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Abstract: In this paper, a mathematical model of breast cancer governed by a system of ordinary
differential equations in the presence of chemotherapy treatment and ketogenic diet is discussed.
Several comprehensive mathematical analyses were carried out using a variety of analytical
methods to study the stability of the breast cancer model. Also, sufficient conditions on parameter
values to ensure cancer persistence in the absence of anti-cancer drugs, ketogenic diet, and cancer
emission when anti-cancer drugs, immune-booster, and ketogenic diet are included were established.
Furthermore, optimal control theory is applied to discover the optimal drug adjustment as an input
control of the system therapies in order to minimize the number of cancerous cells by considering
different controlled combinations of administering the chemotherapy agent and ketogenic diet using
the popular Pontryagin’s maximum principle. Numerical simulations are presented to validate our
theoretical results.
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1. Introduction

Cancer is a generic name that refers to a group of diseases in which normal cells divide
uncontrollably, that is, grow more rapidly than normal cells, and may eventually spread to other parts
of the body by a process called metastasis [1]. According to the National Cancer Registry [2], cancer
kills more people than tuberculosis (TB), AIDs and malaria combined. Statistics show that cancer
related deaths amounted to about 8.2 million in 2010. The mortality rate from cancer is projected to
continue to rise, with an estimated 13 million deaths by 2030 [3]. The most common types of cancer
include: breast cancer, prostate cancer, brain cancer, lung cancer and skin cancer among others.

According to the [3] report, breast cancer is the most common invasive cancer in females
worldwide. The formation of breast cancer can occur in the inner lining of the milk ducts, known
as ductal carcinoma, or in the lobules of the breast, known as lobular carcinoma [4]. Breast cancer is
one of the most widely recognized obstructive diseases in females around the world. The disease has
presently been named as the most dangerous cancer in women [3]. However, little is known on the
causes of the ailment. There are three major breast cancer risk factors namely hormonal imbalance
(estrogen), genetic (family history), and environmental (poor diet, alcohol consumption, smoking,
exposure to toxin, etc.) [5]. Surgery, chemotherapy, radiation therapy, hormonal therapy, hyperthermia,
targeted therapy and ketogenic diet [5,6] amongst other therapeutics are used to inhibit tumor growth
or kill the tumor cells in the body. However, each treatment has side effects attributed to it, for example,
hair loss, vomiting, nausea and fatigue. Adverse effects occur as a result of chemotherapy, which is not
able to differentiate between normal cells and tumor cells, consequently killing both of them [3].

Several dietary components and supplements have been examined as possible cancer prevention
agents. Until recently, a few studies, such as [6–8], investigated diet as a possible adjuvant to cancer
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treatment, which includes a ketogenic diet. A ketogenic diet consists of high edible fat with moderate
or low protein content and very low carbohydrates, which forces the body to burn fat instead of
glucose for adenosine triphosphate (ATP) synthesis [6,9].

It is well-known that a mathematical model is a capable device used to investigate the spread of
non-infectious diseases and to provide important insights into disease behaviors and control [10,11].
Over the years, it has become an important tool in comprehending the dynamics of diseases and in
decision making processes regarding a medical intervention program for controlling breast cancer
in many nations [12]. For instance, [13] explored the role of mathematical modeling on the optimal
delivery of a combination therapy for tumors and to improve on the delivery of anti-tumor drugs.

Old and recent studies such as [4,12,14–16] amongst others have shown that mathematical
modeling is a widely used tool for resolving questions on public health. For instance, it was used
during the time of Bernoulli (on modeling the dynamics of Smallpox) in 1760 [17]. Kermack and
McKendrick [14,15] and some other recent studies by [4,12,13,18–21] show that mathematical modeling
is useful in solving the problem of epidemiology. However, these studies reveal that much has not
been done in terms of the mathematical modeling of a nutritional diet (ketogenic diet) as a control or
therapy on tumor cells. Hence, we improved the model in [19] for this paper by incorporating time
dependent control parameters (use of ketogenic diet, immune booster, and anti-cancer drugs) based
on the assumption that there is an interaction between normal cells and tumor cells that is due to a
mutation in DNA as a result of excess estrogen in the body system [4,19,22].

Furthermore, we analyzed and applied an optimal control to the improved model to determine the
possible impacts of ketogenic-diet use and anti-cancer drugs as a treatment on tumor cells. We carried
out a rigorous qualitative optimal control analysis of the resulting model and found the necessary
conditions for optimal control of the disease using Pontryagin’s maximum principle [11,23–25] in order
to determine the optimal strategies for controlling the metastatic of the tumor cells.

This paper is organized as follows: In Section 2, four compartment models of ODEs to study the
dynamics of breast cancer are developed. In Section 3, the existence of equilibria, their stabilities and
basic reproductive numbers are discussed. In Section 4, an uncertainty and sensitivity analysis to check
the most sensitive parameters in the model are discussed. In Section 5, an optimal control problem
according to the model is proposed and an optimal solution is proffered. Numerical simulations are
illustrated by implementing the forward and backward finite difference scheme in Section 6, while
concluding remarks are provided in Section 7.

2. Model Formulation

Based on the existing model in [19], we developed a model by assuming the logistic (Verhulst)
growth of a cell population and basic competition between normal cells and tumor cells. We considered
the immune cells compartment to comprise Natural Killer cells (NK) and CD8+ T-cells as in [19] and
we used a similar equation to model the immune response dynamic by introducing immune booster
(ketone bodies) and anti-cancer drug efficacy.

We adapted an estrogen equation as presented in a model by [26]. Pinho and his co-workers
in [26] considered that when a chemotherapy agent is continuously infused into the body and engulfed
by different cell populations, natural death can occur. Excess estrogen was used in a similar way and
assumed to be saturated daily through birth control (constant source rate) (1 − k). This was introduced
to serve as anti-cancer drug efficacy (e.g., Tamoxifen) in order to bind estrogen receptors positive and
to reduce excess estrogen from promoting cancer growth [27].

In this study, a model that splits the entire population of cells of the human breast tissues at any
given period of time P(t) was reflected upon. Hence, normal cells compartment, represented by N(t)
in the form of epithelial cells that constitute the breast tissue is described. The cells are assumed to
develop and die normally as they have unaltered DNA that control all cell activities. It was suggested
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that the normal cells and tumor cells compete for nutrients and other resources in a small volume,
which is the competition model used by [28]. Normal cells are represented by

dN
dt

= Nα1 − µ1N2 − φ1NT − (1− k)λ1NE. (1)

The first term represents the logistic growth rate α1 of the normal cells, which are breast tissues that
are made-up of epithelial cells. The second term represents the natural death rate of normal cells. φ1

represents the rate at which normal cells inhibit due to an alteration in DNA that is responsible for
cancer cells having an uncontrolled cycle that normal cells do not have [19]. The final term describes the
gene transactivation that can be a contributing growth factor responsible for the estrogen stimulation
of breast cancer, which can result in damage of DNA. Thus, there will be a reduction in the population
of normal cells N(t) = being transformed into tumor cells by λ1NE where λ1 represents the tumor
formation rate resulting from DNA mutation caused by the presence of excess estrogen [4]. However,
(1 − k) represents the effectiveness of anti-cancer drugs (Tamoxifen).

