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Abstract: We consider a general problem of optimal allocation of limited resources in a wireless
telecommunication network. The network users are divided into several different groups (or classes),
which correspond to different levels of service. The network manager must satisfy these different
users’ requirements. This approach leads to a convex optimization problem with balance and capacity
constraints. We present several decomposition type methods to find a solution to this problem,
which exploit its special features. We suggest applying first the dual Lagrangian method with
respect to the total capacity constraint, which gives the one-dimensional dual problem. However,
calculation of the value of the dual cost function requires solving several optimization problems.
Our methods differ in approaches for solving these auxiliary problems. We consider three basic
methods: Dual Multi Layer (DML), Conditional Gradient Dual Multilayer (CGDM) and Bisection
(BS). Besides these methods we consider their modifications adjusted to different kind of cost
functions. Our comparison of the performance of the suggested methods on several series of test
problems show satisfactory convergence. Nevertheless, proper decomposition techniques enhance
the convergence essentially.

Keywords: telecommunication networks; wireless networks; service levels; resource allocation;
optimization problem; decomposition methods; Lagrange duality

1. Introduction

Efficient allocation of limited resources in communication networks require flexible mechanisms,
which are based on proper mathematical models, since the conventional fixed allocation rules may
lead to congestion effects and additional expenses from the inefficient utilization of network resources;
see e.g., [1–3]. In particular, spectrum sharing is now one of the most critical issues and various adaptive
mechanisms for allocation of resources in wireless telecommunication networks have been suggested.
Most papers in this field are devoted to game-theoretic models and implementation of decentralized
iterative methods for finding the Nash equilibrium points or their generalizations; see e.g., [4,5].
At the same time, various optimization-based mechanisms are also suggested; see e.g., [3,5–7]. Further,
the allocation of energy and computing resources are considered in [8,9]. Management of these highly
complicated systems are often based on proper decomposition approaches, which can involve zonal,
time, frequency and other decomposition techniques.

In [10–15], several optimal resource allocation problems in telecommunication networks and
proper zonal decomposition-based methods were suggested. They assumed that the network
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manager can satisfy all the varying user requirements or can buy additional volumes of the resource.
This approach leads to constrained convex optimization problem for some selected time period.
However, these models do not take into account possible differentiation of users with respect to service
levels, which yields different service costs and somewhat different optimization problems.

In this paper, we consider problems of optimal allocation of a homogeneous resource in
a telecommunication network with the differentiation of users. In such a way, we give a new
formulation of this problem as an optimization problem and present several dual decomposition
type methods for the affine and convex cases. We also compare the performance of the suggested
methods on several series of test problems. The comparison shows the advantage of proposed methods
over the conventional ones.

2. Problem Formulation

Let us consider a single telecommunication network with nodes (users). A network manager offers
users m levels of network service (classes), which is reflected by expenses and prices. Within some
selected time period, the network manager can offer a limited total amount C of a homogeneous
resource of the network. An amount of resource allocated to the i-th class service is supposed to be
equal to ϕi(xi) if xi is an unknown consumed traffic volume at this level (0 ≤ xi ≤ βi). The cost of
implementation (network expense) of the amount xi of the i-th service level is supposed to be equal to
µi(xi). Each user can choose only one level of service. Let N = {1, . . . , n} denote a set of users, and Ni
a set of users of the i-th class (level) for i = 1, . . . , m. Let yj denote the unknown traffic volume offered
to the j-th user with 0 ≤ yj ≤ αj and ηj(yj) is the fee (incentive) value paid by the j-th user for this
traffic. If all the users are attributed to the classes, we can calculate the total traffic volume for each i-th
level as follows:

xi = ∑
j∈Ni

yj.

The general problem of the network manager is to find an optimal allocation of the limited
homogeneous resource among the users in order to maximize the total payment received from the
users and minimize the total network implementation expenses. This problem is now formulated
as follows:

max
(x,y)∈W,∑m

i=1 ϕi(xi)≤C
→ f (x, y), (1)

where

f (x, y) =
m

∑
i=1

[
∑

j∈Ni

ηj(yj)− µi(xi)

]
(2)

and

W =

{
(x, y) xi = ∑

j∈Ni

yj, 0 ≤ yj ≤ αj, j ∈ Ni, 0 ≤ xi ≤ βi, i = 1, . . . , m

}
. (3)

In what follows we shall suppose that all the functions µi(xi), ϕi(xi) and −ηj(yj) are convex,
then (1)–(3) is a convex optimization problem.

