

3
.

Case 2.2.5 j = 2. Then, n = d′dα1 dα2 . We have

Bn,−1,q

n
≤ 1

d′dα2

≤ 1
dα2

≤ 1
3

.

Case 2.2.6 j ≥ 3. Then, n = d′dα1 . . . dαj . Hence,

Bn,−1,q

n
≤ 1

d′dα2 . . . dαj

≤ 1
dαj

≤ 1
3

.

Altogether, we have Bn,−1,q ≤ 2n
3 , and, hence,

E(n,−1, q) =
n− Bn,−1,q

4
≥

n− 2n
3

4
=

n
12

.

From Theorem 3 and Corollary 4, we can conclude that the average dimension of the Hull of
negacyclic codes of length n = pνn over Fq is zero if and only if β + 1 ≤ γ, ν = 0, and 2n ∈ Nq.
For the other cases, the average dimension of the Hull of negacyclic codes of length n = pνn over Fq is
bounded by n

12 and n
3 . In these cases, E(n,−1, q) grows at the same rate as the length n of the codes as

n tends to ∞.

5. Conclusions

Due to their wide applications and links with the efficiency of some algorithms in coding theory,
properties of hulls of cyclic codes and their generalization in terms of λ-constacyclic codes have been
extensively studied. The average dimension of the Euclidean hull of cyclic codes has been studied
in [9]. A complete study of the average dimension of the Hermitian hull of cyclic and constacyclic
codes was given in [11,12]. Therefore, the remaining case is the Euclidean hull of negacyclic codes
(see [13]). This paper provides a complete study for this problem. The detailed comparison for the
results on the Euclidean case is given in Table 1 and the Hermitian case is given in [12].

Table 1. The lower and upper bounds for E(n, 1, q) and E(n,−1, q).

λ n = pνn Lower Bounds Upper Bounds Remarks

1 n ∈ Nq 0 0 Theorem 25 of [9]n 6∈ Nq
n
12

n
3

β + 1 > γ n
4

n
3 Corollary 4

−1 β + 1 ≤ γ, ν = 0, and 2n ∈ Nq 0 0
Theorem 3β + 1 ≤ γ, ν > 0, and 2n ∈ Nq

n
6

n
4

β + 1 ≤ γ and 2n 6∈ Nq
n
12

n
3
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