The tumor cells compartment can be denoted by T(t) in the form of an abnormal mass of tissue.
Tumors are classic signs of inflammation, and can be benign or malignant (cancerous). Their names
usually reflect the kind of tissue from where they arise, for example in breast or brain cancer, among
others. There are about 51 breast cancer cell lines that mirror the 145 primary breast tumors [29].
These can be classified into two major branches: the Luminal, which has estrogen receptors
(ESR1 + ve), and the Basal-like, which has no estrogen receptors (ESR1 − ve). A homogeneous
luminal type of cancer cells in the form of MDAMB361, MCF-7, BT474, T47D and ZR75 of the cell
lines [19] are then assumed to be

dT
dt

= Tα2d− µ2T2 − γ2MT − µ5T + (1− k)λ1NE. (2)

The first term of the equation is a limited growth term for tumor cells that depends on the rate of
parameter d (ketogenic diets). Although, if d = 0, tumor cells are automatically eradicated, but
any DNA mutation that is caused by excess estrogen will repopulate the tumor cells again λ1NE.
The induced death rate µ5 is as a result of tumor starvation of nutrients, glucose and so on from the
body system during the ketogenic diet, which alters nutrition. We assumed that γ2 is the rate at which
tumor cells are being removed due to the effectiveness of immune response.

The immune response compartment is represented by M(t) in the form of natural killer (NK)
cells and CD8+ T cells. Their growth may be stimulated by the presence of the tumor and they can
destroy tumor cells through the kinetics process. We also assumed that the presence of a detectable
tumor in a body system does not necessarily imply that the tumor has completely escaped active
immunosurveillance. However, a tumor is immunogenic. It is possible that the immune response may
not be sufficient on its own to completely combat the rapid growth of the tumor cells population and
their eventual development into a tumor.

dM
dt

= sβ +
ρMT
ω + T

− γ3MT − µ3M−
(
(1− k)

λ3ME
g + E

)
(3)

The constant source parameter s denotes the source rate of immune response fully infused in the
body daily. We introduced immune booster β (a supplement such as ketone bodies) to assist immune
response whenever tumor cells overpower immune cells in order to activate the immune response and
fight the cancer cells. The next term is a nonlinear growth term for immune response where ρ the rate
of immune response is and ω is the immune cell threshold [12]. We denoted γ3 as the rate at which
immune response is inactivated upon interacting with tumor cells while µ3 represents the immune
cells natural death rate as a result of necrosis. The final term explains a limited rate at which estrogen
suppresses immune cells activation where λ3 is the rate of immune suppression and g is the estrogen
threshold [19].
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Finally, we considered estrogen compartment denoted by E(t). Estrogen is a female steroid
hormone that is produced by the ovaries in lesser amounts, and by the adrenal cortex, placenta and
male testes. Estrogen helps to control and guide sexual development, including the physical changes
associated with puberty [11,30]. However, an increase in estrogen levels can lead to the growth of the
tumor cells. It also serves as a mitogen by triggering cell division in breast tissue [30]. Estrogen acts as
a carcinogen by directly damaging DNA, forcing healthy epithelial cells to have a higher likelihood of
malignant conversion [5,30].

dE
dt

= (1− k)ε− µ4E (4)

The process of constantly replenishing excess estrogen is denoted by ε. We assumed that the
majority of cancer cells are estrogen-receptor positive and only a small proportion of epithelial cells
are estrogen-receptor positive, which can only be blocked by the anti-cancer drug (1− k) Tamoxifen.
µ4 is the rate at which estrogen is being washed out from the body system. Thus, system (5) is our
modified model.

dN
dt = N(α1 − µ1N − φ1T)− (1− k)(λ1NE)

dT
dt = T(α2d− µ2T)− γ2MT − µ5T + (1− k)(λ1NE)
dM
dt = sβ + ρMT

ω+T − γ3MT − µ3M−
(
(1− k) λ3 ME

g+E

)
dE
dt = (1− k)ε− µ4E

(5)

3. Model Analysis

3.1. Boundedness and Positivity of Solutions

The system of Equation (5) has an initial condition by

N(0) = N0 ≥ 0, T(0) = T0 ≥ 0, M(0) = M0 ≥ 0, and E(0) = E0 ≥ 0

since our model is to investigate cellular populations, therefore all the variables and parameters of the
model are non-negative. Based on the biological finding, the system of Equation (5) will be studied in
the following region such as:

∆ =
{
(N, T, M, E) ∈ <4

+

}
The following theorem assures that the system of Equation (5) is well-posed such that solutions

with non-negative initial conditions remain non-negative for all 0 < t < ∞, and therefore makes the
variable biologically meaningful. Hence, we have the following result:

Theorem 1. The region ∆ ⊂ <4
+ is positively invariant with respect to the system of Equation (5) and

non-negative solution exists for all time 0 < t < ∞.

Proof: Let ∆ = ∆c ⊂ <4
+ with ∆ = {(N, T, M, E) ∈ <4

+ : N ≤ α1
µ1
}, then the solutions (N (t), T(t), M(t),

E(t)) of system (5) are positive ∀t ≥ 0. It is obvious from the first compartment of system (5) that

dN
dt
≤ N(t)α1 − µ1N2(t).

Solving with Bernoulli method and taking N(0) = N0, we have

N(t) ≤ α1

µ1 + kα1e−α1t

with
k =

α1 − N0µ1

N0α1
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N0 =
α1

µ1 + kα1
.

Then,
N(t) ≤ α1

µ1 +
(

α1−N0µ1
N0

)
e−α1t

N(t) ≤ α1

µ1
as t→ ∞

hence, N(t) > 0, ∀t > 0 and if and only if (1− k) ≥ 0 [31].
Consequently, it can be shown that T(t) > 0, M(t) > 0, and E(t) > 0 ∀t > 0. This completes

the proof. �

3.2. The Equilibrium Points of System (5)

The steady states occur by setting the left hand side (LHS) of system (5) to zero, i.e.,

dN
dt

=
dT
dt

=
dM
dt

=
dE
dt

= 0

The model system admits six steady states in which there are four dead equilibria, one tumor-free
equilibrium point and one co-existing equilibrium point P = (N∗, T∗, M∗, E∗) where N∗, T∗, M∗, E∗

represent the tumor-free equilibrium values for the normal cells, tumor cells, immune cells and estrogen
hormone respectively. We have N∗ > 0, M∗ > 0, E∗ > 0 since cell populations are non-negative and
real. Therefore, all parameters s,β, g, µ1, µ3, µ4, ε, λ3, k, α1, and λ1 are positive.