3. Solution Methods

It is well known that many efficient solution methods for convex optimization problems exist;
see e.g., [16,17]. However, due to large dimensionality and inexact data of the optimal resource
allocation problems in telecommunication networks one can meet serious difficulties when solving
these problems with conventional general iterative solution methods. To create an efficient method
just for problem (1)–(3), we have to take into account its separability and apply certain decomposition
approach. Moreover, the standard duality scheme using the Lagrangian function with respect to all
the functional constraints leads to the multi-dimensional dual optimization problem. We will apply
another approach, which was suggested in [12,18] and leads to solution of one-dimensional problems.
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Let us first define the Lagrange function of problem (1)–(3) as follows:

L(x, y, λ) = f (x, y)− λ

(
m

∑
i=1

ϕi(xi)− C

)
.

This means we will utilize the Lagrangian multiplier λ only for the total resource bound. We can
now replace problem (1)–(3) with its dual:

min
λ≥0
→ ψ(λ), (4)

where

ψ(λ) = max
(x,y)∈W

L(x, y, λ) = λC + max
(x,y)∈W

m

∑
i=1

[
∑

j∈Ni

ηj(yj)− (µi(xi) + λϕi(xi))

]
.

By duality (see e.g., [16,17]), problems (1)–(3) and (4) have the same optimal value. However,
solution of (4) can be found by one of the well-known single-dimensional optimization algorithms;
see e.g., [17]. The main problem is to implement these algorithms properly.

To calculate the value of ψ(λ) we have to solve the inner problem:

max
(x,y)∈W

→
m

∑
i=1

[
∑

j∈Ni

ηj(yj)− (µi(xi) + λϕi(xi))

]
.

This problem clearly decomposes into m independent class problems

max→ ∑
j∈Ni

ηj(yj)− (µi(xi) + λϕi(xi)), (5)

subject to
xi = ∑

j∈Ni

yj, 0 ≤ yj ≤ αj, j ∈ Ni, 0 ≤ xi ≤ βi, for i = 1, . . . , m. (6)

Our methods for problem (1)–(3) will differ in approaches to problem (5)–(6).
We first describe the decomposition approach, which follows in general that from [10–12].

Denote by νi(xi) the optimal value of the i-th service optimization problem:

max→ ∑
j∈Ni

ηj(yj) (7)

subject to

∑
j∈Ni

yj = xi, 0 ≤ yj ≤ αj, j ∈ Ni. (8)

Then (5)–(6) reduces to the one-dimensional problem:

min
0≤xi≤βi

→ νi(xi)− µi(xi)− λϕi(xi). (9)

It is easy to see that νi(xi) is a convex, but non differentiable function in general.
Thus, the initial problem (1)–(3) is replaced by its one-dimensional dual (4) with the cost function

ψ(λ), such that calculation of its value reduces to solution of m independent problems of form (5)–(6),
whose calculation again reduces to solution of one-dimensional problems of form (9).
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However, each function νi is given algorithmically, i.e., via solution of problem (7)–(8). In the
general case we can apply again a dual type method to find the value of νi(xi). Let us to introduce the
the Lagrange function

L̃j(y, θi) = ∑
j∈Ni

ηj(yj)− θi

[
∑

j∈Ni

yj − xi

]
,

and then to solve the one-dimensional dual:

min
θi≥0
→ ζi(θi),

where
ζi(θi) = θixi + ∑

j∈Ni

max
0≤yj≤αj

[ηj(yj)− θiyj].

Therefore, we can use here only algorithms for a set of hierarchical one-dimensional problems.
Let us denote this method as (DML).

Please note that this approach involves several levels of hierarchical problems requiring certain
concordance in the accuracies of the solution of all these problems, besides, each solution of one
upper level problem requires solution of all the lower level problems many times, which entails large
computational costs. However, they can be reduced for some special types of functions.

For instance, consider the case where the functions ηj(yj), j ∈ Ni are affine, whereas the functions
ϕi(xi) and µi(xi) are convex and differentiable. Then we can find an exact solution of problems (7)
and (8) by a simple ordering algorithm in a finite number of iterations; see [19] for more detail.

Next, consider the particular case where all the functions ηj(yj), µi(xi), and ϕi(xi) are affine, i.e.,

ηj(yj) = ηj,1yj + ηj,0, ηj,1 > 0, j ∈ Ni, i = 1, . . . , m,

µi(xi) = µi,1xi + µi,0, µi,1 > 0, i = 1, . . . , m, (10)

ϕi(xi) = ϕi,1xi + ϕi,0, ϕi,1 > 0, i = 1, . . . , m.

Then the cost function in (5) can be rewritten equivalently as

ηj,1yj − (µi,1 + λϕi,1)xi.

This means that problems (5) and (6) reduces to a two-side auction market with fixed prices
(see [19]) and also is solved in a finite number of iterations by a simple ordering algorithm;
see also [13,18]. Let us denote this method as (SDM).

