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Abstract: In this paper, we study the existence of solutions for a new class of boundary value problems
of non-linear fractional integro-differential equations. The existence result is obtained with the aid
of Schauder type fixed point theorem while the uniqueness of solution is established by means of
contraction mapping principle. Then, we present some examples to illustrate our results.
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1. Introduction

Fractional differential equations arise in many engineering and scientific disciplines such as
physics, aerodynamics, polymer rheology, regular variations in thermodynamics, biophysics, blood
flow phenomena, electrical circuits, biology, etc. In fact, the tools of fractional calculus have considerably
improved the mathematical modeling of many real world problems. For theoretical development and
applications of the subject, we refer the reader to [1–11] and the references cited therein.

The nonlocal boundary conditions are important in describing some peculiarities happening
inside the domain of physical, chemical or other processes [12], while the integral boundary conditions
provide the means to assume an arbitrary shaped cross-section of blood vessels in computational fluid
dynamics (CFD) studies of blood flow problems [13,14].

Non-local boundary value problems of nonlinear fractional order differential equations have
recently been investigated by several researchers. The domain of study ranges from the theoretical
aspects to the analytic and numerical methods for fractional differential equations.

Agarwal et al. [4] discussed the existence of solutions for a boundary value problem of
integro-differential equations of fractional order

−Dαx(t) = A f (t, x(t)) + BIβg(t, x(t)), 2 < α ≤ 3, t ∈ [0, 1]

with non-local three-point boundary conditions Dδx(t) = 0, Dδ+1x(t) = 0, Dδx(1)− Dδx(η) = a,
where 0 < δ ≤ 1, α− δ > 3, 0 < β < 1, 0 < η < 1.

Motivated by the works mentioned, in this paper, we investigate the existence and uniqueness of
solutions for the non-linear fractional integro-differential equation

cDpx(t) = f (t, x(t),c Dqx(t), Irx(t)) (1)
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with non-local boundary conditions{
cDqx(α) +c Dqx(β) = bx′(1)

x(0) + x(1) = aIrx(γ),
(2)

where cDp,c Dq denote the Caputo fractional derivative of order p and q respectively, f : [0, 1]×R3 → R
is a given continuous function, a, b are real constants, 1 < p ≤ 2, 0 < q < 1, p > q + 1, r > 0, t ∈ [0, 1]
and 0 < α, β, γ < 1.

These boundary conditions are interesting and important from a physical point.
The rest of paper is arranged as follows: In Section 2 we recall some basic definitions of fractional

calculus and present an auxiliary lemma. Section 3 contains main existence and uniqueness results.
We also present some examples to to illustrate our results.

2. Preliminaries

First of all, we recall some basic definitions of fractional calculus [7].

Definition 1. For a function f : [0, ∞)→ R, the Caputo derivative of fractional order p is defined as

cDp f (t) =
1

Γ(n− p)

∫ t

0
(t− s)n−p−1 f (n)(s)ds, n− 1 < p < n, n = [p] + 1,

where [p] denotes the integer part of real number p and Γ(·) is the gamma function, which is defined by
Γ(α) =

∫ ∞
0 tα−1e−tdt.

Definition 2. The Riemann-Liouvill fractional integral of order p is defined as

Ip f (t) =
1

Γ(p)

∫ t

0
(t− s)p−1 f (s)ds, p > 0,

provided the integral exists.

Now, we present an auxiliary lemma which plays a key role in the sequel.

Lemma 1. Let 1 < p ≤ 2, 0 < q < 1, r > 0, p > q + 1, α, β, γ > 0, a, b ∈ R, t ∈ I := [0, 1], aγr

Γ(r+1) 6= 2 and
y(t) ∈ C([0, 1],R). Then the unique solution of the boundary value problem cDpx(t) = y(t) with boundary
conditions x(0) + x(1) = aIrx(γ) and cDqx(α) +c Dqx(β) = bx′(1) is given by

x(t) =
1

Γ(p)

∫ t

0
(t− s)p−1y(s)ds +

1
ϕ2

[
a

Γ(r + p)

∫ γ

0
(γ− s)p+r−1y(s)ds− 1

Γ(p)

∫ 1

0
(1− s)p−1y(s)ds

]

− 1
ϕ1

(
t− ϕ3

ϕ2

)[ b
Γ(p− 1)

∫ 1

0
(1− s)p−2y(s)ds− 1

Γ(p− q)

∫ α

0
(α− s)p−q−1y(s)ds

− 1
Γ(p− q)

∫ β

0
(β− s)p−q−1y(s)ds

]
.

where ϕ1 = α−q+1+β−q+1

Γ(−q+2) − b, ϕ2 = 2− aγr

Γ(r+1) and ϕ3 = 1− aγr+1

Γ(r+2) .