Tumor-Free equilibrium point

P0 =

(
α1µ4 − (1− k)2λ1ε

µ1µ4
, 0,

sβ(gµ4 + (1− k)ε)

µ3(gµ4 + (1− k)ε) + (1− k)2λ3ε
,
(1− k)ε

µ4

)

Type 1 Dead equilibrium point

Pd1 =

(
0, 0,

sβ(gµ4 + (1− k)ε)

µ3(gµ4 + (1− k)ε) + (1− k)2λ3ε)
,
(1− k)ε

µ4

)

Type 2 Dead equilibrium point

Pd2 =

(
0,

dα2 − γ2m∗1 − µ5

µ2
, m∗1 ,

(1− k)ε
µ4

)
Type 3 Dead equilibrium point

Pd3 =

(
0,

dα2 − γ2m∗2 − µ5

µ2
, m∗2 ,

(1− k)ε
µ4

)
Type 4 Dead equilibrium point

Pd4 =

(
0,

dα2 − γ2m∗3 − µ5

µ2
, m∗3 ,

(1− k)ε
µ4

)
Co-existing equilibrium point

Pe = (N∗4 , T∗4 , M∗4 , E∗4 )
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3.3. The Reproductive Number and Tumor-Free Equilibrium Point

In this section, we mainly analyzed the stability behaviors of system (5) by means of eigenvalues.
We apply Hartman–Grobman Theorem which states that in the neighborhood of a hyperbolic
equilibrium point, a nonlinear dynamical system is topologically equivalent to its linearization [32].

Theorem 2. The tumor-free equilibrium (TFE) point P0 of system (5) is locally asymptotically stable if R0 < 1,
otherwise unstable.

Proof. Linearizing system (5) around TFE P0, we obtained the following Jacobian matrix J(P0)

J =


2µ1λ1(1−k)2ε−α1µ1µ4−(1−k)2λ1µ1ε

µ1µ4

(1−k)2λ1Φ1ε−Φ1α1µ4
µ1µ4

0 −B6
(1−k)2λ1ε

µ4
B3 0 B6

0 B4 −B5 −B7

0 0 0 −µ4



J(P0) =


B0 B2 0 −B6

B1 B3 0 B6

0 B4 −B5 −B7

0 0 0 −µ4



|J(P0)| =

∣∣∣∣∣∣∣∣∣∣∣
B0 − δ B2 0 −B6

B1 B3 − δ 0 B6

0 B4 −B5 − δ −B7

0 0 0 −µ4 − δ

∣∣∣∣∣∣∣∣∣∣∣
= 0

Then the characteristic equation at P0 of the linearized system of the model (5) is given below.
Obviously, there exists two negative characteristic roots

δ1 = −µ4, δ2 = −B5

However, we only need to consider

δ2 − (B0 + B3)δ + B0B3 − B1B2 = 0

δ2 − (B0 + B3)δ + B0B3

(
1− B1B2

B0B3

)
= 0 (6)

from (6), we have basic reproduction number

R0 =
B1B2

B0B3
(7)

δ2 − (B0 + B3)δ + B0B3(1− R0) = 0,

where

B0 =
2µ1λ1(1− k)2ε− α1µ1µ4 − (1− k)2λ1µ1ε

µ1µ4
, B1 =

(1− k)2λ1ε

µ4
, B2 =

(1− k)2λ1Φ1ε−Φ1α1µ4

µ1µ4

B3 =
α2µ3dψ∗ + α2λ3dε(1− k)2 − γ2sβψ∗ − µ5µ3ψ∗ − µ5λ3ε(1− k)2

µ3ψ∗ + (1− k)2λ3ε
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where
ψ∗ = (gµ4 + (1− k)ε)

− B4 =
sβ(gµ4 + (1− k)ε(ρ− γ3ω)

ωµ3(gµ4 + (1− k)ε)

− B5 =
µ3µ4g + µ3(1− k)ε + λ3(1− k)2ε

gµ4 + (1− k)ε
,−B6 = −

(
(1− k)λ1α1µ4 − (1− k)3λ2

1ε

µ1µ4

)

B6 =
(1− k)λ1α1µ4 − (1− k)3λ2

1ε

µ1µ4
,−B7 = −

 µ2
4(1− k)λ3gsβ(gµ4 + (1− k)ε)

(gµ4 + (1− k)ε)2
[
µ3(gµ4 + (1− k)ε) + (1− k)2λ3ε

]


Here, we can apply the Routh-Hurwitz criterion namely,

(i) Tr(A) < 0 (ii) Det(A) > 0

provided
a0 = 1 > 0, a1 = (B0 + B3) < 0, B0B3(1− R0) > 0 if R0 < 1,

B0B3 > B1B2, B1 > 0, B2 > 0, B3 < 0, B0 < 0

Since the Routh–Hurwitz criterion holds, all the eigenvalues are negative, i.e., δ3 < 0 and δ4 < 0.
Therefore, the TFE point of system (5) is locally asymptotically stable if (7) R0 < 1 otherwise unstable.
�

The epidemiological implication of the above result is that the tumor cells that are governed by
system (5) can be eliminated from the population (normal cells or breast tissues) whenever an influx
by tumor cells into the normal cells is small, such that R0 < 1. Therefore, the existence of a tumor-free
equilibrium in this case depends on the estrogen level.

Theorem 3. The Type 1 Dead equilibrium point Pd1 of system (5) is locally asymptotically stable if(
(1− k)2λ1ε

α1µ4

)
> 1,

otherwise unstable.

Proof. Linearizing system (5) around the Type 1 Dead free equilibrium point Pd1, we obtained the
following Jacobian matrix J(Pd1)

J =


α1 − (1− k)λ1E∗0 0 0 0

(1− k)λ1E∗0 dα2 − γ2M∗0 − µ5 0 0

0 ρωM∗0−γ3 M∗0 ω2

ω2 −
(

µ3(g+E∗0 )+(1−k)λ3E∗0
(g+E∗0 )

)
λ3gM∗0 (1−k)
(g+E∗0 )

2

0 0 0 −µ4



J(Pd1) =


C0 0 0 0
C1 C2 0 0
0 C3 −C4 −C5

0 0 0 −µ4
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|J(P1)| =

∣∣∣∣∣∣∣∣∣∣∣
C0 − δ 0 0 0

C1 C2 − δ 0 0
0 C3 −C4 − δ −C5

0 0 0 −µ4 − δ

∣∣∣∣∣∣∣∣∣∣∣
= 0

Clearly, two eigenvalues of the system (5) at Pd1 are negative and real

δ1 = −µ4

and

δ2 = −C4 ⇒ −
(

µ3(gµ4 + (1− k)ε) + (1− k)2λ3ε

gµ4 + (1− k)ε

)
while the remaining two eigenvalues are obtained from 2× 2 matrix.

A =

 C0 0
C1 C2


Applying the Routh-Hurwitz criterion stated above; we have

(i) Tr(A) =C0 + C2⇒
(

α1µ4−(1−k)2λ1ε
µ4

+ (µ3α2d−γ2sβ−µ5µ3)A∗+dα2λ3(1−k)2ε−(1−k)2λ3µ5ε

µ3 A∗+(1−k)2λ3ε

)
< 0

i f α1

(
1− (1−k)2λ1ε

α1µ4

)
> 0,⇒

(
(1−k)2λ1ε

α1µ4

)
> 1

Therefore, Tr(A) < 0

(ii) Det(A) =C0C2((
α1µ4−(1−k)2λ1ε

µ4

)(
(µ3α2d−γ2sβ−µ5µ3)A∗+dα2λ3(1−k)2ε−(1−k)2λ3µ5ε

µ3 A∗+(1−k)2λ3ε

))
> 0

i f α1

(
1− (1−k)2λ1ε

α1µ4

)
> 0 provided

(
(1−k)2λ1ε

α1µ4

)
> 1

and{(
α1

(
1− (1− k)2λ1ε

α1µ4

))((
(µ3α2d− γ2sβ− µ5µ3)A∗ + dα2λ3(1− k)2ε− (1− k)2λ3µ5ε

µ3 A∗ + (1− k)2λ3ε

))}
> 0

implies that Det(A) > 0. Thus, the remaining eigenvalues δ3 and δ4 are negative and real since R-H
criterion has been satisfied. Hence, the type 1 Dead equilibrium point Pd1 of the system (5) is locally

asymptotically stable if
(

(1−k)2λ1ε
α1µ4

)
> 1. �

Epidemiologically it is implied that the net growth of the tumor cells must be more than the
immune cells values in order to have the tumor cells overpower the normal cells as the reactivation of
the immune cells is due to the estrogen effects that are greater than the reactivation of the immune
cells due to the tumor effect. However, ketogenic diet is inactive at the type 1 Dead equilibrium point.