We can extend this approach to the case where the functions ηj(yj) are affine as in (10), whereas the
functions ϕi(xi) and µi(xi) are only convex and differentiable. This means that the prices (marginal
utilities) ηj,1 of the users are fixed, but the marginal expenses and prices depend on volumes, so that
they are non-decreasing.

Set y(i) = (yj)j∈Ni and

Wi =

{
(xi, y(i)) xi = ∑

j∈Ni

yj, 0 ≤ yj ≤ αj, j ∈ Ni, 0 ≤ xi ≤ βi

}
.

The necessary and sufficient optimality condition for problem (5) and (6) is now written in the
form of the variational inequality: find (x̄i, ȳ(i)) ∈Wi such that

(µ′i(x̄i) + λϕ′i(x̄i))(xi − x̄i)− ∑
j∈Ni

ηj,1(yj − ȳj) ≥ 0, ∀(xi, y(i)) ∈Wi. (11)
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This is a two-sided market equilibrium problem with one seller and several buyers; see e.g., [19].
It is equivalent to the problem of finding a vector (x̄i, ȳ(i)) ∈Wi and a cutting price p̄i such that

µ′i(x̄i) + λϕ′i(x̄i)


≥ p̄i, if x̄i = 0,
= p̄i, if x̄i ∈ [0, βi],
≤ p̄i, if x̄i = βi,

(12)

and

ηj,1


≤ p̄i, if ȳj = 0,
= p̄i, if ȳj ∈ [0, αj],
≤ p̄i, if ȳj = αj.

(13)

Since buyers prices are fixed, we can re-arrange them to be non-increasing and then find easily
an intersection point of the staircase-wise inverse common demand and offer price µ′i(xi) + λϕ′i(xi)

lines; see also [13]. Therefore, the exact solution of problem (11) or (5) and (6) can be also found
directly by simple ordering type algorithms applying to (12) and (13) although (5) and (6) contains
a non-linear function. In other words, calculation of values of ψ(λ) can be now accomplished by
several independent simple ordering type algorithms. Notice that the re-arrangement of bid prices ηj,1
in each class should be made only one time that reduces the computational expenses essentially in
comparison with the general duality approach. Let us denote this method also as (SDM).

We now again consider the general case where all the functions µi(xi), ϕi(xi), and −ηj(yj) are
convex and differentiable. For these problems there exist many rather efficient solution methods;
see e.g., [20] and references therein. In view of the above properties we can replace each problem (5)
and (6) with a sequence of linearized problems of the form:

min
(xi ,y(i))∈Wi

→
[
(µ′i(xk

i ) + λϕ′i(xk
i ))xi − ∑

j∈Ni

η′j(y
k
j )yj

]
(14)

if we apply the conventional conditional gradient method (CGM) as suggested in [21]. For the sake of
clarity, we describe (CGM) applied to the general optimization problem

min
v∈V
→ φ(v),

where V is a convex closed set, φ is a convex and differentiable function.
(CGM) Take an arbitrary initial point v0 ∈ V and a number δ > 0. At the s-th iteration, s = 0, 1, . . .,

we have a point vs ∈ V and calculate us ∈ V as a solution of the linear programming problem

min
u∈V
→ 〈φ′(vs), u〉. (15)

Then we set ps = us − vs. If ‖ps‖ ≥ −δ, stop, we have an approximate solution. Otherwise we
find the next iterate vs+1 as follows:

vs+1 = σsus + (1− σs)vs,

where σs ∈ (0, 1) is a step-size parameter.

In particular, we can utilize the inexact line search procedure: Find m as the minimal non-negative
integer such that

φ(vs + θm ps) ≤ φ(vs) + αθm〈φ′(vs), ps〉,

for some α ∈ (0, 1) and θ ∈ (0, 1), and set σs = θm; see [22].
It is easy to see that (15) gives then (14). Hence, (14) can be solved by simple ordering type

algorithms as in (SDM). We denote this method as (CGDM). However, this approach requires
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application of (CGM) many times at each iteration of a single-dimensional optimization algorithm
applied to the upper problem (4). At the same time, we can apply the same dual decomposition
method to problem (5) and (6). For the sake of simplicity, we rewrite (5) and (6) as follows:

max
(x,y)∈D

→ ∑
j∈J

ηj(yj)− u(x), (16)

where

D =

{
(x, y) x = ∑

j∈J
yj, 0 ≤ yj ≤ αj, j ∈ J, 0 ≤ x ≤ β

}
,

x = xi, y = (yj)j∈J , J = Ni, β = βi,

u(x) = µi(x) + λϕi(x).

Let g(x) = u′(x) and wj(yj) = η′j(yj). The necessary and sufficient optimality condition for
problem (16) is given in (11) and re-written now as the variational inequality: find (x̄, ȳ) ∈ D such that

g(x̄)(x− x̄)−∑
j∈J

wj(ȳj)(yj − ȳj) ≥ 0, ∀(x, y) ∈ D.