Proof. It is well known [7] that the general solution of the equation cDpx(t) = y(t) is given by

x(t) = Ipy(t) + c0 + c1t, (3)
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where c0, c1 are arbitrary constants. By using the boundary conditions, we get

c0 =
1
ϕ2

[
a

Γ(r + p)

∫ γ

0
(γ− s)p+r−1y(s)ds− 1

Γ(p)

∫ 1

0
(1− s)p−1y(s)ds

− ϕ3

ϕ1

(
b

Γ(p− 1)

∫ 1

0
(1− s)p−2y(s)ds− 1

Γ(p− q)

( ∫ α

0
(α− s)p−q−1y(s)ds

+
∫ β

0
(β− s)p−q−1y(s)ds

))]

and

c1 =
1
ϕ1

[
b

Γ(p− 1)

∫ 1

0
(1− s)p−2y(s)ds− 1

Γ(p− q)

( ∫ α

0
(α− s)p−q−1y(s)ds+

∫ β

0
(β− s)p−q−1y(s)ds

)]

Substituting the values of c0, c1 in (3), completes the proof.

3. The Main Results

For 0 < r < 1, letW = {x : x,c Dqx(t) ∈ C([0, 1],R)} denote the Banach space of all continuous
functions defined on [0, 1] into R endowed with the norm ‖x‖ = sup{|x(t)|+ |cDqx(t)|, t ∈ [0, 1]}.

Using Lemma 1, we define an operator T :W →W associated with the problem (1)–(2) as

(Tx)(t) =
1

Γ(p)

∫ t

0
(t− s)p−1 f (s, x(s),c Dqx(s), Irx(s))ds

+
1
ϕ2

[
a

Γ(r + p)

∫ γ

0
(γ− s)p+r−1 f (s, x(s),c Dqx(s), Irx(s))ds

− 1
Γ(p)

∫ 1

0
(1− s)p−1 f (s, x(s),c Dqx(s), Irx(s))ds

]

− 1
ϕ1

(
t− ϕ3

ϕ2

)[ b
Γ(p− 1)

∫ 1

0
(1− s)p−2 f (s, x(s),c Dqx(s), Irx(s))ds

− 1
Γ(p− q)

( ∫ α

0
(α− s)p−q−1 f (s, x(s),c Dqx(s), Irx(s))ds

+
∫ β

0
(β− s)p−q−1 f (s, x(s),c Dqx(s), Irx(s))ds

)]
.

(4)

Observe that the problem (1)–(2) has solutions if and only if the operator T has fixed points.

Theorem 1 ([15]). Let X be a Banach space. Assume that T : X → X is a completely continuous operator and
the set V = {u ∈ X|u = εTu, 0 < ε < 1} is bounded. Then T has a fixed point in X.

Theorem 2. Assume that there exists h ∈ C([0, 1],R+) such that | f (t, x(t),c Dqx(t), Irx(t))| ≤ h(t) for
t ∈ [0, 1] with maxt∈[0,1] |h(t)| = ‖h‖. Then the problem (1)–(2) has at least one solution on [0, 1].
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Proof. As a first step, we show that the operator T is completely continuous. LetD ⊆ W be a bounded
set. Then for each x ∈ D, we get

|(Tx)(t)| ≤ 1
Γ(p)

∫ t

0
|t− s|p−1|h(s)|ds

+
1
|ϕ2|

[
|a|

Γ(r + p)

∫ γ

0
|γ− s|p+r−1|h(s)|ds

+
1

Γ(p)

∫ 1

0
|1− s|p−1|h(s)|ds

]