Theorem 4. The Type 2 Dead equilibrium point Pd2 of system (5) is locally asymptotically stable if(
(1− k)2λ1ε

α1µ4

)
> 1
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ω >
A∗

µ2

(
µ2C∗ρ

γ3 A∗C∗ + µ2µ3C∗ + (1− k)2λ3ε
− 1

)
otherwise unstable.

Proof. We linearized system (5) around the Type 2 Dead free equilibrium point Pd2, we obtained the
following Jacobian matrix J(Pd2) at Pd2 =

(
0, dα2−γ2m∗1−µ5

µ2
, m∗1 , (1−k)ε

µ4

)

J =


α1 − (1− k)λ1E∗1 0 0 0

(1− k)λ1E∗1 Q2 −γ2T∗1 0

0 Q3 Q5
λ3gM∗1 (1−k)
(g+E∗1 )

2

0 0 0 −µ4


where

Q2 =
(
dα2 − 2µ2T∗1 − γ2M∗1 − µ5

)
, Q3 =

(
ρωµ2

2 M∗1−γ3 M∗1 (ωµ2+dα2−γ2 M∗1−µ5)
2

(ωµ2+dα2−γ2 M∗1−µ5)
2

)
, Q5 =

(
ρT∗1

ω+T∗1
− γ3T∗1 − µ3 −

(1−k)λ3E∗1
g+E∗1

)

|J(P2)| =


Q0 0 0 0
Q1 Q2 −Q4 0
0 Q3 Q5 Q6

0 0 0 −µ4



|J(P2)| =

∣∣∣∣∣∣∣∣∣∣∣
Q0 − δ 0 0 0

Q1 Q2 − δ −Q4 0
0 Q3 Q5 − δ Q6

0 0 0 −µ4 − δ

∣∣∣∣∣∣∣∣∣∣∣
= 0

Clearly, one of the eigenvalues of the system (5) at |J(P2)| is negative and real, i.e., δ1 = −µ4.
However, the remaining can be analyzed by simple calculation.

(Q0 − δ)(Q2 − δ)(Q5 − δ) = 0
⇒ Q5 = δ2, Q2 = δ3, Q0 = δ4

where

Q0 =
α1µ4 − (1− k)2λ1ε

µ4
, Q2 = γ2M∗1 − α2d + µ5

Q5 =
(A∗ρµ2

2 − A∗C∗γ3)(dα2 − γ2M∗1 − µ5)− C∗µ2(µ3 A∗ + (1− k)2λ3ε)

µ2 A∗C∗

where A∗ = (gµ4 − (1− k)ε) and C∗ = (ωµ2 + dα2 − γ2M∗1 − µ5).
It follows the following conditions

(i) Q0 < 0 if, α1 ≤ 1, 0 ≤ k < 1 and
(

(1−k)2λ1ε
α1µ4

)
> 1;

(ii) Q5 < 0 provided A∗ > 0, 0 ≤ k ≤ 1 and ω > A∗
µ2

(
µ2C∗ρ

γ3 A∗C∗+µ2µ3C∗+(1−k)2λ3ε
− 1
)

. �

3.4. Co-Existing Equilibrium Points

Theorem 5. The co-existing equilibrium point Pe of system (5) is stable if the following Routh–Hurwitz criterion
is satisfied,

Trace(A) = (V0 + V3 + V6 − µ4) < 0
Det(A) = (−µ4(V0V6V3 + V0V4V5 + V1V2V6)) > 0,
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otherwise unstable.

Proof. We analyzed and linearized system (5) around the co-existing equilibrium point Pe, we
obtained the following Jacobian matrix J(Pe) at Pe = (N∗4 , T∗4 , M∗4 , E∗4 ) where N∗4 , T∗4 , M∗4 & E∗4
represent the coexisting equilibrium values for normal cells, tumor cells, immune cells, and estrogen
levels respectively.

A co-existing equilibrium state exists when all cells populations would have survived
the competition.

N∗4 =
2(1− k)4λ4

1µ1µ4ε2 + φ1α2
1µ2

4µ1 − 2(1− k)2µ1µ2
4α1λ1φ1ε− 2α1φ2

1µ1µ3
4 − 2(1− k)2α1µ1µ2

4λ1ε

2φ1α1µ2
1µ3

4 − 2(1− k)2µ2
1µ2

4λ1φ1ε

T∗4 =
α2

1µ1µ2
4 + 2α1µ1µ2

4φ1

2φ1α1µ1µ2
4 − 2(1− k)2µ1µ4λ1φ1ε

M∗4 =
G∗

2
Z∗(1−k)2λ1ε+(α2

1α2µ1µ3
4d+2α1α2µ1µ3

4φ1d−µ3
4µ5α2

1−2µ3
4µ1µ5α1φ1)G∗−µ3α4

1µ2
1µ5

4−4α2
1µ2

1µ2µ5
4φ1−4φ2

1α2
1µ2

1µ5
4µ2

G∗2 Q∗µ4

E∗4 =
(1− k)ε

µ4

where
G∗

2
= 2φ1α1µ1µ2

4 − 2(1− k)2µ1µ4λ1φ1ε

Z∗ =
2(1− k)4λ2

1µ1µ4ε2 + φ1α2
1µ2

4µ1 − 2(1− k)2µ1µ2
4α1λ1φ1ε− 2α1φ2

1µ1µ3
4 − 2(1− k)2α1µ1µ2

4λ1ε

2φ1α1µ2
1µ3

4 − 2(1− k)2µ2
1µ2

4λ1φ1ε

Q∗ =
α2

1µ1µ2
4γ2 − 2α1µ1µ2

4φ1γ2

2φ1α1µ1µ2
4 − 2(1− k)2µ1µ4λ1φ1ε

J =


(
α1 − 2µ1N∗4 − (1− k)λ1E∗4

)
−N∗4 φ 0 −V7

(1− k)λ1E∗4
(
dα2 − 2µ2T∗4 − γ2M∗4 − µ5

)
−γ2T∗4 V7

0 V4 V6
λ3gM∗4 (1−k)
(g+E∗4 )

2

0 0 0 −µ4



A =


V0 −V2 0 −V7

V1 V3 −V5 V7

0 V4 V6 V8

0 0 0 −µ4



|A| =

∣∣∣∣∣∣∣∣∣∣∣
V0 −V2 0 −V7

V1 V3 −V5 V7

0 V4 V6 V8

0 0 0 −µ4

∣∣∣∣∣∣∣∣∣∣∣
= 0

We need to show that Trace(A) < 0, that is

Tr(A) = (V0 + V3 + V6 − µ4) < 0

= α1(1− A0)− 2µ1N∗4 + dα2(1− µ5)− µ4 +
T∗4
(
ρ− γ3(ω− T∗4 )