The optimality conditions in (12) and (13) have the form: find (x̄, ȳ) ∈ D and p∗ such that

g(x̄)


≥ p∗, if x̄i = 0,
= p∗, if x̄i ∈ [0, β],
≤ p∗, if x̄i = β,

(17)

and

wj(ȳj)


≤ p∗, if ȳj = 0,
= p∗, if ȳj ∈ [0, αj],
≥ p∗, if ȳj = αj;

for j ∈ J. (18)

Following the dual approach, we write the Lagrange function of problem (16) with the
negative sign:

M(x, y, p) = u(x)−∑
j∈J

ηj(yj)− p

(
x−∑

j∈J
yj

)
= (u(x)− px)−∑

j∈J
(ηj(yj)− pyj).

To find a value of the dual cost function

θ(p) = min
x∈[0,β], y∈[0,α]

M(x, y, p),

where α = (αj)j∈J , we have to solve the one-dimensional problems:

min
0≤x≤β

→ (u(x)− px),

and
min

0≤yj≤αj
→ (−ηj(yj) + pyj), for j ∈ J.
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For the sake of simplicity, we also suppose that the functions u and −ηj are strictly convex.
Then solutions of the above problems denoted by x(p) and yj(p), j ∈ J, respectively, are defined
uniquely. It follows that the function θ(p) is concave and differentiable with the derivative

θ′(p) = ∑
j∈J

yj(p)− x(p).

Besides, the one-dimensional dual problem

max
p
→ θ(p)

coincides with the simple equation
θ′(p) = 0, (19)

where θ′(p) is non-increasing. Therefore, if p∗ is the solution of (19), then we can find the solution
of problem (16) from (17) to (18) by setting p = p∗, which gives a solution of the initial problem (5)
and (6).

To find a solution of (17) we can apply bisection type algorithms. Let γ′ = g(0) and γ′′ = g(β).
Then γ′ < γ′′. Let δ′j = w(0) and δ′′j = w(αj). If we set p′′ = max

j∈J
δ′j and p′ = γ′, then the case

p′′ ≤ p′ gives immediately the zero solutions in accordance with (17) and (18). So we can consider
only the non-trivial case where p′ < p′′. Then by (17) and (18) we must have θ′(p′) ≥ 0 and θ′(p′′) ≤ 0.
These properties enable us to utilize the simplest bisection algorithm; see e.g., [14,15].

Algorithm (BS). Given an accuracy ε > 0 and the initial segment [p′, p′′], we take p̃ = 0.5(p′+ p′′),
calculate θ′( p̃). Then we set p′ = p̃ if θ′( p̃) > 0 and p′ = p̃ otherwise, until (p′′ − p′) < ε.

Also, if all the functions are quadratic, we can utilize a heuristic method similar to that in [14].
Algorithm (SQ). Let ωj = ηj,1 + λϕi,1. Define Ja = {j ∈ J | ωj > p′}, set y∗j = 0 for j /∈ Ja and

re-arrange the indices in Ja to have the descending order for the values of ωj. Then find two sequential
indices jl and jl+1 in Ja such that ∆l < 0 and ∆l+1 > 0, where

∆l =
l

∑
s=1

yjs(ωjl )− xωjl ).

Then find p∗ such that θ′(p∗) = 0 in the segment [ωjl , ωjl+1
].

4. Numerical Experiments

The methods were implemented in C++ with a PC with the following facilities: Intel(R) Core(TM)
i7-4500, CPU 1.80 GHz, RAM 6 Gb.

The initial interval for the dual variable λ were chosen as [0, 1000]. The parameters βi(i = 1, . . . , m)

and αj(j ∈ Ni, i = 1, . . . , m) were chosen as values of trigonometric functions in [1, 51] and [1, 2],
respectively. We set the constant C to be equal 1000. The number of classes was varied from 3 to 45,
the number of users was varied from 210 to 1010. Users were distributed among classes either
uniformly or according to the normal distribution.

We considered the following kinds of functions in test problems of form (1) to (3):

[Case L] All the functions µi(xi), ϕi(xi), and ηj(yj) are affine;
[Case QL] All the functions ηj(yj) are affine, all the functions µi(xi) and ϕi(xi) are quadratic;
[Case EQ] All the functions−ηj(yj) are convex quadratic, all the functions µi(xi) and ϕi(xi) are convex
exponential;
[Case Q] All the functions −ηj(yj), µi(xi), and ϕi(xi) are convex quadratic;
[Case E] All the functions −ηj(yj), µi(xi), and ϕi(xi) are convex exponential;
[Case LG] All the functions −ηj(yj), µi(xi), and ϕi(xi) are convex logarithmic.