+
1
|ϕ1|

∣∣∣t− ϕ3

ϕ2

∣∣∣[ |b|
Γ(p− 1)

∫ 1

0
|1− s|p−2|h(s)|ds

+
1

Γ(p− q)

( ∫ α

0
|α− s|p−q−1|h(s)|ds

+
∫ β

0
|β− s|p−q−1|h(s)|ds

)]
,

on the taking the norm for t ∈ [0, 1], we obtain

‖Tx‖ ≤ ‖h‖
(

1
Γ(p + 1)

+
1
|ϕ2|

[
|a|

Γ(r + p + 1)
γr+p +

1
Γ(p + 1)

]

+
1
|ϕ1|

(
1 +
|ϕ3|
|ϕ2|

)[ |b|
Γ(p)

+
|α|p−q + |β|p−q

Γ(p− q + 1)

])

We set h1 = 1
Γ(p+1) +

1
|ϕ2|

(
|a|

Γ(r+p+1)γr+p + 1
Γ(p+1)

)
+ 1
|ϕ1|

(
1 + |ϕ3|

|ϕ2|

)(
|b|

Γ(p) +
|α|p−q+|β|p−q

Γ(p−q+1)

)
. In a similar

manner, we find that

‖cDqTx‖ ≤ ‖h‖
(

1
Γ(p− q + 1)

+
1
|ϕ2|

[
|a|

Γ(r + p− q + 1)
γr+p−q +

1
Γ(p− q + 1)

]

+
(

1 +
|ϕ3|
|ϕ2|

)[ |b|
|ϕ1|Γ(p− q)

+
|α|p−2q + |β|p−2q

|ϕ1|Γ(p− 2q + 1)

])

Put h2 = 1
Γ(p−q+1) +

1
|ϕ2|

(
|a|

Γ(r+p−q+1)γr+p−q + 1
Γ(p−q+1)

)
+ 1
|ϕ1|

(
1 + |ϕ3|

|ϕ2|

)(
|b|

Γ(p−q) +
|α|p−2q+|β|p−2q

Γ(p−2q+1)

)
.
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Next, for each x ∈ D and 0 < t1 < t2 < 1, we have

|(Tx)(t2)− (Tx)(t1)| =
∣∣∣∣∣ 1
Γ(p)

∫ t2

0
(t2 − s)p−1 f (s, x(s),c Dqx(s), Irx(s))ds

− t2

ϕ1

[
b

Γ(p− 1)

∫ 1

0
(1− s)p−2 f (s, x(s),c Dqx(s), Irx(s))ds

− 1
Γ(p− q)

( ∫ α

0
(α− s)p−q−1 f (s, x(s),c Dqx(s), Irx(s))ds

+
∫ β

0
(β− s)p−q−1 f (s, x(s),c Dqx(s), Irx(s))ds

)]

− 1
Γ(p)

∫ t1

0
(t1 − s)p−1 f (s, x(s),c Dqx(s), Irx(s))ds

+
t1

ϕ1

[
b

Γ(p− 1)

∫ 1

0
(1− s)p−2 f (s, x(s),c Dqx(s), Irx(s))ds

− 1
Γ(p− q)

( ∫ α

0
(α− s)p−q−1 f (s, x(s),c Dqx(s), Irx(s))ds

+
∫ β

0
(β− s)p−q−1 f (s, x(s),c Dqx(s), Irx(s))ds

)]∣∣∣∣∣
≤ ‖h‖

[
|tp

2 − tp
1 |+ 2(t2 − t1)

p

Γ(p + 1)

+
1
|ϕ1|

∣∣∣t2 − t1

∣∣∣( |b|
Γ(p)

+
|α|p−q + |β|p−q

Γ(p− q + 1)

)]
.

Hence

|(Tx)(t2)− (Tx)(t1)| ≤
∥∥∥h
∥∥∥[ |tp

2 − tp
1 |+ 2(t2 − t1)

p

Γ(p + 1)

+
1
|ϕ1|

∣∣∣t2 − t1

∣∣∣( |b|
Γ(p)

+
|α|p−q + |β|p−q

Γ(p− q + 1)

)]
.