)
ω + T∗4

− µ3 −
(1− k)4λ3ε

(gµ4 + (1− k)ε

Thus,

Tr(A) < 0, if A0 > 1, µ5 > 1, ρ < γ3(ω + T∗4 ) with A0 =
(1− k)2λ3ε

α1µ4
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To show that,
|A|= (−µ4(V0V3V6 + V0V4V5 + V1V2V6)) > 0

Let ζ1 = −µ4V0V3V6, ζ2 = −µ4V0V4V5, ζ3 = −µ4V1V2V6

ζ1 =
(
α1(1− A0)− 2µ1N∗4

)(
dα2(1− µ5)− 2µ2T∗4 − γ2µ∗4)

)( T∗4 (ρ−γ3(ω−T∗4 ))
ω+T∗4

− µ3 − (1−k)4λ3ε
(gµ4+(1−k)ε

)
.

This implies that, ζ1 > 0 is a positive, if A0 > 1, µ5 > 1, ρ < γ3(ω + T∗4 ) with A0 = (1−k)2λ3ε
α1µ4

ζ2 = (α1(1− A0)− 2µ1N∗4 )

(
M∗4

(ω + T∗4 )
2 (ρω− γ3(ω + T∗4 ))

)
(−γ2T∗4 )

This implies that, ζ2 > 0 is a positive, if A0 > 1, µ5 > 1, ρω < γ3(ω + T∗4 )
2, with A0 = (1−k)2λ3ε

α1µ4

ζ3 = −µ4(A0)(−φ1N∗4 )

(
T∗4
(
ρ− γ3(ω− T∗4 )

)
ω + T∗4

− µ3 −
(1− k)4λ3ε

(gµ4 + (1− k)ε

)

This implies that ζ3 < 0 is a negative and by Routh-Hurwitz criterion the system cannot be stable.
Thus the co-existing equilibrium point is always unstable if the cells coexist where

V0 =
α1µ4 − 2µ1µ4N∗4 − (1− k)2λ1ε

µ4
, V1 =

(1− k)2λ1ε

µ4
, V2 = −φ1N∗4 ,

V3 = (dα2 − 2µ2T∗4 − γ2M∗4 − µ5), V4 =
ρM∗4 ω− γ3M∗4(ω + T∗4 )

2

(ω + T∗4 )
2 , V5 = −γ2T∗4

V6 =
ρT∗4 (gµ4+(1−k)ε)−γ3T∗4 (ω+T∗4 )(gµ4+(1−k)ε)−µ3(ω+T∗4 )(gµ4+(1−k)ε)−(1−k)2(ω+T∗4 )λ3ε

(ω+T∗4 )(gµ4+(1−k)ε)

−V7 = −(1− k)λ1N∗4 , V7 = (1− k)λ1N∗4 , V8 =
λ3µ2

4gM∗4(1− k)

(gµ4 + (1− k)ε)2

�

4. Uncertainty and Sensitivity Analysis

In this section, we explore the dependence of the model solutions on the parameter values. We are
able to figure-out a feasible range of parameter values and determine the most critical parameters
in the model. We employed a similar method, which is discussed in detail by [20,33], using Latin
Hypercube Sampling (LHS) for studying the uncertainty analysis and the Partial Rank Correlation
Coefficient (PRCC) for analyzing the sensitivity analysis indexes of the parameters. LHS/PRCC was
ran and analyzed with a sample size of 100. The choice of this sample size is due to the fact that PRCC
produces accurate results for a lower sample size compared to other technique, such as eFAST [33].

Uncertainty and sensitivity analysis were performed on all non-dimensional system parameters in
the system (5) with the aim of determining the most sensitive parameters to the model. The parameter
baseline values in Table 1 were varied in the range of 25%. Figure 1 displays a bar graph of PRCCs
plotted against the homogeneous parameter value with tumor compartment as the baseline dependent
variable. The parameters that are significantly positively correlated with tumor cells, at P < 0.05
level of significance, are α1, g while µ1, γ3, and ω are significantly negatively correlated. An increase
in the production of normal cells α1, leads to higher numbers of normal cells, thus the higher the
α1, the higher the normal cells. While Figure 2 displays a bar graph of PRCCs plotted against the
homogeneous parameter value with tumor compartment as the baseline dependent variable. The most
sensitive parameters are shown to be P− values of s, γ2, µ3 and ρ are less than 0.01.
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Figure 1. PRCCs of homogeneous model parameters with the tumor cells as the baseline variable. All
parameter values were varied in 25% of their baseline values in Table 1. The most sensitive parameters
are shown to be P− values of α1, g, µ1, γ3 and ω are less than 0.01.

Table 1. Description of parameters in the model.

Parameter Symbol Value Unit Refs

Per capita growth rate of normal cells α1 0.70 day−1 [12]
Per capita growth rate of tumor cells α2 0.514 day−1 [5]
Natural death rate of normal cells µ1 0.00003 day−1 Assumed
Natural death rate of tumor cells µ2 0.01 day−1 [7]
Rate of inhibition of normal cells φ1 6 × 10−8 day−1 [1]
Tumor cells death rate due to immune response γ2 3 × 10−6 day−1 [12]
Interaction coefficient rate with immune response γ3 1 × 10−7 day−1 [5]
Source rate of immune cells s 1.3 × 104 day−1 [12]
Source rate of estrogen ε 1.3 × 104 day−1 est
Immune threshold rate ω 3 × 105 day−1 [5]
Immune response rate ρ 0.20 day−1 [13]
Natural death rate of immune cells µ3 0.29 day−1 [5]
Efficacy of anti-cancer drug k 0–1 day−1 Assumed
Supplement for immune booster β 0.01 day−1 est
Tumor formation rate as a result of DNA damage by excess estrogen λ1 0.20 (Pg/mL)−1day−1 est
Immune suppression rate due to excess estrogen λ3 0.002 day−1 est
Assume constant of value of decay factor g 0.1 day−1 est
Natural death rate of estrogen µ4 0.97 day−1 [19]
Death rate due to ketogenic diet µ5 2.0 day−1 est
Constant rate of ketogenic diet d 0.5 day−1 est
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Figure 2. PRCCs of homogeneous model parameters with the tumor cells as the baseline variable.
All parameter values were varied in 25% of their baseline values in Table 1. The most sensitive
parameters are shown to be P− values of s, γ2, µ3 and ρ are less than 0.01.