Let J denote the total number of users. The test functions were determined as follows:
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1. Linear functions

ηj(yj) = ηj,1yj + ηj,0, ηj,1 > 0, j = 1, . . . , J,

µi(xi) = µi,1xi + µi,0, µi,1 > 0, i = 1, . . . , m,

ϕi(xi) = ϕi,1xi + ϕi,0, ϕi,1 > 0, i = 1, . . . , m,

where

ηj,1 = 2| sin(j + 1)|+ 1, ηj,0 = 2| sin(2j)|+ 1, j = 1, . . . , J,

µi,1 = | cos(i)|+ 1, µi,0 = 2| cos(2i)|+ 1, i = 1, . . . , m,

ϕi,1 = µi,1, ϕi,0 = µi,0, i = 1, . . . , m.

2. Quadratic functions

ηj(yj) = 0.5ηj,2y2
j + ηj,1yj, ηj,2 < 0, j = 1, . . . , J,

µi(xi) = 0.5µi,2x2
i + µi,1xi, µi,2 > 0, i = 1, . . . , m,

ϕi(xi) = 0.5ϕi,2x2
i + ϕi,1xi, ϕi,2 > 0, i = 1, . . . , m,

where

ηj,2 = −4| cos(2j− 1)| − 4, ηj,1 = | sin(j + 1)|+ 1, j = 1, . . . , J,

µi,2 = | sin(2i)|+ 1, µi,1 = | cos(i)|+ 3, i = 1, . . . , m,

ϕi,2 = µi,2, ϕi,1 = µi,1, i = 1, . . . , m.

3. Exponential functions

ηj(yj) = ηj,0 + ηj,1yj − ηj,2eηj,3yj , ηj,1, ηj,2 > 0, j = 1, . . . , J,

µi(xi) = µi,0eµi,1xi , µi,1, µi,0 > 0, i = 1, . . . , m,

ϕi(xi) = ϕi,0eϕi,1xi , ϕi,1, ϕi,0 > 0, i = 1, . . . , m,

where

ηj,3 = | sin(j + 1)|+ 1, ηj,2 = 2| sin(2j)|+ 1,

ηj,1 = 2| sin(j + 1)|+ 8, ηj,0 = 2| sin(2j)|+ 9, j = 1, . . . , J,

µi,1 = | cos(i)|+ 1, µi,0 = 2| cos(2i)|+ 1, i = 1, . . . , m,

ϕi,1 = µi,1, ϕi,0 = µi,0, i = 1, . . . , m.

4. Logarithmic functions

ηj(yj) = ηj,2 ln(1 + ηj,0 + ηj,1yj), ηj,0, ηj,1, ηj,2 > 0, j = 1, . . . , J,

µi(xi) = µi,0 + µi,1xi − ln(1 + µi,2 + µi,3xi), µi,1, µi,2, µi,3 > 0, i = 1, . . . , m,

ϕi(xi) = ϕi,0 + ϕi,1xi − ln(1 + ϕi,2 + ϕi,3xi), ϕi,1, ϕi,2, ϕi,3 > 0, i = 1, . . . , m,
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where

ηj,0 = 2| sin(2j)|, ηj,1 = | sin(j + 1)|+ 1,

ηj,2 = 3| sin(2j)|+ 1, j = 1, . . . , J,

µi,0 = 2| cos(2i)|+ 1, µi,1 = | cos(i)|+ 1,

µi,2 = 2| cos(2i)|, µi,3 = | cos(i)|+ 1, i = 1, . . . , m,

ϕi,0 = µi,0, ϕi,1 = µi,1, ϕi,2 = µi,2, ϕi,3 = µi,3, i = 1, . . . , m.

For all the methods of solving problem (1)–(3) the accuracy of solution of upper dual problem (4)
was varied from 10−1 to 10−4. The accuracy of solution of lower level problems was fixed to be equal
10−2. For each set of the parameters 50 tests were made. The aim of the numerical experiments is to
calculate the time complexity (total processor time) of the methods with different kind of cost functions.
In the tables, Tε denotes the total processor time in seconds. The averaged results of computations for
Case L are given in Tables 1–3, for Case QL are given in Tables 4–6, for Case Q are given in Tables 7–9,
for Case EQ are given in Tables 10–12, for Case E are given in Tables 13–15, for Case LG are given in
Tables 16–18.

Together with the three basic methods for problem (1)–(3) named (DML), (CGDM), and (BS),
we tested also their modifications adjusted mainly to some particular classes of problems. We applied
the method (DML) with adaptive strategy of choosing the inner accuracies and named it (DMLA).
In the case where the functions ηj(yj) are affine, we applied also the simplified versions of these
methods named (DMLS) and (DMLAS), respectively. They solve auxiliary problems (7) and (8) by
a simple ordering algorithm in a finite number of iterations and require only one arrangement of
buyers’ prices. Methods (DML), (DMLA), (DMLS), (DMLAS) and (SDM) were applied for cases
L and QL, where (DMLS) and (DMLAS) showed better performance than (DML) and (DMLA),
but (SDM) showed the best results here.