In a similar manner, we get

|(cDqTx)(t2)− (cDqTx)(t1)| ≤
∥∥∥h
∥∥∥[ |tp−q

2 − tp−q
1 |+ 2(t2 − t1)

p−q

Γ(p− q + 1)

+
1
|ϕ1|

∣∣∣t2 − t1

∣∣∣( |b|
Γ(p− q)

+
|α|p−2q + |β|p−2q

Γ(p− 2q + 1)

)]
.

The functions t, tp, tp−q are uniformaly continuous on [0, 1] since 1 < p ≤ 2, p− q > 0. Therefore,
by Arzela-Ascoli Theorem, the sets {Tx : x ∈ D} and {cDqTx : x ∈ D} are relatively compact in
C([0, 1]). Thus, we deduce that T(D) is a relatively compact subset ofW .

Now, we consider the set

B = {x ∈ W|x = χTx, 0 < χ < 1},
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and show that it is bounded. Let x ∈ B, then x = χTx, 0 < χ < 1. For any t ∈ [0, 1], it implies from
|x(t)| = χ|Tx(t)| that

‖x‖ ≤ ‖h‖
[

1
Γ(p+1) +

1
|ϕ2|

(
|a|

Γ(r+p+1)γr+p + 1
Γ(p+1)

)
+
(

1 + |ϕ3|
|ϕ2|

)(
|b|

|ϕ1|Γ(p) +
|α|p−q+|β|p−q

|ϕ1|Γ(p−q+1)

)]
.

This shows that the set B is bounded. Thus, by Theorem 1, we conclude that the operator T has at least
one fixed point. Consequently , the problem (1)–(2) has at least one solution on [0, 1].

Now, we establish the uniqueness of solutions for problem (1)–(2) by means of classical contraction
mapping principle.

Theorem 3. Assume that f : [0, 1]×R3 → R is a continuous function satisfying the condition

| f (t, x, y, z)− f (t, x, y, z)| ≤ `(|x− x|+ |y− y|+ |z− z|),

with ` < 1
4k , where k = max{h1, h2}. Then, the problem (1)–(2) has a unique solution on [0, 1].

Proof. First, we show that TUν ⊆ Uν, where T is the operator defined by (4), Uν = {x ∈ W : ‖x‖ ≤ ν}
with 1

2 ν ≥ kλ
1−4`k , where λ = supt∈[0,1] | f (t, 0, 0, 0)|. For x ∈ Uν, t ∈ [0, 1], we have

| f (t, x(t),c Dqx(t), Irx(t))| = | f (t, x(t),c Dqx(t), Irx(t))− f (t, 0, 0, 0) + f (t, 0, 0, 0)|
≤ | f (t, x(t),c Dqx(t), Irx(t))− f (t, 0, 0, 0)|+ | f (t, 0, 0, 0)|

≤ `
[
|x(t)|+ |cDqx(t)|+ |Irx(t)|

]
+ λ

≤ `
[

sup
t∈[0,1]

{|x(t)|+ |cDqx(t)|}+ 1
Γ(r)

∫ t

0
(t− s)r−1|x(s)|ds

]
+ λ

≤ `
[
‖x‖+ 1

Γ(r + 1)
sup

t∈[0,1]
|x(t)|

]
+ λ

≤ `
[
‖x‖+ 1

Γ(r + 1)
sup

t∈[0,1]
{|x(t)|+ |cDqx(t)|}

]
+ λ

≤ 2`‖x‖+ λ ≤ 2`v + λ.

Hence,

|Tx(t)| ≤ (2`ν + λ)

[
1

Γ(p + 1)
+

1
|ϕ2|

( |a||γ|r+p

Γ(r + p + 1)

+
1

Γ(p + 1)

)
+
( |ϕ3|
|ϕ2|

+ 1
)( |b|
|ϕ1|Γ(p)

+
1

|ϕ1|Γ(p− q + 1)

(
|α|p−q + |β|p−q

))]

= (2`ν + λ)h1 ≤ (2`ν + λ)k ≤ 1
2

ν.