5. Analysis of Optimal Control

In this section, we formulated a corresponding optimal control problem for the model in the
system (5) considering ketogenic-diet and anti-cancer drugs as control interventions to minimize the
breast cancer and tumor burden at final time. The units of cells were normalized in order for the
carrying capacity of normal cells to be kept above threshold of 0 ≤ t ≤ t f [34–36]. On the other hand,
the aim is to reduce the tumor-size which indicates the degree of the disease in the body and it requires
the application of as much anti-cancer drugs as much as possible. However, it also minimized the
systemic cost, which is based on the quantities of anti-cancer drugs, since large drug concentrations
can be harmful and cause toxic side effects. In brief, the drug doses were minimized because the
smaller the dose, the better. Then, we formulated the objective functional J1

J1(u1, u2) =
∫ Tf

0

(
A1T(t) + A2E(t) +

1
2

A3u2
1(t) +

1
2

A4u2
2(t)

)
dt (8)

System equations (5) is subject to:

dN
dt = Nα1 − µ1N2 − φ1TN − (1− u1(t))(λ1NE)

dT
dt = (1− u2(t))Tα2 − µ2T2 − γ2MT − µ5T + (1− u1(t))(λ1NE)
dM
dt = sβ + ρMT

ω+T − γ3MT − µ3M−
(
(1− u1(t))

λ3 ME
g+E

)
dE
dt = (1− u1(t))ε− µ4E

(9)

J1 involves a quadratic control. In [37–41], it was established that quadratic control in the treatment
terms has the added benefit of keeping the tumor in check both when it is small or large in size.
The authors further explained that the quadratic control allows for a weaker treatment to minimize
the toxic side-effects while permitting the system to maintain a low tumor size.

Furthermore, for us to address the tumor-to-therapy trade-off, we established the existence
of an optimal control; by following the approach in [37,41,42], which required an analysis of the
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super-solutions (that is, the upper bounds on solutions) of the system (5). As soon as we were able to
show that the system is bounded, we established the existence of an optimal control using a result
from [43]. In addition, we proved that there exists an optimal control that minimizes the objective
functional; using the established approach of [37–40,44]. We use the fact that super-solutions N, T, M,
E of

dN
dt = Nα1, dT

dt = Tα2(1− u2),
dM
dt = sβ + ρMT

ω+T , dE
dt = 1

(10)

are bounded on a finite time interval. Since the sub-solutions are zero, the result obtained shows that
our system is bounded. Since we have a bounded system, our next task was to establish the existence
of the optimal control using a result from [43].

Existence of an Optimal Control

Theorem 6. Given the objective functional in (8), where U ={
u∗i (t), Lebesguemeasure : 0 ≤ u∗i (t) ≤ 1, ∀t ∈ [0, t]

}
subject to system (9) with N(0) = N0,

T(0) = T0, M(0) = M0, and E(0) = E0, then there exists an optimal control u∗i such that
minu∗i (t)∈[0,1] J1(u∗i ) = J1(u∗i (t)) if the following conditions holds:

• f is not empty;
• The admissible control set U is closed and convex;
• Each right hand side of the state system is continuous, is bounded above by the sum of the

bounded control and the state, and can be written as a linear function of u∗i (t) with coefficients
depending on time and the state;

• The integrand of J1(u∗i ) is convex on U and is bounded below by −c2 + c1u2 with c1 > 0.

Proof. Since the system (9) has bounded coefficients and the solutions are bounded on the finite
time interval, we can apply the result of [45], to obtain the existence of the solution of the system (9).
Furthermore, we note that U is closed and convex by definition. For the third conditions, the right hand
side of the system (9) must be continuous. The right hand side is continuous since the denominators of

all fractions from the right hand side of the system consists solely of positive entities. We let
←
φ (t,

←
X) be

right hand side of the system (9) except for the terms of u∗i and define.

|
←
f (t,

←
X, u∗i )| =

←
φ (t,

←
X) +


0

λ1NE
0
u1

, with
←
X =


N
T
M
E


using the boundedness of the solutions (10), we have

|
←
f (t,

←
X, u∗i )| ≤

∣∣∣∣∣∣∣∣∣∣∣


α1 0 0 0
0 α2(1− u2) 0 0
0 0 ρ 0
0 0 0 0




N
T
M
E



∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣


0

(1− u1)λ1NE
sβ

−u1ε



∣∣∣∣∣∣∣∣∣∣∣
≤ c1

(
|
←
X|+ |

←
u∗i |
)

where c1 depends on the coefficients of the system. For the fourth condition, we need to show

J(t, T, E, (1− Pi)ui + PiVi) ≤ (1− Pi)J(t, T, E, ui) + Pi(t, T, E, Vi)
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we analyze the difference of

J(t, T, E, (1− Pi)ui + PiVi)− [(1− Pi)J(t, T, E, ui) + Pi(t, T, E, Vi)]

= T(t) + E(t) + ε
2
(
u2

i − 2Piu2
i + P2

i u2
i + P2

i V2
i − 2P2

i V2
i u2

i + 2PiViui
)

−
(
T(t) + E(t) + ε

2 u2
i −

ε
2 Piu2

i +
ε
2 PiV2

i
)

=
ε

2
(P2

i − Pi)(ui −Vi)
2

since, Pi ∈ (0, 1) implies (P2
i − Pi) < 0 and (ui −Vi)

2 > 0 but (P2
i − Pi) < 0, which implies ε

2 (P2
i −

Pi)(ui −Vi)
2 is negative. This implies that,

J(t, T, E, (1− Pi)ui + PiVi) ≤ (1− Pi)J(t, T, E, ui) + Pi(t, T, E, Vi)

Lastly,

T(t) + E(t) +
ε

2
u2

i (t) ≥
ε

2
u2

i (t) ≥ −c +
ε

2
u2

i (t)

which gives −c + ε
2 u2

i (t) as the lower bound. With the existence of the optimal control established, we
now characterized the optimal control using the Pontryagin’s maximum principle [11]. The constants
A1, A2, A3 and A4 are a measure of the relative cost of the interventions over [0, T]. The optimal control
problem is that of finding optimal functions (u∗1(t), u∗2(t)) such that

J1(u∗1(t), u∗2(t)) = min
Ω

J1(u1(t), u2(t)) (11)

where
Ω =

{
u1(t)&u2(t) : 0 ≤ u1(t) ≤ u1max, 0 ≤ u2(t) ≤ u2max, t ∈ [0, Tf ]

}
�

Three different control strategies are explored. This approach can be used to test various options.
However, we only looked at the following three alternatives:

• Strategy 1: Anti-cancer drug treatment control on tumor cells (control u1(t) only);
• Strategy 2: Ketogenic diet control on excess estrogen and tumor cells (control u2(t) only);
• Strategy 3: Anti-cancer drug and ketogenic diet treatment combined control on tumor cells growth

and excess estrogen (controls u1(t) and u2(t)).

Thus, strategies (1–3) use the objective functional (8). We assumed that there are practical
limitations on the maximum rate at which the anti-cancer treatment may be applied in a given time
period. We defined the positive constant umax accordingly. We also define the set Ω of admissible
controls to be all Lebesgue measurable functions that take on values in the control set [13,46,47]
u = [0, umax] almost everywhere on [0, T]. We sought an optimal control u∗ ∈ Ω in (11) [13]. In order
to find the optimal solutions, we first traced the Lagrangian and Hamiltonian for the optimal control
problem (8) and (9). The Lagrangian of the optimal control problem is given by:

L(N, T, M, E, u1, u2) = A1T(t) + A2E(t) +
1
2

A3u2
1(t) +

1
2

A4u2
2(t) (12)

For the purpose of the necessary conditions for optimal control functions with the help of
Pontryagin’s maximum principle [11]. We define the Hamiltonian, H for the control problem of
the system (8) and (9)

H = L(N, T, M, E, u1, u2) + θ1N′ + θ2T′ + θ3M′ + θ4E′ (13)
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where L is the Lagrangian function (12),

H =



A1T(t) + A2E(t) + 1
2 A3u2

1(t) +
1
2 A4u2

2(t)
+θ1

(
Nα1 − µ1N2 − φ1TN − (1− u1(t))(λ1NE)

)
+θ2

(
(1− u2(t))Tα2 − µ2T2 − γ2MT − µ5T + (1− u1(t))(λ1NE)

)
+θ3

(
sβ + ρMT

ω+T − γ3MT − µ3M−
(
(1− u1(t))

λ3 ME
g+E

))
+θ4((1− u1(t))ε− µ4E)

where θ1, θ2, θ3, θ4 are the adjoints variables for the states N, T, M, E. However, with the help of
Pontryagin’s Maximum Principle, we obtained a minimized Hamiltonian that minimizes the objective
function or cost functional. We applied Pontryagin’s Maximum Principle [11], to characterize the
optimal control pair u∗1 & u∗2 in the following result.