Table 1. Results for Case L with J = 510, m = 25.

ελ Tε: (DML) Tε: (DMLA) Tε: (DMLS) Tε: (DMLAS) Tε: (SDM)

10−1 0.1680 0.0897 0.0025 0.0024 0.0003
10−2 0.1919 0.1159 0.0031 0.0025 0.0004
10−3 0.2371 0.1597 0.0047 0.0028 0.0009
10−4 0.2728 0.2128 0.0062 0.0046 0.0012

Table 2. Results for Case L with m = 25, ε = 10−2.

J Tε: (DML) Tε: (DMLA) Tε: (DMLS) Tε: (DMLAS) Tε: (SDM)

210 0.0849 0.0489 0.0025 0.0012 0.0004
310 0.1192 0.0712 0.0021 0.0028 0.0004
410 0.1549 0.0928 0.0012 0.0009 0.0005
510 0.1919 0.1159 0.0031 0.0025 0.0005
610 0.2340 0.1368 0.0050 0.0028 0.0005
710 0.2716 0.1590 0.0047 0.0028 0.0003
810 0.3100 0.1834 0.0044 0.0035 0.0004
910 0.3487 0.2056 0.0050 0.0062 0.0009
1010 0.3872 0.2287 0.0072 0.0042 0.0010
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Table 3. Results for Case L with J = 510, ε = 10−2.

m Tε: (DML) Tε: (DMLA) Tε: (DMLS) Tε: (DMLAS) Tε: (SDM)

3 0.1781 0.0988 0.0024 0.0021 0.0004
9 0.1966 0.1130 0.0019 0.0012 0.0004
15 0.1976 0.1156 0.0018 0.0009 0.0001
21 0.2004 0.1157 0.0018 0.0018 0.0003
27 0.1953 0.1140 0.0027 0.0012 0.0007
33 0.1958 0.1153 0.0028 0.0021 0.0007
39 0.1994 0.1174 0.0024 0.0022 0.0004
45 0.2010 0.1175 0.0040 0.0022 0.0005

Table 4. Results for Case QL with J = 510, m = 25.

ελ Tε: (DML) Tε: (DMLA) Tε: (DMLS) Tε: (DMLAS) Tε: (SDM)

10−1 0.1665 0.0906 0.0025 0.0021 0.0003
10−2 0.1959 0.1133 0.0028 0.0024 0.0004
10−3 0.2346 0.1603 0.0049 0.0028 0.0006
10−4 0.2762 0.2144 0.0053 0.0041 0.0007

Table 5. Results for Case QL with m = 25, ε = 10−2.

J Tε: (DML) Tε: (DMLA) Tε: (DMLS) Tε: (DMLAS) Tε: (SDM)

210 0.0814 0.0478 0.0022 0.0006 0.0001
310 0.1155 0.0703 0.0025 0.0012 0.0003
410 0.1593 0.0918 0.0015 0.0027 0.0002
510 0.1959 0.1133 0.0028 0.0024 0.0003
610 0.2331 0.1379 0.0031 0.0021 0.0004
710 0.2736 0.1598 0.0040 0.0015 0.0005
810 0.3115 0.1855 0.0055 0.0031 0.0004
910 0.3522 0.2075 0.0044 0.0019 0.0004
1010 0.3904 0.2305 0.0050 0.0028 0.0006

Table 6. Results for Case QL with J = 510, ε = 10−2.

m Tε: (DML) Tε: (DMLA) Tε: (DMLS) Tε: (DMLAS) Tε: (SDM)

3 0.1753 0.0984 0.0056 0.0009 0.0001
9 0.1953 0.1153 0.0031 0.0016 0.0003
15 0.1981 0.1187 0.0031 0.0019 0.0002
21 0.1965 0.1196 0.0021 0.0009 0.0002
27 0.1924 0.1141 0.0025 0.0019 0.0001
33 0.1958 0.1163 0.0034 0.0025 0.0003
39 0.1977 0.1162 0.0041 0.0015 0.0001
45 0.1964 0.1158 0.0031 0.0015 0.0006

Table 7. Results for Case Q with J = 510, m = 25.