Similarly, we obtain

|(cDqTx)(t)| ≤ (2`ν + λ)h2 ≤ (2`ν + λ)k ≤ 1
2

ν.
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Therefore, we get that Tx ∈ Uν implies that TUν ⊆ Uν. Moreover, for x, y ∈ W and for any t ∈ [0, 1],
we have

|Tx(t)− Ty(t)| ≤ 2`‖x− y‖ sup
t∈[0,1]

( 1
Γ(p)

∫ t

0
|t− s|p−1ds +

1
|ϕ2|

[ |a|
Γ(r + p)

∫ γ

0
|γ− s|p+r−1ds

+
1

Γ(p)

∫ 1

0
|1− s|p−1ds

]
+
∣∣∣ 1

ϕ1

∣∣∣(∣∣∣t− ϕ3

ϕ2

∣∣∣)( |b|
Γ(p− 1)

∫ 1

0
|1− s|p−2ds

+
1

Γ(p− q)

( ∫ α

0
|α− s|p−q−1ds +

∫ β

0
|β− s|p−q−1ds)

)))
≤ 2`‖x− y‖k.

Analogously, we can obtain

|cDqTx(t)−c DqTy(t)| ≤ 2`‖x− y‖h2 ≤ 2`‖x− y‖k.

Therefore, with the condition ` < 1
4k , we deduce that the operator T is a contraction. Hence, it follows

Banach’s fixed point theorem that the problem (1)–(2) has a unique solution on [0, 1].

Example 1. Consider the following fractional boundary value problem given by
cD

3
2 x(t) = 4t

1
3 (2 + cos3 x(t)) + |cD

1
3 x(t)|

1+|cD
1
3 x(t)|

+ 4
t+5 (

I
1
2 x(t)

1+I
1
2 x(t)

)

x(0) + x(1) = I
1
2 x( 1

2 ),
cD

1
3 x( 1

4 ) +
c D

1
3 x( 1

5 ) = 3x′(1).

(5)

where p = 3
2 , q = 1

3 , r = 1
2 , a = 1, b = 3, α = 1

4 , β = 1
5 , γ = 1

2 , and

f (t, x(t),c D
1
3 x(t), I

1
2 x(t)) = 4t

1
3 (2 + cos3 x(t)) +

|cD
1
3 x(t)|

1 + |cD
1
3 x(t)|

+
4

t + 5
(

I
1
2 x(t)

1 + I
1
2 x(t)

).

Clearly | f (t, x(t),c D
1
3 x(t), I

1
2 x(t))| ≤ (12t

1
3 )(1 + 4

t+5 ) = h(t) with ‖h‖ = 21.6. Hence, by Theorem 2,
the problem (5) has at least one solution on [0, 1].

Example 2. Consider the following fractional boundary value problem given by
cD

7
4 x(t) = 2

t+80 (sin(x(t)) +c D
3
5 x(t) + I

1
3 x(t) + 3)

x(0) + x(1) = I
1
3 x( 1

7 ),
cD

3
5 x( 1

4 ) +
c D

3
5 x( 1

6 ) = 2x′(1).

(6)

Here p = 7
4 , q = 3

5 , r = 1
3 , a = 1, b = 2, α = 1

4 , β = 1
6 , γ = 1

7 , and

f (t, x(t),c D
3
5 x(t), I

1
3 x(t)) =

2
t + 80

(sin(x(t)) +c D
3
5 x(t) + I

1
3 x(t) + 3).

Using the given values of the parameters, we obtain h1 ≈ 4.5153, h2 ≈ 9.6398 and k = max{h1, h2} ≈ 9.64.
It is easy to see that

| f (t, x(t),c D
3
5 x(t), I

1
3 x(t))− f (t, y(t),c D

3
5 y(t), I

1
3 y(t))| ≤ 1

40
(|x− y|+ |cD

3
5 x−c D

3
5 y|+ |I

1
3 x− I

1
3 y|).

We have ` = 1
40 and 4k` ≈ 0.9640 < 1. Therefore, by Theorem 3 we deduce that the problem (6) has a unique

solution on [0, 1].
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4. Conclusions

In this paper, we have obtained some existence results for a non-linear fractional
integro-differential problem with non-local boundary conditions by means of Schauder type fixed point
theorem and contraction mapping principle. Our results are not only new in the given configuration
but also correspond to some new situations associated with the specific values of the parameters
involved in the given problem.
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