Theorem 7. Given optimal control variables u∗1 & u∗2 and N∗, T∗, M∗ & E∗ are corresponding optimal state
variables of the control system (8) and (9). Then there exists the adjoint variable θi = (θ1, θ2, θ3, θ4) ∈ <4

+ that
satisfies the following equations.

dθ1
dt = 2θ1µ1N + φ1θ1T + (θ1 + θ2)(1− u2(t))λ1E− α1θ1

dθ2
dt = −A1 + θ1φ1N + θ2(2Tµ2 + γ2M + µ5 − α2(1− u2)) + θ3

(
γ3M− ρωM

(ω+T)2

)
dθ3
dt = θ2γ2T − ρθ3T + γ3θ3T + µ3θ3 + θ3

(
(1− u1)

λ1E
g+E

)
dθ4
dt = −A2 + (θ1 − θ2)(1− u1)λ1N − θ3

(
(1− u1)

λ3 Mg
(g+E)2

)
− θ4µ4

(14)

with transversality conditions

θ1(Tf ) = θ2(Tf ) = θ3(Tf ) = θ4(Tf ) = 0

The corresponding optimal controls u∗1 & u∗2 are given as,

u∗1 = min
{

max
{

0,
1

A3

(
θ2λ1N∗E∗ + θ3ε− θ1λ1N∗E∗ − θ3λ3M∗E∗

g + E∗

)}
, 1
}

(15)

and

u∗2 = min
{

max
{

0,
1

A4
(θ2α2T∗)

}
, 1
}

(16)

Proof. Let u∗1 & u∗2 be the given optimal control functions and N∗, T∗, M∗ & E∗ be the corresponding
optimal state variables of the system (9) that minimize the cost functional or objective (8). Then by
Pontryagin’s maximum principle [11], there exists adjoint variables (14) θ1, θ2, θ3 & θ4 which satisfy the
following equations

dθ1
dt = − ∂H

∂N , dθ2
dt = − ∂H

∂T , dθ3
dt = − ∂H

∂M , dθ4
dt = − ∂H

∂E

with transversality conditions

θ1(Tf ) = θ2(Tf ) = θ3(Tf ) = θ4(Tf ) = 0

where H is the Hamiltonian and defined as

H(N, T, M, E, u1, u2, θ) = L(N, T, M, E, u1, u2) + θ1N′ + θ2T′ + θ3M′ + θ4E′
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H =



A1T(t) + A2E(t) + 1
2 A3u2

1(t) +
1
2 A4u2

2(t)
+θ1

(
Nα1 − µ1N2 − φ1TN − (1− u1(t))(λ1NE)

)
+θ2

(
(1− u2(t))Tα2 − µ2T2 − γ2MT − µ5T + (1− u1(t))(λ1NE)

)
+θ3

(
sβ + ρMT

ω+T − γ3MT − µ3M−
(
(1− u1(t))

λ3 ME
g+E

))
+θ4((1− u1(t))ε− µ4E)

from the optimality condition, we have

∂H
∂u1

= 0, at u1 = u∗1 and ∂H
∂u2

= 0, at u2 = u∗2

which implies that

0 =
∂H
∂u1

= A3u1 + θ1λ1NE− θ2λ1NE + θ3
λ3ME
g + E

− θ4ε

0 =
∂H
∂u1

= A4u2 − θ2α2T

Hence, we obtain (see [10])

u∗1 =
1

A3

{
θ1λ1NE + θ4ε− θ1λ1NE− θ3

λ3ME
g + E

}
(17)

u∗2 =
1

A4
{θ2α2T} (18)

Thus we have (17) and (18).
By standard control arguments involving the bounds on the controls, we conclude that (15) and

(16) can be written in this form

u∗1 =


0 i f 1

A3

(
θ1λ1NE + θ4ε− θ1λ1NE− θ3

λ3 ME
g+E

)
< 0

1
A3

(
θ1λ1NE + θ4ε− θ1λ1NE− θ3

λ3 ME
g+E

)
i f 0 ≤ 1

A3

(
θ1λ1NE + θ4ε− θ1λ1NE− θ3

λ3 ME
g+E

)
≤ 1

1 i f 1
A3

(
θ1λ1NE + θ4ε− θ1λ1NE− θ3

λ3 ME
g+E

)
> 1

and

u∗2 =

 0 i f 1
A4
(θ2α2T∗) < 0

1
A4
(θ2α2T∗) i f 0 ≤ 1

A4
(θ2α2T∗) ≤ 1

1 i f 1
A4
(θ2α2T∗) > 1

�

However, we discuss the numerical solution of the optimality system and the corresponding
results of varying the optimal controls u1 & u2 the parameter choices, and the interpretations from
various cases.

6. Numerical Simulations and Discussion

A picture of the dynamical behavior of breast cancer cells in the presence of normal cells, tumor
cells, immune cells, and estrogen is given by the numerical simulations of the model (5). The optimal
control is acquired by solving the optimality system of four ordinary differential equations from the
state variables and the adjoint system. An iterative scheme is used to solve the optimality system.
All the numerical simulations were executed in MAPLE 18. We employed the forward-backward
scheme method, beginning with an initial guess for optimal controls and solved the optimal state
system forward in time and after that solved the adjoint state system backward in forward using
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the finite difference scheme in MAPLE. The two controls were then updated by using a convex
combination of the previous controls as well as the characterization (17) and (18). The entire process
was repeated until the values of the unknown at the previous iterations were closed to the one at
the current iteration [39,41]. Key parameters are also noted in stabilizing the model in system (5),
for example: ketogenic diet, anti-cancer, and immune booster. The initial values of variables are
N(0) = 2000, T(0) = 800, M(0) = 500, E(0) = 20 and s = 1.3× 104 adopted from [12]. All parameter
values used for the numerical simulation are stated in Table 1 above.

Figure 3, indicates that the introduction of a ketogenic diet results in a reduction of activities of
cancer cells and we also note that too much of a ketogenic diet will result in ketoacidosis. Ketoacidosis
is the combination of ketosis and acidosis. Ketosis is the accumulation of substances called ketone
bodies and acidosis is the increased acidity of the blood which can cause frequent urination (Polyuria),
poor appetite, and a loss of consciousness. Therefore, our ketogenic diet’s parameter rate is best at
d = 0.6 and it can complement the activity of the anti-cancer drug (Tamoxifen). Figure 4, shows
the impact of anti-cancer drugs in reducing the production of excess estrogen in the system, but
when there is less production of estrogen there will not be a rapid activation of the growth factor
that expresses breast normal cells. However, the rapid production of estrogen results in abnormal
breast cells expression, which will lead to breast cancer. Figure 5 shows the obvious effectiveness of
anti-cancer drugs on tumor cells when there is no supply of nutrient or glucose to cancer cells.