ελ Tε: (DML) Tε: (DMLA) Tε: (CGDM0) Tε: (CGDMB) Tε: (SQ) Tε: (BS)

10−1 0.2815 0.1488 0.0283 0.0762 0.0012 0.0018
10−2 0.3271 0.1929 0.0474 0.1116 0.0015 0.0019
10−3 0.3909 0.2669 0.1049 0.1919 0.0026 0.0040
10−4 0.4575 0.3570 0.1486 0.2534 0.0028 0.0058

Next, in the nonlinear case, we applied (CGDM), where (CGDM0) denotes the version with zero
initial point for any (CGM), (CGDMB) denotes the version with taking the initial point for any (CGM)
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in the boundary of the feasible set. We utilized these methods with the inexact line search procedure.
Therefore, methods (DML), (DMLA), (CGDM0), (CGDMB), (BS), and (SQ) were applied for Case Q.
Here (BS) and (SQ) showed the best performance, and the results of (CGDM0) and (CGDMB) were
better than those of (DML) and (DMLA).

Table 8. Results for Case Q with m = 25, ε = 10−2.

J Tε: (DML) Tε: (DMLA) Tε: (CGDM0) Tε: (CGDMB) Tε: (SQ) Tε: (BS)

210 0.1377 0.0833 0.0113 0.0367 0.0006 0.0009
310 0.2004 0.1179 0.0208 0.0580 0.0012 0.0019
410 0.2657 0.1564 0.0321 0.0828 0.0009 0.0018
510 0.3271 0.1929 0.0474 0.1116 0.0015 0.0019
610 0.3900 0.2302 0.0641 0.1396 0.0027 0.0030
710 0.4540 0.2682 0.0728 0.1568 0.0019 0.0034
810 0.5181 0.3052 0.0862 0.1804 0.0022 0.0028
910 0.5809 0.3437 0.0934 0.1960 0.0028 0.0043

1010 0.6434 0.3793 0.1021 0.2110 0.0025 0.0046

Table 9. Results for Case Q with J = 510, ε = 10−2.

m Tε: (DML) Tε: (DMLA) Tε: (CGDM0) Tε: (CGDMB) Tε: (SQ) Tε: (BS)

3 0.3028 0.1663 0.0465 0.0937 0.0003 0.0031
9 0.3203 0.1881 0.0546 0.0986 0.0015 0.0021

15 0.3250 0.1956 0.0668 0.1205 0.0012 0.0019
21 0.3278 0.1952 0.0541 0.1131 0.0015 0.0022
27 0.3271 0.1957 0.0462 0.1075 0.0012 0.0028
33 0.3300 0.1946 0.0462 0.1111 0.0006 0.0034
39 0.3353 0.1972 0.0365 0.1037 0.0003 0.0028
45 0.3337 0.1974 0.0333 0.0968 0.0006 0.0021

Methods (DML), (DMLA), (CGDM0), (CGDMB), and (BS) were applied for cases EQ, E, and
LG. Here (BS) showed the essentially better results than the other methods. Also, (DMLA) showed
better performance than (DML), (CGDM0), and (CGDMB) in most test experiments.

Table 10. Results for Case EQ with J = 510, m = 25.

ελ Tε: (DML) Tε: (DMLA) Tε: (CGDM0) Tε: (CGDMB) Tε: (BS)

10−1 0.2781 0.1478 0.0833 0.3225 0.0040
10−2 0.3281 0.1938 0.1497 0.4153 0.0043
10−3 0.3913 0.2666 0.2547 0.6068 0.0088
10−4 0.4534 0.3572 0.3596 0.7553 0.0103

Table 11. Results for Case EQ with m = 25, ε = 10−2.

J Tε: (DML) Tε: (DMLA) Tε: (CGDM0) Tε: (CGDMB) Tε: (BS)

210 0.1382 0.0845 0.0293 0.0824 0.0030
310 0.2028 0.1187 0.0674 0.1753 0.0018
410 0.2644 0.1555 0.1127 0.2857 0.0021
510 0.3281 0.1938 0.1497 0.4153 0.0043
610 0.3906 0.2294 0.1693 0.5499 0.0053
710 0.4510 0.2669 0.2031 0.6742 0.0050
810 0.5161 0.3075 0.2312 0.7656 0.0059
910 0.5766 0.3449 0.2718 0.8646 0.0097

1010 0.6421 0.3819 0.3184 0.9579 0.0085
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Table 12. Results for Case EQ with J = 510, ε = 10−2.

m Tε: (DML) Tε: (DMLA) Tε: (CGDM0) Tε: (CGDMB) Tε: (BS)

3 0.3035 0.1671 0.0762 0.3703 0.0040
9 0.3188 0.1871 0.0746 0.3753 0.0030

15 0.3231 0.1932 0.1228 0.4345 0.0046
21 0.3278 0.1949 0.1459 0.4269 0.0053
27 0.3278 0.1924 0.1193 0.3479 0.0047
33 0.3309 0.1955 0.1215 0.3411 0.0041
39 0.3303 0.1981 0.1124 0.2996 0.0053
45 0.3325 0.1949 0.1166 0.2928 0.0052

Table 13. Results for Case E with J = 510, m = 25.