Furthermore, Figure 6 illustrates that the red line β = 0 shows that during cancer formation
the activities of both innate and adaptive reduces drastically, which is due to the expression of other
proteins apart from those proteins that are responsible for the activation of the immune response,
such as an immune booster introduced to the system, which reactivates the activities of the immune
response towards the cancer cells.

The presence of abnormal estrogen level without anti-cancer drugs or a ketogenic diet will lead the
system into critical condition and became unstable as shown in Figure 7. However, the system became
stable as we introduced treatments, such as chemotherapy and the ketogenic diet as represented
in Figure 8. In addition, Figure 9, indicates that there is DNA damage at λ1 = 0, which occurs
naturally as a result of metabolic or hydrolytic processes. It is as a result of the Tumor Suppressor
Gene (TSG), which is able to control the activity of DNA gene repair successfully. On the other hand,
at λ1 = 0.2, 0.4, 0.6 showed that TSG (such as BRCA 1, BRCA 2, P53) compromised the pathway that
leads cells to grow uncontrollably and later form a tumor or it leads to accelerated aging.
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Figure 3. The variation of proportion of Tumor cell population for different values of d with other
parameters fixed.
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However, the mathematical analysis of the model produced six equilibrium points. All the
points have epidemiological implications in relation to explaining the dynamics of breast cancer
growth. P0 represents the situation where there is tumor-free equilibrium, that is when only tumor cell
population has died off due to competition with other cells. Pd1 represents Type 1 dead equilibrium
point where both normal cells and tumor cells die-off as a result of breast tissue removal through
mastectomy surgery or death. This is because overtime the cancer cells which are depending on
estrogen to develop into independent cells that grow regardless of estrogen receptors. Pd2 could be
described by Type 2 dead equilibrium point where normal cells were only forced to extinction leaving
the tumor cells surviving. Pd3 represent Type 3 dead equilibrium point which means immune system
is weak and it cannot fight the tumor cells which eventually overpower normal cells and forced it to
extinction. Pd4 show that Type 4 dead equilibrium point where ketogenic diet is not effective, immune
booster is not active which lead to tumor cell over-compete normal cells as a result of infusion of excess
estrogen to the body system.

We categorised this as ”dead” because biologically there is no recovery of damaged normal cells
since they have died off of the cell population. It could be as a result of anti-cancer drug that destroy
red blood cells which affected normal cells.

Effects of Control on the System (9)

By numerical simulation, optimal single control of anti-cancer drugs measure u1 and
ketogenic-diet optimal control measure u2 are shown in Figure 10a,b respectively; where (red dots
line) represented tumor cells and (solid green line) represented normal cells. Figure 10c is the use of
combination of two control therapies which have significant impact on the increase of normal cells
population against time. However, all the strategies are effectively restrain the tumor growth, they
cannot totally eliminate a large tumor in 100 days. In Figure 11, optimal control using anti-cancer
drugs and ketogenic diet as we optimized the system (54) with the objective function J for breast cancer
model. It was observed that the combination of the two controls resulted in appreciable decreases in
the number of tumor cells population in the presence of control (solid green line) while (dots red line)
in the case of uncontrolled. However, tumor growth is driven to a very low but non-zero level.

Furthermore, it was noticed from Figure 12, that the level of estrogen was reduced drastically
in the presence of controls (solid green line) against the constant increase level of estrogen (dots red
line) in uncontrolled cases. However, anti-cancer drugs (for example Tamoxifen) blocks estrogen
receptors on breast cells, that is, it stops estrogen from connecting to the cancer cells while tamoxifen
also acts like an anti-estrogen in breast cells; it acts like an estrogen in other tissues like the uterus
and the bones [48]. In addition, ketosis also regulating hormonal imbalance [8,27]. On the other hand,
Figure 13, shows the effect of immune response with and without controls. Immune response can help
to fight cancer cells while immune system recognize cancer cells as abnormal and kill them. However,
this may not be enough to eliminate cancer cells from the body.
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Figure 10. Simulation result of the model (9), showing normal cell population against time with and
without control.
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Figure 11. Simulation result of the model (9), showing tumor cell population against time with and
without control.
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Figure 12. Simulation result of the model (9), showing estrogen level against time with and
without control.
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Figure 13. Simulation result of the model (9), showing immune response against time with and
without control.

7. Conclusions

A four-dimensional compartmental deterministic model was designed and used to monitor
the dynamics of breast cancer. The existing model in [19] was extended to incorporate treatments,
ketogenic diet, and an immune booster. The system (5) was rigorously analyzed to gain insight into
their dynamical behaviors. The study shows the following:
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• The conditions of stability of the tumor-free equilibrium (TFE) was established and the system is
only local asymptotically stable (LAS) if a certain threshold quantity, known as the reproductive
number, is less than unity (R0 < 1). It implies that the number of tumor cells in the body will be
brought to zero if proper treatments and a ketogenic diet that can force make the threshold to a
value less than unity are monitored.

• An individual has the chance of developing breast cancer depending on the level of the immune
system (s), the efficacy of the anti-cancer drug (k) and the rate at which the ketogenic diet (d) is
being taken to fight tumor cells. We also found out that the presence of excess estrogen in system
makes it unstable, as depicted in Figure 7. This implies that any additional estrogen quantity
introduced into the body through the birth control, and hormone replacement therapy (HRT)
enhances the rate of tumor formation. Thus, the development of breast cancer is certain.

• The transition from normal cells class to tumor cells class plays a crucial role in breast cancer
dynamics (λ1). More tumor is formed if the DNA is damaged or altered as a result of excess
estrogen, which reduces the number of normal cells being produced by red blood cells.

Furthermore, the results show that tumor cell formation depend on the level of excess estrogen
introduced into the body system. It must be noted that the ability to resist changes in structure and
amount of estrogen released during natural biological processes is dependent on an individual’s DNA.
Such biological processes include: premenopausal and menopause stages. Other risk factors may also
be incorporated in the model for future work, which might generate different results.

However, the focus of this study has been identifying the advantages that come with the process
of breast cancer relief policies that combined anti-cancer drugs and ketogenic diet procedures to knit
the circumstances of unlimited and limited resources. The effort to moderate the effect of breast
cancer on the body can be fruitful, especially if our basic reproductive number R0 is properly analyzed.
In addition, moderation is conceivable if the planning of intercessions is sufficiently quick and if the
arrangement includes the utilization of more than one therapy procedure. No therapy (ketogenic diet
and anti-cancer drug) is possible, unless minimal resources are accessible.

8. Further Research

Breast cancer is a health challenge disease, especially among women world-wide. This study
explored the use of a quadratic control law to formulate the optimal control problem for the objective
function. Hence, the authors hope to conduct further research into the application of a switching
function and to investigate the side-effects of anti-cancer drugs by employing a linear control law to
formulate the optimal control problem for further study.
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