ελ Tε: (DML) Tε: (DMLA) Tε: (CGDM0) Tε: (CGDMB) Tε: (BS)

10−1 0.2787 0.1468 1.9862 2.3146 0.0071
10−2 0.3190 0.1884 3.2766 3.6343 0.0083
10−3 0.3887 0.2642 5.1906 5.6561 0.0146
10−4 0.4446 0.3522 6.9235 7.4660 0.0175

Table 14. Results for Case E with m = 25, ε = 10−2.

J Tε: (DML) Tε: (DMLA) Tε: (CGDM0) Tε: (CGDMB) Tε: (BS)

210 0.1334 0.0797 0.9962 1.0643 0.0028
310 0.1966 0.1143 1.6407 1.7865 0.0078
410 0.2559 0.1506 2.3843 2.6225 0.0081
510 0.3190 0.1884 3.2766 3.6343 0.0083
610 0.3793 0.2231 4.1481 4.6926 0.0090
710 0.4399 0.2612 4.7769 5.4312 0.0136
810 0.5057 0.2981 5.6989 6.5140 0.0140
910 0.5659 0.3353 6.2093 7.1038 0.0156

1010 0.6309 0.3715 7.0919 8.0395 0.0168

Table 15. Results for Case E with J = 510, ε = 10−2.

m Tε: (DML) Tε: (DMLA) Tε: (CGDM0) Tε: (CGDMB) Tε: (BS)

3 0.2981 0.1662 2.4191 2.8496 0.0072
9 0.3128 0.1828 2.8231 3.2803 0.0068

15 0.3203 0.1896 3.6925 4.1387 0.0106
21 0.3216 0.1918 3.6565 4.0279 0.0103
27 0.3225 0.1881 3.2027 3.5053 0.0089
33 0.3247 0.1907 1.7065 1.9672 0.0109
39 0.3278 0.1916 2.9506 3.2169 0.0099
45 0.3264 0.1906 2.9452 3.1939 0.0113

Table 16. Results for Case LG with J = 510, m = 25.

ελ Tε: (DML) Tε: (DMLA) Tε: (CGDM0) Tε: (CGDMB) Tε: (BS)

10−1 0.3617 0.1921 0.1438 0.2213 0.0028
10−2 0.4240 0.2528 0.2318 0.3150 0.0046
10−3 0.5090 0.3452 0.3934 0.5133 0.0051
10−4 0.5900 0.4627 0.5259 0.6784 0.0053
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Table 17. Results for Case LG with m = 25, ε = 10−2.

J Tε: (DML) Tε: (DMLA) Tε: (CGDM0) Tε: (CGDMB) Tε: (BS)

210 0.1780 0.1054 0.0427 0.0703 0.0016
310 0.2585 0.1533 0.0811 0.1240 0.0019
410 0.3391 0.2009 0.1565 0.2247 0.0034
510 0.4240 0.2528 0.2318 0.3150 0.0046
610 0.5109 0.3013 0.3136 0.4281 0.0041
710 0.5962 0.3527 0.4190 0.5507 0.0043
810 0.6819 0.4019 0.5087 0.6494 0.0046
910 0.7675 0.4546 0.6041 0.7487 0.0046

1010 0.8540 0.5038 0.7293 0.8880 0.0064

Table 18. Results for Case LG with J = 510, ε = 10−2.

m Tε: (DML) Tε: (DMLA) Tε: (CGDM0) Tε: (CGDMB) Tε: (BS)

3 0.3975 0.2203 0.6333 0.5357 0.0012
9 0.4262 0.2493 0.4346 0.4997 0.0015

15 0.4302 0.2544 0.3605 0.4422 0.0027
21 0.4303 0.2569 0.2607 0.3452 0.0031
27 0.4234 0.2494 0.1863 0.2740 0.0019
33 0.4246 0.2522 0.1391 0.1968 0.0040
39 0.4253 0.2528 0.1515 0.2444 0.0021
45 0.4278 0.2527 0.1375 0.2346 0.0040

In general, all the suggested methods were rather efficient for these classes of problems.
However, we should notice that special decomposable versions of the same methods which exploits
peculiarities of each class appeared more efficient that general iterative methods. In particular, proper
decomposition of the problem to a set of one-dimensional problems can enhance the convergence
essentially. In fact, (BS) showed the best results for the nonlinear problems.

5. Conclusions

We considered a general problem of optimal allocation of a homogeneous resource in a wireless
telecommunication network with several levels of service. By using the dual Lagrangian method with
respect to the capacity constraint, we suggest to reduce the initial problem to a single-dimensional
optimization problem. Calculation of the resulting cost function value leads to independent solutions
of optimal allocation problems for each kind of service, which can be solved by simple solution
methods. The results of computational experiments confirm the efficiency and applicability of the new
methods presented.
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